calculate_interaction_zscores.R 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. calculations <- df %>%
  177. mutate(
  178. WT_L = df$mean_L,
  179. WT_K = df$mean_K,
  180. WT_r = df$mean_r,
  181. WT_AUC = df$mean_AUC,
  182. WT_sd_L = df$sd_L,
  183. WT_sd_K = df$sd_K,
  184. WT_sd_r = df$sd_r,
  185. WT_sd_AUC = df$sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~max(., na.rm = TRUE),
  197. min = ~min(., na.rm = TRUE),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. calculations <- calculations %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. calculations <- calculations %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Delta_L = mean_L - Exp_L,
  219. Exp_K = WT_K + Raw_Shift_K,
  220. Delta_K = mean_K - Exp_K,
  221. Exp_r = WT_r + Raw_Shift_r,
  222. Delta_r = mean_r - Exp_r,
  223. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. calculations <- calculations %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. interactions <- calculations %>%
  235. mutate(
  236. lm_L = lm(Delta_L ~ conc_num_factor),
  237. lm_K = lm(Delta_K ~ conc_num_factor),
  238. lm_r = lm(Delta_r ~ conc_num_factor),
  239. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  240. Zscore_L = Delta_L / WT_sd_L,
  241. Zscore_K = Delta_K / WT_sd_K,
  242. Zscore_r = Delta_r / WT_sd_r,
  243. Zscore_AUC = Delta_AUC / WT_sd_AUC
  244. )
  245. interactions <- interactions %>%
  246. mutate(
  247. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  248. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  249. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  250. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  251. r_squared_L = summary(lm_L)$r.squared,
  252. r_squared_K = summary(lm_K)$r.squared,
  253. r_squared_r = summary(lm_r)$r.squared,
  254. r_squared_AUC = summary(lm_AUC)$r.squared,
  255. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  256. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  257. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  258. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  259. )
  260. interactions <- interactions %>%
  261. mutate(
  262. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  263. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  264. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  265. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  266. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  267. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  268. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  269. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Declare column order for output
  272. calculations <- calculations %>%
  273. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  274. "mean_L", "mean_K", "mean_r", "mean_AUC",
  275. "median_L", "median_K", "median_r", "median_AUC",
  276. "sd_L", "sd_K", "sd_r", "sd_AUC",
  277. "se_L", "se_K", "se_r", "se_AUC",
  278. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  279. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  280. "WT_L", "WT_K", "WT_r", "WT_AUC", "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  281. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC", "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  282. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  283. "NG", "SM", "DB") %>%
  284. ungroup()
  285. # Also arrange results by Z_lm_L and NG
  286. interactions <- interactions %>%
  287. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  288. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  289. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  290. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  291. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  292. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  293. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  294. "NG", "SM", "DB") %>%
  295. arrange(desc(lm_Score_L)) %>%
  296. arrange(desc(NG)) %>%
  297. ungroup()
  298. return(list(calculations = calculations, interactions = interaction))
  299. }
  300. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  301. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  302. plots <- lapply(plot_configs, function(config) {
  303. # Log details and setup
  304. df <- config$df
  305. aes_mapping <-
  306. if (is.null(config$y_var))
  307. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  308. else
  309. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  310. plot <- ggplot(df, aes_mapping)
  311. # Plot type handling
  312. plot <- switch(config$plot_type,
  313. "scatter" = {
  314. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  315. plot + geom_point(aes(ORF = ORF, Gene = Gene, delta_bg = delta_bg), config$shape %||% 3)
  316. } else if (!is.null(config$gene_point) && config$gene_point) {
  317. plot + geom_point(aes(ORF = ORF, Gene = Gene, Gene = Gene), shape = config$shape %||% 3, position = "jitter")
  318. } else if (!is.null(config$position) && config$position == "jitter") {
  319. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  320. } else {
  321. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  322. }
  323. if (!is.null(config$add_smooth) && config$add_smooth) {
  324. if (!is.null(config$lm_line)) {
