calculate_interaction_zscores.R 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. transmute(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. Raw_Shift_L = first(Raw_Shift_L),
  250. Raw_Shift_K = first(Raw_Shift_K),
  251. Raw_Shift_r = first(Raw_Shift_r),
  252. Raw_Shift_AUC = first(Raw_Shift_AUC),
  253. Z_Shift_L = first(Z_Shift_L),
  254. Z_Shift_K = first(Z_Shift_K),
  255. Z_Shift_r = first(Z_Shift_r),
  256. Z_Shift_AUC = first(Z_Shift_AUC),
  257. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  258. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  259. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  260. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  261. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  262. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  263. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  264. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  265. R_Squared_L = summary(lm_L)$r.squared,
  266. R_Squared_K = summary(lm_K)$r.squared,
  267. R_Squared_r = summary(lm_r)$r.squared,
  268. R_Squared_AUC = summary(lm_AUC)$r.squared,
  269. lm_intercept_L = coef(lm_L)[1],
  270. lm_slope_L = coef(lm_L)[2],
  271. lm_intercept_K = coef(lm_K)[1],
  272. lm_slope_K = coef(lm_K)[2],
  273. lm_intercept_r = coef(lm_r)[1],
  274. lm_slope_r = coef(lm_r)[2],
  275. lm_intercept_AUC = coef(lm_AUC)[1],
  276. lm_slope_AUC = coef(lm_AUC)[2],
  277. NG = sum(NG, na.rm = TRUE),
  278. DB = sum(DB, na.rm = TRUE),
  279. SM = sum(SM, na.rm = TRUE)
  280. )
  281. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  282. interactions <- interactions %>%
  283. mutate(
  284. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  285. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  286. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  287. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  288. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  289. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  290. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  291. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  292. ) %>%
  293. arrange(desc(Z_lm_L)) %>%
  294. arrange(desc(NG))
  295. # Declare column order for output
  296. calculations <- stats %>%
  297. select(
  298. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  299. "mean_L", "mean_K", "mean_r", "mean_AUC",
  300. "median_L", "median_K", "median_r", "median_AUC",
  301. "sd_L", "sd_K", "sd_r", "sd_AUC",
  302. "se_L", "se_K", "se_r", "se_AUC",
  303. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  304. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  305. "WT_L", "WT_K", "WT_r", "WT_AUC",
  306. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  307. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  308. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  309. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  310. "NG", "SM", "DB")
  311. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  312. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  313. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num"))))
  314. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num"))
  315. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  316. calculations_joined = calculations_joined))
  317. }
  318. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  319. message("Generating html and pdf plots for: ", file_name)
  320. plots <- lapply(plot_configs, function(config) {
  321. df <- config$df
  322. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  323. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  324. # Plots are testy about missing aesthetics, so handle them here
  325. aes_mapping <-
  326. if (is.null(config$color_var)) {
  327. if (is.null(config$y_var)) {
  328. aes(x = !!sym(config$x_var))
  329. } else {
  330. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  331. }
  332. } else {
  333. if (is.null(config$y_var)) {
  334. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  335. } else {
  336. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  337. }
  338. }
  339. # Start building the plot
  340. plot <- ggplot(df, aes_mapping)
  341. # Use appropriate helper function based on plot type
  342. plot <- switch(config$plot_type,
  343. "scatter" = generate_scatter_plot(plot, config),
  344. "box" = generate_box_plot(plot, config),
  345. "density" = plot + geom_density(),
  346. "bar" = plot + geom_bar(),
  347. plot # default case if no type matches
  348. )
  349. return(plot)
  350. })
  351. # PDF saving logic
  352. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  353. lapply(plots, print)
  354. dev.off()
  355. # HTML saving logic
  356. plotly_plots <- lapply(plots, function(plot) {
  357. config <- plot$config
  358. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  359. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  360. } else {
  361. ggplotly(plot, tooltip = "text")
  362. }
  363. })
  364. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  365. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  366. }
  367. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  368. # Add the interactive `text` aesthetic if `interactive` is TRUE
  369. if (interactive) {
