calculate_interaction_zscores.R 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Summary statistics for lm scores
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_mean_L = mean(mean_L, na.rm = TRUE),
  259. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  260. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  261. mean_mean_K = mean(mean_K, na.rm = TRUE),
  262. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  263. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  264. mean_mean_r = mean(mean_r, na.rm = TRUE),
  265. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  266. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  267. mean_mean_AUC = mean(mean_AUC, na.rm = TRUE),
  268. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  269. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Continue with gene Z-scores and interactions
  272. calculations <- calculations %>%
  273. left_join(lm_means_sds, by = group_vars) %>%
  274. group_by(across(all_of(group_vars))) %>%
  275. mutate(
  276. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  277. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  278. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  279. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  280. )
  281. # Build summary stats (interactions)
  282. interactions <- calculations %>%
  283. group_by(across(all_of(group_vars))) %>%
  284. summarise(
  285. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  286. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  287. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  288. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  289. # Interaction Z-scores
  290. Z_lm_L = first(Z_lm_L),
  291. Z_lm_K = first(Z_lm_K),
  292. Z_lm_r = first(Z_lm_r),
  293. Z_lm_AUC = first(Z_lm_AUC),
  294. # Raw Shifts
  295. Raw_Shift_L = first(Raw_Shift_L),
  296. Raw_Shift_K = first(Raw_Shift_K),
  297. Raw_Shift_r = first(Raw_Shift_r),
  298. Raw_Shift_AUC = first(Raw_Shift_AUC),
  299. # Z Shifts
  300. Z_Shift_L = first(Z_Shift_L),
  301. Z_Shift_K = first(Z_Shift_K),
  302. Z_Shift_r = first(Z_Shift_r),
  303. Z_Shift_AUC = first(Z_Shift_AUC),
  304. # NG, DB, SM values
  305. NG = first(NG),
  306. DB = first(DB),
  307. SM = first(SM)
  308. )
  309. # Creating the final calculations and interactions dataframes with only required columns for csv output
  310. calculations_df <- calculations %>%
  311. select(
  312. all_of(group_vars),
  313. conc_num, conc_num_factor, conc_num_factor_factor,
  314. N, NG, DB, SM,
  315. mean_L, median_L, sd_L, se_L,
  316. mean_K, median_K, sd_K, se_K,
  317. mean_r, median_r, sd_r, se_r,
  318. mean_AUC, median_AUC, sd_AUC, se_AUC,
  319. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  320. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  321. WT_L, WT_K, WT_r, WT_AUC,
  322. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  323. Exp_L, Exp_K, Exp_r, Exp_AUC,
  324. Delta_L, Delta_K, Delta_r, Delta_AUC,
  325. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  326. )
  327. interactions_df <- interactions %>%
  328. select(
  329. all_of(group_vars),
  330. NG, DB, SM,
  331. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  332. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  333. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  334. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  335. )
  336. calculations_no_overlap <- calculations %>%
  337. # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
  338. select(-any_of(c(
  339. "DB", "NG", "SM",
  340. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  341. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  342. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  343. )))
  344. # Use left_join to avoid dimension mismatch issues
  345. full_data <- calculations_no_overlap %>%
  346. left_join(interactions, by = group_vars)
  347. # Return full_data and the two required dataframes (calculations and interactions)
  348. return(list(
  349. calculations = calculations_df,
  350. interactions = interactions_df,
  351. full_data = full_data
  352. ))
  353. }
  354. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  355. message("Generating ", filename, ".pdf and ", filename, ".html")
  356. # Check if we're dealing with multiple plot groups
  357. plot_groups <- if ("plots" %in% names(plot_configs)) {
  358. list(plot_configs) # Single group
  359. } else {
  360. plot_configs # Multiple groups
  361. }
  362. # Open the PDF device once for all plots
  363. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  364. for (group in plot_groups) {
  365. static_plots <- list()
  366. plotly_plots <- list()
  367. grid_layout <- group$grid_layout
  368. plots <- group$plots
  369. for (i in seq_along(plots)) {
  370. config <- plots[[i]]
  371. df <- config$df
  372. # Set up aes mapping based on plot type
  373. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  374. if (!is.null(config$color_var)) {
  375. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  376. } else {
  377. aes(x = .data[[config$x_var]])
  378. }
  379. } else {
  380. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  381. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  382. } else if (!is.null(config$y_var)) {
  383. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  384. } else {
  385. aes(x = .data[[config$x_var]])
  386. }
  387. }