  325. # Use precomputed linear model values if available
  326. plot <- plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  327. } else {
  328. # Fallback to dynamically calculating the smooth line
  329. plot <- plot + geom_smooth(method = "lm", se = FALSE)
  330. }
  331. }
  332. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  333. plot <- plot + scale_x_continuous(
  334. name = config$x_label,
  335. breaks = config$x_breaks,
  336. labels = config$x_labels
  337. )
  338. }
  339. if (!is.null(config$ylim_vals)) {
  340. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  341. }
  342. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  343. plot <- plot +
  344. geom_errorbar(aes(
  345. ymin = !!sym(paste0("mean_", config$y_var)) - !!sym(paste0("sd_", config$y_var)),
  346. ymax = !!sym(paste0("mean_", config$y_var)) + !!sym(paste0("sd_", config$y_var))),
  347. width = 0.1) +
  348. geom_point(aes(y = !!sym(paste0("mean_", config$y_var))), size = 0.6)
  349. }
  350. if (!is.null(config$coord_cartesian)) {
  351. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  352. }
  353. plot
  354. },
  355. "rank" = {
  356. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  357. if (!is.null(config$sd_band)) {
  358. for (i in seq_len(config$sd_band)) {
  359. plot <- plot +
  360. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  361. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  362. geom_hline(yintercept = c(-i, i), color = "gray")
  363. }
  364. }
  365. if (!is.null(config$enhancer_label)) {
  366. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  367. }
  368. if (!is.null(config$suppressor_label)) {
  369. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  370. }
  371. plot
  372. },
  373. "correlation" = {
  374. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  375. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  376. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  377. if (!is.null(config$rect)) {
  378. plot <- plot + geom_rect(aes(xmin = config$rect$xmin,
  379. xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  380. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  381. }
  382. plot
  383. },
  384. "box" = {
  385. plot <- plot + geom_boxplot()
  386. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  387. plot <- plot + scale_x_discrete(
  388. name = config$x_label,
  389. breaks = config$x_breaks,
  390. labels = config$x_labels
  391. )
  392. }
  393. if (!is.null(config$coord_cartesian)) {
  394. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  395. }
  396. plot
  397. },
  398. "density" = plot + geom_density(),
  399. "bar" = plot + geom_bar()
  400. )
  401. plot
  402. })
  403. # Save plots to PDF and HTML
  404. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  405. lapply(plots, print)
  406. dev.off()
  407. plotly_plots <- lapply(plots, function(plot) suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h"))))
  408. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  409. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  410. }
  411. generate_interaction_plot_configs <- function(df, variables) {
  412. configs <- list()
  413. # Define common y-limits and other attributes for each variable dynamically
  414. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  415. # Define annotation positions based on the variable being plotted
  416. annotation_positions <- list(
  417. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  418. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  419. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  420. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  421. )
  422. # Define which annotations to include for each plot
  423. annotation_labels <- list(
  424. ZShift = function(df, var) paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  425. lm_ZScore = function(df, var) paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  426. NG = function(df, var) paste("NG =", df$NG),
  427. DB = function(df, var) paste("DB =", df$DB),
  428. SM = function(df, var) paste("SM =", df$SM)
  429. )
  430. for (variable in variables) {
  431. # Dynamically generate the names of the columns
  432. var_info <- list(
  433. ylim = limits_map[[variable]],
  434. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  435. sd_col = paste0("WT_sd_", variable),
  436. delta_var = paste0("Delta_", variable)
  437. )
  438. # Extract the precomputed linear model coefficients
  439. lm_line <- list(
  440. intercept = coef(var_info$lm_model)[1],
  441. slope = coef(var_info$lm_model)[2]
  442. )
  443. # Dynamically create annotations based on variable
  444. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  445. y_pos <- annotation_positions[[variable]][[annotation_name]]
  446. label <- annotation_labels[[annotation_name]](df, variable)
  447. list(x = 1, y = y_pos, label = label)
  448. })
  449. # Add scatter plot configuration for this variable
  450. configs[[length(configs) + 1]] <- list(
  451. df = df,
  452. x_var = "conc_num_factor",
  453. y_var = var_info$delta_var,
  454. plot_type = "scatter",
  455. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  456. ylim_vals = var_info$ylim,