  370. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  371. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  372. shape = config$shape %||% 3, size = config$size %||% 0.2)
  373. } else if (!is.null(config$gene_point) && config$gene_point) {
  374. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  375. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  376. } else {
  377. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  378. }
  379. } else {
  380. # For non-interactive plots, just add `geom_point`
  381. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  382. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  383. }
  384. # Add smooth line if specified
  385. if (!is.null(config$add_smooth) && config$add_smooth) {
  386. plot <- if (!is.null(config$lm_line)) {
  387. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  388. } else {
  389. plot + geom_smooth(method = "lm", se = FALSE)
  390. }
  391. }
  392. # Add SD bands (iterate over sd_band only here)
  393. if (!is.null(config$sd_band)) {
  394. for (i in config$sd_band) {
  395. plot <- plot +
  396. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  397. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  398. geom_hline(yintercept = c(-i, i), color = "gray")
  399. }
  400. }
  401. # Add error bars if specified
  402. if (!is.null(config$error_bar) && config$error_bar) {
  403. y_mean_col <- paste0("mean_", config$y_var)
  404. y_sd_col <- paste0("sd_", config$y_var)
  405. plot <- plot + geom_errorbar(aes(
  406. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  407. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  408. ), alpha = 0.3)
  409. }
  410. # Add x-axis customization if specified
  411. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  412. plot <- plot + scale_x_continuous(
  413. name = config$x_label,
  414. breaks = config$x_breaks,
  415. labels = config$x_labels)
  416. }
  417. # Add y-axis limits if specified
  418. if (!is.null(config$ylim_vals)) {
  419. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  420. }
  421. # Add Cartesian coordinates customization if specified
  422. if (!is.null(config$coord_cartesian)) {
  423. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  424. }
  425. return(plot)
  426. }
  427. generate_box_plot <- function(plot, config) {
  428. plot <- plot + geom_boxplot()
  429. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  430. plot <- plot + scale_x_discrete(
  431. name = config$x_label,
  432. breaks = config$x_breaks,
  433. labels = config$x_labels
  434. )
  435. }
  436. if (!is.null(config$coord_cartesian)) {
  437. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  438. }
  439. return(plot)
  440. }
  441. # Adjust missing values and calculate ranks
  442. adjust_missing_and_rank <- function(df, variables) {
  443. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  444. df <- df %>%
  445. mutate(across(all_of(variables), list(
  446. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  447. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  448. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  449. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  450. ), .names = "{fn}_{col}"))
  451. return(df)
  452. }
  453. generate_interaction_plot_configs <- function(df, variables) {
  454. configs <- list()
  455. # Define common y-limits and other attributes for each variable dynamically
  456. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  457. # Define annotation positions based on the variable being plotted
  458. annotation_positions <- list(
  459. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  460. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  461. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  462. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  463. )
  464. # Define which annotations to include for each plot
  465. annotation_labels <- list(
  466. ZShift = function(df, var) {
  467. val <- df[[paste0("Z_Shift_", var)]]
  468. if (is.numeric(val)) {
  469. paste("ZShift =", round(val, 2))
  470. } else {
  471. paste("ZShift =", val)
  472. }
  473. },
  474. lm_ZScore = function(df, var) {
  475. val <- df[[paste0("Z_lm_", var)]]
  476. if (is.numeric(val)) {
  477. paste("lm ZScore =", round(val, 2))
  478. } else {
  479. paste("lm ZScore =", val)
  480. }
  481. },
  482. NG = function(df, var) paste("NG =", df$NG),
  483. DB = function(df, var) paste("DB =", df$DB),
  484. SM = function(df, var) paste("SM =", df$SM)
  485. )
  486. for (variable in variables) {
  487. # Dynamically generate the names of the columns
  488. var_info <- list(
  489. ylim = limits_map[[variable]],
  490. lm_model = df[[paste0("lm_", variable)]][[1]],
  491. sd_col = paste0("WT_sd_", variable),
  492. )
  493. # Extract the precomputed linear model coefficients
  494. lm_line <- list(
  495. intercept = coef(var_info$lm_model)[1],
  496. slope = coef(var_info$lm_model)[2]
  497. )
  498. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  499. y_pos <- annotation_positions[[variable]][[annotation_name]]
  500. # Check if the annotation_name exists in annotation_labels
  501. if (!is.null(annotation_labels[[annotation_name]])) {
  502. label <- annotation_labels[[annotation_name]](df, variable)
  503. list(x = 1, y = y_pos, label = label)
  504. } else {