  388. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  389. # Add appropriate plot layer based on plot type
  390. plot <- switch(config$plot_type,
  391. "scatter" = generate_scatter_plot(plot, config),
  392. "box" = generate_boxplot(plot, config),
  393. "density" = plot + geom_density(),
  394. "bar" = plot + geom_bar(),
  395. plot # default (unused)
  396. )
  397. # Add labels and title
  398. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  399. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  400. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  401. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  402. # Add error bars if specified
  403. if (!is.null(config$error_bar) && config$error_bar) {
  404. error_bar_color <- config$error_bar_params$color %||% "red"
  405. y_mean_col <- paste0("mean_", config$y_var)
  406. y_sd_col <- paste0("sd_", config$y_var)
  407. if (!is.null(config$error_bar_params$center_point)) {
  408. plot <- plot + geom_point(aes(
  409. x = .data[[config$x_var]],
  410. y = .data[[y_mean_col]]),
  411. color = error_bar_color,
  412. shape = 16)
  413. }
  414. # Use error_bar_params if provided, otherwise calculate from mean and sd
  415. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  416. plot <- plot + geom_errorbar(aes(
  417. ymin = config$error_bar_params$ymin,
  418. ymax = config$error_bar_params$ymax),
  419. color = error_bar_color)
  420. } else {
  421. plot <- plot + geom_errorbar(aes(
  422. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  423. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]),
  424. color = error_bar_color)
  425. }
  426. }
  427. # Convert ggplot to plotly for interactive version
  428. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  429. # Store both static and interactive versions
  430. static_plots[[i]] <- plot
  431. plotly_plots[[i]] <- plotly_plot
  432. }
  433. # Print the plots to the PDF (one page per plot or in a grid)
  434. if (is.null(grid_layout)) {
  435. # Print each plot individually on separate pages if no grid layout is specified
  436. for (plot in static_plots) {
  437. print(plot)
  438. }
  439. } else {
  440. # Arrange plots in grid layout on a single page
  441. grid.arrange(
  442. grobs = static_plots,
  443. ncol = grid_layout$ncol,
  444. nrow = grid_layout$nrow
  445. )
  446. }
  447. }
  448. # Close the PDF device after all plots are done
  449. dev.off()
  450. # Optional: Uncomment and save the interactive HTML version if needed
  451. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  452. # message("Saving combined HTML file: ", out_html_file)
  453. # htmltools::save_html(
  454. # htmltools::tagList(plotly_plots),
  455. # file = out_html_file
  456. # )
  457. }
  458. generate_scatter_plot <- function(plot, config) {
  459. # Define the points
  460. shape <- if (!is.null(config$shape)) config$shape else 3
  461. size <- if (!is.null(config$size)) config$size else 1.5
  462. position <-
  463. if (!is.null(config$position) && config$position == "jitter") {
  464. position_jitter(width = 0.3, height = 0.1)
  465. } else {
  466. "identity"
  467. }
  468. plot <- plot + geom_point(
  469. shape = shape,
  470. size = size,
  471. position = position
  472. )
  473. if (!is.null(config$cyan_points) && config$cyan_points) {
  474. plot <- plot + geom_point(
  475. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  476. color = "cyan",
  477. shape = 3,
  478. size = 0.5
  479. )
  480. }
  481. # Add Smooth Line if specified
  482. if (!is.null(config$smooth) && config$smooth) {
  483. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  484. if (!is.null(config$lm_line)) {
  485. plot <- plot +
  486. geom_abline(
  487. intercept = config$lm_line$intercept,
  488. slope = config$lm_line$slope,
  489. color = smooth_color
  490. )
  491. } else {
  492. plot <- plot +
  493. geom_smooth(
  494. method = "lm",
  495. se = FALSE,
  496. color = smooth_color
  497. )
  498. }
  499. }
  500. # Add SD Bands if specified
  501. if (!is.null(config$sd_band)) {
  502. plot <- plot +
  503. annotate(
  504. "rect",
  505. xmin = -Inf, xmax = Inf,
  506. ymin = config$sd_band, ymax = Inf,
  507. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  508. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  509. ) +
  510. annotate(
  511. "rect",
  512. xmin = -Inf, xmax = Inf,
  513. ymin = -config$sd_band, ymax = -Inf,
  514. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  515. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  516. ) +
  517. geom_hline(
  518. yintercept = c(-config$sd_band, config$sd_band),
  519. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  520. )
  521. }
  522. # Add Rectangles if specified
  523. if (!is.null(config$rectangles)) {
  524. for (rect in config$rectangles) {
  525. plot <- plot + annotate(
  526. "rect",
  527. xmin = rect$xmin,
  528. xmax = rect$xmax,
  529. ymin = rect$ymin,
  530. ymax = rect$ymax,
  531. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  532. color = ifelse(is.null(rect$color), "black", rect$color),
  533. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  534. )
  535. }
  536. }
  537. # Customize X-axis if specified
  538. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  539. # Check if x_var is factor or character (for discrete x-axis)
  540. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  541. plot <- plot +