  457. annotations = annotations,
  458. lm_line = lm_line, # Precomputed linear model
  459. error_bar = list(
  460. ymin = 0 - (2 * df[[var_info$sd_col]][1]),
  461. ymax = 0 + (2 * df[[var_info$sd_col]][1])
  462. ),
  463. x_breaks = unique(df$conc_num_factor),
  464. x_labels = unique(as.character(df$conc_num)),
  465. x_label = unique(df$Drug[1]),
  466. shape = 3,
  467. size = 0.6,
  468. position = "jitter",
  469. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  470. )
  471. # Add box plot configuration for this variable
  472. configs[[length(configs) + 1]] <- list(
  473. df = df,
  474. x_var = "conc_num_factor",
  475. y_var = variable,
  476. plot_type = "box",
  477. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  478. ylim_vals = var_info$ylim,
  479. annotations = annotations,
  480. error_bar = FALSE, # Boxplots typically don't need error bars
  481. x_breaks = unique(df$conc_num_factor),
  482. x_labels = unique(as.character(df$conc_num)),
  483. x_label = unique(df$Drug[1]),
  484. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  485. )
  486. }
  487. return(configs)
  488. }
  489. # Adjust missing values and calculate ranks
  490. adjust_missing_and_rank <- function(df, variables) {
  491. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  492. df <- df %>%
  493. mutate(across(all_of(variables), list(
  494. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  495. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  496. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  497. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  498. ), .names = "{fn}_{col}"))
  499. return(df)
  500. }
  501. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  502. configs <- list()
  503. # Adjust titles for _lm plots if is_lm is TRUE
  504. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  505. # Annotated version (with text)
  506. for (sd_band in c(1, 2, 3)) {
  507. configs[[length(configs) + 1]] <- list(
  508. df = df,
  509. x_var = rank_var,
  510. y_var = zscore_var,
  511. plot_type = "rank",
  512. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  513. sd_band = sd_band,
  514. enhancer_label = list(
  515. x = nrow(df) / 2, y = 10,
  516. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  517. ),
  518. suppressor_label = list(
  519. x = nrow(df) / 2, y = -10,
  520. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  521. ),
  522. shape = 3,
  523. size = 0.1
  524. )
  525. }
  526. # Non-annotated version (_notext)
  527. for (sd_band in c(1, 2, 3)) {
  528. configs[[length(configs) + 1]] <- list(
  529. df = df,
  530. x_var = rank_var,
  531. y_var = zscore_var,
  532. plot_type = "rank",
  533. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  534. sd_band = sd_band,
  535. enhancer_label = NULL, # No annotations for _notext
  536. suppressor_label = NULL, # No annotations for _notext
  537. shape = 3,
  538. size = 0.1,
  539. position = "jitter"
  540. )
  541. }
  542. return(configs)
  543. }
  544. generate_correlation_plot_configs <- function(df, variables) {
  545. configs <- list()
  546. for (variable in variables) {
  547. z_lm_var <- paste0("Z_lm_", variable)
  548. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  549. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  550. configs[[length(configs) + 1]] <- list(
  551. df = df,
  552. x_var = avg_zscore_var,
  553. y_var = z_lm_var,
  554. plot_type = "correlation",
  555. title = paste("Avg Zscore vs lm", variable),
  556. color_var = "Overlap",
  557. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  558. shape = 3,
  559. geom_smooth = TRUE,
  560. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  561. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  562. legend_position = "right"
  563. )
  564. }
  565. return(configs)
  566. }
  567. main <- function() {
  568. lapply(names(args$experiments), function(exp_name) {
  569. exp <- args$experiments[[exp_name]]
  570. exp_path <- exp$path
  571. exp_sd <- exp$sd
  572. out_dir <- file.path(exp_path, "zscores")
  573. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  574. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  575. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  576. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  577. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  578. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  579. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  580. message("Loading and filtering data")
  581. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  582. df <- update_gene_names(df, args$sgd_gene_list)
  583. df <- as_tibble(df)
  584. # Filter rows that are above tolerance for quality control plots
  585. df_above_tolerance <- df %>% filter(DB == 1)
  586. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  587. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  588. # Remove rows with 0 values in L
  589. df_no_zeros <- df_na %>% filter(L > 0)
  590. # Save some constants
  591. max_conc <- max(df$conc_num_factor)
  592. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  593. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  594. message("Calculating summary statistics before quality control")