  505. message(paste("Warning: No annotation function found for", annotation_name))
  506. NULL
  507. }
  508. })
  509. # Filter out any NULL annotations
  510. annotations <- Filter(Negate(is.null), annotations)
  511. # Add scatter plot configuration for this variable
  512. configs[[length(configs) + 1]] <- list(
  513. df = df,
  514. x_var = "conc_num_factor",
  515. y_var = variable,
  516. plot_type = "scatter",
  517. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  518. ylim_vals = var_info$ylim,
  519. annotations = annotations,
  520. lm_line = lm_line, # Precomputed linear model
  521. error_bar = TRUE,
  522. x_breaks = unique(df$conc_num_factor),
  523. x_labels = unique(as.character(df$conc_num)),
  524. x_label = unique(df$Drug[1]),
  525. position = "jitter",
  526. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  527. )
  528. # Add box plot configuration for this variable
  529. configs[[length(configs) + 1]] <- list(
  530. df = df,
  531. x_var = "conc_num_factor",
  532. y_var = variable,
  533. plot_type = "box",
  534. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  535. ylim_vals = var_info$ylim,
  536. annotations = annotations,
  537. error_bar = FALSE,
  538. x_breaks = unique(df$conc_num_factor),
  539. x_labels = unique(as.character(df$conc_num)),
  540. x_label = unique(df$Drug[1]),
  541. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  542. )
  543. }
  544. return(configs)
  545. }
  546. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  547. configs <- list()
  548. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  549. # Single config with all sd bands
  550. configs[[length(configs) + 1]] <- list(
  551. df = df,
  552. x_var = rank_var,
  553. y_var = zscore_var,
  554. plot_type = "scatter",
  555. title = paste(plot_title_prefix, var, "Rank Plot"),
  556. sd_band = c(1, 2, 3), # Pass all sd bands at once
  557. enhancer_label = list(
  558. x = nrow(df) / 2, y = 10,
  559. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= 1, ])) # Example for the first SD band
  560. ),
  561. suppressor_label = list(
  562. x = nrow(df) / 2, y = -10,
  563. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -1, ]))
  564. ),
  565. shape = 3,
  566. size = 0.1
  567. )
  568. # Non-annotated version
  569. configs[[length(configs) + 1]] <- list(
  570. df = df,
  571. x_var = rank_var,
  572. y_var = zscore_var,
  573. plot_type = "scatter",
  574. title = paste(plot_title_prefix, var, "Rank Plot No Annotations"),
  575. sd_band = c(1, 2, 3),
  576. enhancer_label = NULL,
  577. suppressor_label = NULL,
  578. shape = 3,
  579. size = 0.1,
  580. position = "jitter"
  581. )
  582. return(configs)
  583. }
  584. generate_correlation_plot_configs <- function(df, variables) {
  585. configs <- list()
  586. for (variable in variables) {
  587. z_lm_var <- paste0("Z_lm_", variable)
  588. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  589. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  590. configs[[length(configs) + 1]] <- list(
  591. df = df,
  592. x_var = avg_zscore_var,
  593. y_var = z_lm_var,
  594. plot_type = "scatter",
  595. title = paste("Avg Zscore vs lm", variable),
  596. color_var = "Overlap",
  597. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  598. shape = 3,
  599. geom_smooth = TRUE,
  600. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  601. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  602. legend_position = "right"
  603. )
  604. }
  605. return(configs)
  606. }
  607. main <- function() {
  608. lapply(names(args$experiments), function(exp_name) {
  609. exp <- args$experiments[[exp_name]]
  610. exp_path <- exp$path
  611. exp_sd <- exp$sd
  612. out_dir <- file.path(exp_path, "zscores")
  613. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  614. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  615. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  616. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  617. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  618. orf_group_vars <- c("OrfRep", "Gene", "num")
  619. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  620. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  621. message("Loading and filtering data")
  622. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  623. df <- update_gene_names(df, args$sgd_gene_list)
  624. df <- as_tibble(df)
  625. # Filter rows that are above tolerance for quality control plots
  626. df_above_tolerance <- df %>% filter(DB == 1)
  627. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  628. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  629. # Remove rows with 0 values in L
  630. df_no_zeros <- df_na %>% filter(L > 0)
  631. # Save some constants
  632. max_conc <- max(df$conc_num_factor)
  633. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  634. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  635. message("Calculating summary statistics before quality control")
  636. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  637. # df_ss <- ss$summary_stats
  638. df_stats <- ss$df_with_stats
  639. df_filtered_stats <- df_stats %>%
  640. {
  641. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  642. if (nrow(non_finite_rows) > 0) {
  643. message("Filtering out the following non-finite rows:")