  542. scale_x_discrete(
  543. name = config$x_label,
  544. breaks = config$x_breaks,
  545. labels = config$x_labels
  546. )
  547. } else {
  548. plot <- plot +
  549. scale_x_continuous(
  550. name = config$x_label,
  551. breaks = config$x_breaks,
  552. labels = config$x_labels
  553. )
  554. }
  555. }
  556. # Set Y-axis limits if specified
  557. if (!is.null(config$ylim_vals)) {
  558. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  559. }
  560. # Add annotations if specified
  561. if (!is.null(config$annotations)) {
  562. for (annotation in config$annotations) {
  563. plot <- plot +
  564. annotate(
  565. "text",
  566. x = annotation$x,
  567. y = annotation$y,
  568. label = annotation$label,
  569. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  570. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  571. size = ifelse(is.null(annotation$size), 6, annotation$size),
  572. color = ifelse(is.null(annotation$color), "black", annotation$color)
  573. )
  574. }
  575. }
  576. return(plot)
  577. }
  578. generate_boxplot <- function(plot, config) {
  579. # Convert x_var to a factor within aes mapping
  580. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  581. # Customize X-axis if specified
  582. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  583. # Check if x_var is factor or character (for discrete x-axis)
  584. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  585. plot <- plot +
  586. scale_x_discrete(
  587. name = config$x_label,
  588. breaks = config$x_breaks,
  589. labels = config$x_labels
  590. )
  591. } else {
  592. plot <- plot +
  593. scale_x_continuous(
  594. name = config$x_label,
  595. breaks = config$x_breaks,
  596. labels = config$x_labels
  597. )
  598. }
  599. }
  600. return(plot)
  601. }
  602. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  603. plot_type = "scatter", stages = c("before", "after")) {
  604. plot_configs <- list()
  605. for (var in variables) {
  606. for (stage in stages) {
  607. df_plot <- if (stage == "before") df_before else df_after
  608. # Check for non-finite values in the y-variable
  609. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  610. # Adjust settings based on plot_type
  611. plot_config <- list(
  612. df = df_plot_filtered,
  613. x_var = "scan",
  614. y_var = var,
  615. plot_type = plot_type,
  616. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  617. color_var = "conc_num_factor_factor",
  618. position = if (plot_type == "scatter") "jitter" else NULL,
  619. size = 0.2,
  620. error_bar = (plot_type == "scatter")
  621. )
  622. # Add config to plots list
  623. plot_configs <- append(plot_configs, list(plot_config))
  624. }
  625. }
  626. return(list(plots = plot_configs))
  627. }
  628. generate_interaction_plot_configs <- function(df, type) {
  629. # Set group_vars based on the type (reference or deletion)
  630. if (type == "reference") {
  631. group_vars <- c("OrfRep", "Gene", "num")
  632. } else if (type == "deletion") {
  633. group_vars <- c("OrfRep", "Gene")
  634. }
  635. # Define the limits for the plots
  636. limits_map <- list(
  637. L = c(0, 130),
  638. K = c(-20, 160),
  639. r = c(0, 1),
  640. AUC = c(0, 12500)
  641. )
  642. delta_limits_map <- list(
  643. L = c(-60, 60),
  644. K = c(-60, 60),
  645. r = c(-0.6, 0.6),
  646. AUC = c(-6000, 6000)
  647. )
  648. stats_plot_configs <- list()
  649. stats_boxplot_configs <- list()
  650. delta_plot_configs <- list()
  651. # Overall statistics plots
  652. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  653. for (plot_type in c("scatter", "box")) {
  654. for (var in names(limits_map)) {
  655. y_limits <- limits_map[[var]]
  656. # Use the pre-calculated lm intercept and slope from the dataframe
  657. lm_intercept_col <- paste0("lm_intercept_", var)
  658. lm_slope_col <- paste0("lm_slope_", var)
  659. # Ensure no NA or invalid values in lm_line calculations
  660. intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
  661. slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
  662. # Common plot configuration
  663. plot_config <- list(
  664. df = df,
  665. x_var = "conc_num_factor_factor",
  666. y_var = var,
  667. shape = 16,
  668. x_label = unique(df$Drug)[1],
  669. coord_cartesian = y_limits,
  670. x_breaks = unique(df$conc_num_factor_factor),
  671. x_labels = as.character(unique(df$conc_num)),
  672. lm_line = list(
  673. intercept = intercept_value,
  674. slope = slope_value
  675. )
  676. )
  677. # Add specific configurations for scatter and box plots
  678. if (plot_type == "scatter") {
  679. plot_config$plot_type <- "scatter"
  680. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  681. plot_config$error_bar = TRUE
  682. plot_config$error_bar_params <- list(
  683. color = "red",
  684. center_point = TRUE
  685. )
  686. plot_config$position <- "jitter"
  687. # Append to scatter plot configurations
  688. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  689. } else if (plot_type == "box") {
  690. plot_config$plot_type <- "box"
  691. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  692. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  693. # Append to boxplot configurations
  694. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  695. }
  696. }
  697. }
  698. # Delta interaction plots
  699. grouped_data <- df %>%
  700. group_by(across(all_of(group_vars))) %>%