  595. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  596. df_ss <- ss$summary_stats
  597. df_stats <- ss$df_with_stats
  598. df_filtered_stats <- df_stats %>%
  599. {
  600. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  601. if (nrow(non_finite_rows) > 0) {
  602. message("Removed the following non-finite rows:")
  603. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  604. }
  605. filter(., if_all(c(L), is.finite))
  606. }
  607. message("Calculating summary statistics after quality control")
  608. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  609. df_na_ss <- ss$summary_stats
  610. df_na_stats <- ss$df_with_stats
  611. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  612. # Filter out non-finite rows for plotting
  613. df_na_filtered_stats <- df_na_stats %>%
  614. {
  615. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  616. if (nrow(non_finite_rows) > 0) {
  617. message("Removed the following non-finite rows:")
  618. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  619. }
  620. filter(., if_all(c(L), is.finite))
  621. }
  622. message("Calculating summary statistics after quality control excluding zero values")
  623. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  624. df_no_zeros_stats <- ss$df_with_stats
  625. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  626. {
  627. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  628. if (nrow(non_finite_rows) > 0) {
  629. message("Removed the following non-finite rows:")
  630. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  631. }
  632. filter(., if_all(c(L), is.finite))
  633. }
  634. message("Filtering by 2SD of K")
  635. df_na_within_2sd_k <- df_na_stats %>%
  636. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  637. df_na_outside_2sd_k <- df_na_stats %>%
  638. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  639. message("Calculating summary statistics for L within 2SD of K")
  640. # TODO We're omitting the original z_max calculation, not sure if needed?
  641. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  642. l_within_2sd_k_ss <- ss$summary_stats
  643. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  644. write.csv(l_within_2sd_k_ss,
  645. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  646. message("Calculating summary statistics for L outside 2SD of K")
  647. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  648. l_outside_2sd_k_ss <- ss$summary_stats
  649. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  650. write.csv(l_outside_2sd_k_ss,
  651. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  652. # Each plots list corresponds to a file
  653. message("Generating QC plot configurations")
  654. l_vs_k_plots <- list(
  655. list(
  656. df = df,
  657. x_var = "L",
  658. y_var = "K",
  659. plot_type = "scatter",
  660. delta_bg_point = TRUE,
  661. title = "Raw L vs K before quality control",
  662. color_var = "conc_num",
  663. error_bar = FALSE,
  664. legend_position = "right"
  665. )
  666. )
  667. frequency_delta_bg_plots <- list(
  668. list(
  669. df = df_filtered_stats,
  670. x_var = "delta_bg",
  671. y_var = NULL,
  672. plot_type = "density",
  673. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  674. color_var = "conc_num",
  675. x_label = "Delta Background",
  676. y_label = "Density",
  677. error_bar = FALSE,
  678. legend_position = "right"),
  679. list(
  680. df = df_filtered_stats,
  681. x_var = "delta_bg",
  682. y_var = NULL,
  683. plot_type = "bar",
  684. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  685. color_var = "conc_num",
  686. x_label = "Delta Background",
  687. y_label = "Count",
  688. error_bar = FALSE,
  689. legend_position = "right")
  690. )
  691. above_threshold_plots <- list(
  692. list(
  693. df = df_above_tolerance,
  694. x_var = "L",
  695. y_var = "K",
  696. plot_type = "scatter",
  697. delta_bg_point = TRUE,
  698. title = paste("Raw L vs K for strains above Delta Background threshold of",
  699. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  700. color_var = "conc_num",
  701. position = "jitter",
  702. annotations = list(
  703. x = l_half_median,
  704. y = k_half_median,
  705. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  706. ),
  707. error_bar = FALSE,
  708. legend_position = "right"
  709. )
  710. )
  711. plate_analysis_plots <- list()
  712. for (var in summary_vars) {
  713. for (stage in c("before", "after")) {
  714. if (stage == "before") {
  715. df_plot <- df_filtered_stats
  716. } else {
  717. df_plot <- df_na_filtered_stats
  718. }
  719. config <- list(
  720. df = df_plot,
  721. x_var = "scan",
  722. y_var = var,
  723. plot_type = "scatter",
  724. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  725. error_bar = TRUE,
  726. color_var = "conc_num",
  727. position = "jitter")
  728. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  729. }
  730. }
  731. plate_analysis_boxplots <- list()
  732. for (var in summary_vars) {
  733. for (stage in c("before", "after")) {
  734. if (stage == "before") {
  735. df_plot <- df_filtered_stats
  736. } else {
  737. df_plot <- df_na_filtered_stats
  738. }
  739. config <- list(
  740. df = df_plot,