  644. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  645. }
  646. filter(., if_all(c(L), is.finite))
  647. }
  648. message("Calculating summary statistics after quality control")
  649. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  650. df_na_ss <- ss$summary_stats
  651. df_na_stats <- ss$df_with_stats
  652. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  653. # Filter out non-finite rows for plotting
  654. df_na_filtered_stats <- df_na_stats %>%
  655. {
  656. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  657. if (nrow(non_finite_rows) > 0) {
  658. message("Removed the following non-finite rows:")
  659. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  660. }
  661. filter(., if_all(c(L), is.finite))
  662. }
  663. message("Calculating summary statistics after quality control excluding zero values")
  664. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  665. df_no_zeros_stats <- ss$df_with_stats
  666. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  667. {
  668. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  669. if (nrow(non_finite_rows) > 0) {
  670. message("Removed the following non-finite rows:")
  671. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  672. }
  673. filter(., if_all(c(L), is.finite))
  674. }
  675. message("Filtering by 2SD of K")
  676. df_na_within_2sd_k <- df_na_stats %>%
  677. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  678. df_na_outside_2sd_k <- df_na_stats %>%
  679. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  680. message("Calculating summary statistics for L within 2SD of K")
  681. # TODO We're omitting the original z_max calculation, not sure if needed?
  682. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  683. l_within_2sd_k_ss <- ss$summary_stats
  684. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  685. write.csv(l_within_2sd_k_ss,
  686. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  687. message("Calculating summary statistics for L outside 2SD of K")
  688. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  689. l_outside_2sd_k_ss <- ss$summary_stats
  690. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  691. write.csv(l_outside_2sd_k_ss,
  692. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  693. # Each plots list corresponds to a file
  694. message("Generating quality control plot configurations")
  695. l_vs_k_plots <- list(
  696. list(
  697. df = df,
  698. x_var = "L",
  699. y_var = "K",
  700. plot_type = "scatter",
  701. delta_bg_point = TRUE,
  702. title = "Raw L vs K before quality control",
  703. color_var = "conc_num",
  704. error_bar = FALSE,
  705. legend_position = "right"
  706. )
  707. )
  708. frequency_delta_bg_plots <- list(
  709. list(
  710. df = df_filtered_stats,
  711. x_var = "delta_bg",
  712. y_var = NULL,
  713. plot_type = "density",
  714. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  715. color_var = "conc_num",
  716. x_label = "Delta Background",
  717. y_label = "Density",
  718. error_bar = FALSE,
  719. legend_position = "right"),
  720. list(
  721. df = df_filtered_stats,
  722. x_var = "delta_bg",
  723. y_var = NULL,
  724. plot_type = "bar",
  725. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  726. color_var = "conc_num",
  727. x_label = "Delta Background",
  728. y_label = "Count",
  729. error_bar = FALSE,
  730. legend_position = "right")
  731. )
  732. above_threshold_plots <- list(
  733. list(
  734. df = df_above_tolerance,
  735. x_var = "L",
  736. y_var = "K",
  737. plot_type = "scatter",
  738. delta_bg_point = TRUE,
  739. title = paste("Raw L vs K for strains above Delta Background threshold of",
  740. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  741. color_var = "conc_num",
  742. position = "jitter",
  743. annotations = list(
  744. x = l_half_median,
  745. y = k_half_median,
  746. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  747. ),
  748. error_bar = FALSE,
  749. legend_position = "right"
  750. )
  751. )
  752. plate_analysis_plots <- list()
  753. for (var in summary_vars) {
  754. for (stage in c("before", "after")) {
  755. if (stage == "before") {
  756. df_plot <- df_filtered_stats
  757. } else {
  758. df_plot <- df_na_filtered_stats
  759. }
  760. config <- list(
  761. df = df_plot,
  762. x_var = "scan",
  763. y_var = var,
  764. plot_type = "scatter",
  765. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  766. error_bar = TRUE,
  767. color_var = "conc_num",
  768. position = "jitter")
  769. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  770. }
  771. }
  772. plate_analysis_boxplots <- list()
  773. for (var in summary_vars) {
  774. for (stage in c("before", "after")) {
  775. if (stage == "before") {
  776. df_plot <- df_filtered_stats
  777. } else {
  778. df_plot <- df_na_filtered_stats
  779. }
  780. config <- list(
  781. df = df_plot,
  782. x_var = "scan",
  783. y_var = var,
  784. plot_type = "box",
  785. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  786. error_bar = FALSE,
  787. color_var = "conc_num")
  788. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  789. }
  790. }
  791. plate_analysis_no_zeros_plots <- list()
  792. for (var in summary_vars) {
  793. config <- list(
  794. df = df_no_zeros_filtered_stats,
  795. x_var = "scan",
  796. y_var = var,
  797. plot_type = "scatter",
  798. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  799. error_bar = TRUE,
  800. color_var = "conc_num",
  801. position = "jitter")
  802. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  803. }
  804. plate_analysis_no_zeros_boxplots <- list()
  805. for (var in summary_vars) {
  806. config <- list(
  807. df = df_no_zeros_filtered_stats,
  808. x_var = "scan",
  809. y_var = var,
  810. plot_type = "box",
  811. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  812. error_bar = FALSE,
  813. color_var = "conc_num"
  814. )
  815. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  816. }
  817. l_outside_2sd_k_plots <- list(
  818. list(
  819. df = df_na_l_outside_2sd_k_stats,
  820. x_var = "L",
  821. y_var = "K",
  822. plot_type = "scatter",
  823. delta_bg_point = TRUE,
  824. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  825. color_var = "conc_num",
  826. position = "jitter",
  827. legend_position = "right"
  828. )
  829. )
  830. delta_bg_outside_2sd_k_plots <- list(
  831. list(
  832. df = df_na_l_outside_2sd_k_stats,
  833. x_var = "delta_bg",
  834. y_var = "K",
  835. plot_type = "scatter",
  836. gene_point = TRUE,
  837. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  838. color_var = "conc_num",
  839. position = "jitter",
  840. legend_position = "right"
  841. )
  842. )
  843. message("Generating quality control plots")
  844. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  845. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  846. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  847. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  848. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  849. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  850. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  851. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  852. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  853. # Clean up
  854. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  855. gc()
  856. # TODO: Originally this filtered L NA's
  857. # Let's try to avoid for now since stats have already been calculated
  858. # Process background strains
  859. bg_strains <- c("YDL227C")
  860. lapply(bg_strains, function(strain) {
  861. message("Processing background strain: ", strain)
  862. # Handle missing data by setting zero values to NA
  863. # and then removing any rows with NA in L col
  864. df_bg <- df_na %>%
  865. filter(OrfRep == strain) %>%
  866. mutate(
  867. L = if_else(L == 0, NA, L),
  868. K = if_else(K == 0, NA, K),
  869. r = if_else(r == 0, NA, r),
  870. AUC = if_else(AUC == 0, NA, AUC)
  871. ) %>%
  872. filter(!is.na(L))
  873. # Recalculate summary statistics for the background strain
  874. message("Calculating summary statistics for background strain")
  875. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  876. summary_stats_bg <- ss_bg$summary_stats
  877. # df_bg_stats <- ss_bg$df_with_stats
  878. write.csv(summary_stats_bg,
  879. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  880. row.names = FALSE)
  881. # Filter reference and deletion strains
  882. # Formerly X2_RF (reference strains)
  883. df_reference <- df_na_stats %>%
  884. filter(OrfRep == strain) %>%
  885. mutate(SM = 0)
  886. # Formerly X2 (deletion strains)
  887. df_deletion <- df_na_stats %>%
  888. filter(OrfRep != strain) %>%
  889. mutate(SM = 0)
  890. # Set the missing values to the highest theoretical value at each drug conc for L
  891. # Leave other values as 0 for the max/min
  892. reference_strain <- df_reference %>%
  893. group_by(conc_num) %>%
  894. mutate(
  895. max_l_theoretical = max(max_L, na.rm = TRUE),
  896. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  897. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  898. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  899. ungroup()
  900. # Ditto for deletion strains
  901. deletion_strains <- df_deletion %>%
  902. group_by(conc_num) %>%
  903. mutate(
  904. max_l_theoretical = max(max_L, na.rm = TRUE),
  905. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  906. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  907. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  908. ungroup()
  909. message("Calculating interaction scores")
  910. interaction_vars <- c("L", "K", "r", "AUC")
  911. message("Calculating reference strain(s)")
  912. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  913. zscores_calculations_reference <- reference_results$calculations
  914. zscores_interactions_reference <- reference_results$interactions
  915. zscores_calculations_reference_joined <- reference_results$calculations_joined
  916. zscores_interactions_reference_joined <- reference_results$interactions_joined
  917. message("Calculating deletion strain(s)")
  918. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  919. zscores_calculations <- deletion_results$calculations
  920. zscores_interactions <- deletion_results$interactions
  921. zscores_calculations_joined <- deletion_results$calculations_joined
  922. zscores_interactions_joined <- deletion_results$interactions_joined
  923. # Writing Z-Scores to file