  741. x_var = "scan",
  742. y_var = var,
  743. plot_type = "box",
  744. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  745. error_bar = FALSE, color_var = "conc_num")
  746. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  747. }
  748. }
  749. plate_analysis_no_zeros_plots <- list()
  750. for (var in summary_vars) {
  751. config <- list(
  752. df = df_no_zeros_filtered_stats,
  753. x_var = "scan",
  754. y_var = var,
  755. plot_type = "scatter",
  756. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  757. error_bar = TRUE,
  758. color_var = "conc_num",
  759. position = "jitter")
  760. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  761. }
  762. plate_analysis_no_zeros_boxplots <- list()
  763. for (var in summary_vars) {
  764. config <- list(
  765. df = df_no_zeros_filtered_stats,
  766. x_var = "scan",
  767. y_var = var,
  768. plot_type = "box",
  769. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  770. error_bar = FALSE,
  771. color_var = "conc_num"
  772. )
  773. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  774. }
  775. l_outside_2sd_k_plots <- list(
  776. list(
  777. df = df_na_l_outside_2sd_k_stats,
  778. x_var = "L",
  779. y_var = "K",
  780. plot_type = "scatter",
  781. delta_bg_point = TRUE,
  782. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  783. color_var = "conc_num",
  784. position = "jitter",
  785. legend_position = "right"
  786. )
  787. )
  788. delta_bg_outside_2sd_k_plots <- list(
  789. list(
  790. df = df_na_l_outside_2sd_k_stats,
  791. x_var = "delta_bg",
  792. y_var = "K",
  793. plot_type = "scatter",
  794. gene_point = TRUE,
  795. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  796. color_var = "conc_num",
  797. position = "jitter",
  798. legend_position = "right"
  799. )
  800. )
  801. message("Generating QC plots")
  802. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  803. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  804. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  805. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  806. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  807. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  808. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  809. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  810. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  811. # Clean up
  812. rm(df, df_above_tolerance, df_no_zeros)
  813. # TODO: Originally this filtered L NA's
  814. # Let's try to avoid for now since stats have already been calculated
  815. # Process background strains
  816. bg_strains <- c("YDL227C")
  817. lapply(bg_strains, function(strain) {
  818. message("Processing background strain: ", strain)
  819. # Handle missing data by setting zero values to NA
  820. # and then removing any rows with NA in L col
  821. df_bg <- df_na %>%
  822. filter(OrfRep == strain) %>%
  823. mutate(
  824. L = if_else(L == 0, NA, L),
  825. K = if_else(K == 0, NA, K),
  826. r = if_else(r == 0, NA, r),
  827. AUC = if_else(AUC == 0, NA, AUC)
  828. ) %>%
  829. filter(!is.na(L))
  830. # Recalculate summary statistics for the background strain
  831. message("Calculating summary statistics for background strain")
  832. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  833. summary_stats_bg <- ss_bg$summary_stats
  834. # df_bg_stats <- ss_bg$df_with_stats
  835. write.csv(summary_stats_bg,
  836. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  837. row.names = FALSE)
  838. # Filter reference and deletion strains
  839. # Formerly X2_RF (reference strains)
  840. df_reference <- df_na_stats %>%
  841. filter(OrfRep == strain) %>%
  842. mutate(SM = 0)
  843. # Formerly X2 (deletion strains)
  844. df_deletion <- df_na_stats %>%
  845. filter(OrfRep != strain) %>%
  846. mutate(SM = 0)
  847. # Set the missing values to the highest theoretical value at each drug conc for L
  848. # Leave other values as 0 for the max/min
  849. reference_strain <- df_reference %>%
  850. group_by(conc_num) %>%
  851. mutate(
  852. max_l_theoretical = max(max_L, na.rm = TRUE),
  853. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  854. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  855. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  856. ungroup()
  857. # Ditto for deletion strains
  858. deletion_strains <- df_deletion %>%
  859. group_by(conc_num) %>%
  860. mutate(
  861. max_l_theoretical = max(max_L, na.rm = TRUE),
  862. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  863. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  864. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  865. ungroup()
  866. # Calculate interactions
  867. interaction_vars <- c("L", "K", "r", "AUC")
  868. message("Calculating interaction scores")
  869. # print("Reference strain:")
  870. # print(head(reference_strain))
  871. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  872. # print("Deletion strains:")
  873. # print(head(deletion_strains))
  874. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  875. zscores_calculations_reference <- reference_results$calculations
  876. zscores_interactions_reference <- reference_results$interactions