  924. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  925. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  926. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  927. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  928. # Create interaction plots
  929. message("Generating interaction plot configurations")
  930. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  931. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  932. message("Generating interaction plots")
  933. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  934. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  935. # Define conditions for enhancers and suppressors
  936. # TODO Add to study config file?
  937. threshold <- 2
  938. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  939. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  940. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  941. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  942. # Subset data
  943. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  944. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  945. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  946. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  947. # Save enhancers and suppressors
  948. message("Writing enhancer/suppressor csv files")
  949. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  950. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  951. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  952. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  953. # Combine conditions for enhancers and suppressors
  954. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  955. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  956. # Save combined enhancers and suppressors
  957. write.csv(enhancers_and_suppressors_L,
  958. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  959. write.csv(enhancers_and_suppressors_K,
  960. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  961. # Handle linear model based enhancers and suppressors
  962. lm_threshold <- 2
  963. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  964. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  965. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  966. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  967. # Save linear model based enhancers and suppressors
  968. message("Writing linear model enhancer/suppressor csv files")
  969. write.csv(enhancers_lm_L,
  970. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  971. write.csv(suppressors_lm_L,
  972. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  973. write.csv(enhancers_lm_K,
  974. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  975. write.csv(suppressors_lm_K,
  976. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  977. # TODO needs explanation
  978. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  979. rank_plot_configs <- c(
  980. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  981. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  982. )
  983. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  984. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  985. rank_lm_plot_config <- c(
  986. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  987. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  988. )
  989. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  990. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  991. # Formerly X_NArm
  992. zscores_interactions_filtered <- zscores_interactions %>%
  993. group_by(across(all_of(orf_group_vars))) %>%
  994. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  995. # Final filtered correlation calculations and plots
  996. lm_results <- zscores_interactions_filtered %>%
  997. summarise(
  998. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  999. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1000. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1001. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1002. )
  1003. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1004. left_join(lm_results, by = orf_group_vars) %>%
  1005. mutate(
  1006. Overlap = case_when(
  1007. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1008. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1009. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1010. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1011. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1012. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1013. TRUE ~ "No Effect"
  1014. )
  1015. ) %>%
  1016. ungroup()
  1017. rank_plot_configs <- c(
  1018. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1019. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1020. )
  1021. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1022. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1023. rank_lm_plot_configs <- c(
  1024. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1025. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1026. )
  1027. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1028. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1029. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1030. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1031. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1032. })
  1033. })
  1034. }
  1035. main()