  877. zscores_calculations <- deletion_results$calculations
  878. zscores_interactions <- deletion_results$interactions
  879. # Writing Z-Scores to file
  880. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  881. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  882. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  883. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  884. # Create interaction plots
  885. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  886. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  887. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  888. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  889. # Define conditions for enhancers and suppressors
  890. # TODO Add to study config file?
  891. threshold <- 2
  892. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  893. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  894. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  895. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  896. # Subset data
  897. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  898. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  899. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  900. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  901. # Save enhancers and suppressors
  902. message("Writing enhancer/suppressor csv files")
  903. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  904. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  905. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  906. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  907. # Combine conditions for enhancers and suppressors
  908. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  909. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  910. # Save combined enhancers and suppressors
  911. write.csv(enhancers_and_suppressors_L,
  912. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  913. write.csv(enhancers_and_suppressors_K,
  914. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  915. # Handle linear model based enhancers and suppressors
  916. lm_threshold <- 2
  917. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  918. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  919. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  920. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  921. # Save linear model based enhancers and suppressors
  922. message("Writing linear model enhancer/suppressor csv files")
  923. write.csv(enhancers_lm_L,
  924. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  925. write.csv(suppressors_lm_L,
  926. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  927. write.csv(enhancers_lm_K,
  928. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  929. write.csv(suppressors_lm_K,
  930. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  931. # TODO needs explanation
  932. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  933. rank_plot_configs <- c(
  934. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  935. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  936. )
  937. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  938. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  939. rank_lm_plot_config <- c(
  940. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  941. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  942. )
  943. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  944. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  945. # Formerly X_NArm
  946. zscores_interactions_filtered <- zscores_interactions %>%
  947. group_by(across(all_of(group_vars))) %>%
  948. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  949. # Final filtered correlation calculations and plots
  950. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  951. mutate(
  952. Overlap = case_when(
  953. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  954. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  955. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  956. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  957. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  958. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  959. TRUE ~ "No Effect"
  960. ),
  961. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  962. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  963. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  964. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  965. ) %>%
  966. ungroup()
  967. rank_plot_configs <- c(
  968. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  969. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  970. )
  971. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  972. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  973. rank_lm_plot_configs <- c(
  974. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  975. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  976. )
  977. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  978. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  979. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  980. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  981. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  982. })
  983. })
  984. }
  985. main()