  701. group_split()
  702. for (group_data in grouped_data) {
  703. OrfRep <- first(group_data$OrfRep)
  704. Gene <- first(group_data$Gene)
  705. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  706. if (type == "reference") {
  707. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  708. } else if (type == "deletion") {
  709. OrfRepTitle <- OrfRep
  710. }
  711. for (var in names(delta_limits_map)) {
  712. y_limits <- delta_limits_map[[var]]
  713. y_span <- y_limits[2] - y_limits[1]
  714. # Error bars
  715. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  716. # Z_Shift and lm values
  717. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  718. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  719. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  720. # NG, DB, SM values
  721. NG_value <- first(group_data$NG, default = 0)
  722. DB_value <- first(group_data$DB, default = 0)
  723. SM_value <- first(group_data$SM, default = 0)
  724. annotations <- list(
  725. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  726. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  727. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  728. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  729. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  730. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  731. )
  732. # lm_line for delta plots
  733. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  734. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  735. plot_config <- list(
  736. df = group_data,
  737. plot_type = "scatter",
  738. x_var = "conc_num_factor_factor",
  739. y_var = var,
  740. x_label = unique(group_data$Drug)[1],
  741. title = paste(OrfRepTitle, Gene, num, sep = " "),
  742. coord_cartesian = y_limits,
  743. annotations = annotations,
  744. error_bar = TRUE,
  745. error_bar_params = list(
  746. ymin = 0 - (2 * WT_sd_value),
  747. ymax = 0 + (2 * WT_sd_value),
  748. color = "black"
  749. ),
  750. smooth = TRUE,
  751. x_breaks = unique(group_data$conc_num_factor_factor),
  752. x_labels = as.character(unique(group_data$conc_num)),
  753. ylim_vals = y_limits,
  754. lm_line = list(
  755. intercept = lm_intercept_value,
  756. slope = lm_slope_value
  757. )
  758. )
  759. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  760. }
  761. }
  762. # Calculate dynamic grid layout
  763. grid_ncol <- 4
  764. num_plots <- length(delta_plot_configs)
  765. grid_nrow <- ceiling(num_plots / grid_ncol)
  766. return(list(
  767. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
  768. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
  769. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  770. ))
  771. }
  772. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  773. sd_bands <- c(1, 2, 3)
  774. plot_configs <- list()
  775. variables <- c("L", "K")
  776. # Adjust (if necessary) and rank columns
  777. for (variable in variables) {
  778. if (adjust) {
  779. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  780. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  781. }
  782. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  783. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  784. }
  785. # Helper function to create a plot configuration
  786. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  787. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  788. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  789. # Default plot config
  790. plot_config <- list(
  791. df = df,
  792. x_var = rank_var,
  793. y_var = zscore_var,
  794. plot_type = "scatter",
  795. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  796. sd_band = sd_band,
  797. fill_positive = "#542788",
  798. fill_negative = "orange",
  799. alpha_positive = 0.3,
  800. alpha_negative = 0.3,
  801. annotations = NULL,
  802. shape = 3,
  803. size = 0.1,
  804. y_label = y_label,
  805. x_label = "Rank",
  806. legend_position = "none"
  807. )
  808. if (with_annotations) {
  809. # Add specific annotations for plots with annotations
  810. plot_config$annotations <- list(
  811. list(
  812. x = median(df[[rank_var]], na.rm = TRUE),
  813. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  814. label = paste("Deletion Enhancers =", num_enhancers)
  815. ),
  816. list(
  817. x = median(df[[rank_var]], na.rm = TRUE),
  818. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  819. label = paste("Deletion Suppressors =", num_suppressors)
  820. )
  821. )
  822. }
  823. return(plot_config)
  824. }
  825. # Generate plots for each variable
  826. for (variable in variables) {
  827. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  828. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  829. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  830. # Loop through SD bands
  831. for (sd_band in sd_bands) {
  832. # Create plot with annotations
  833. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  834. # Create plot without annotations
  835. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  836. }
  837. }
  838. # Calculate dynamic grid layout based on the number of plots
  839. grid_ncol <- 3
  840. num_plots <- length(plot_configs)
  841. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  842. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  843. }
  844. generate_correlation_plot_configs <- function(df, correlation_stats) {
  845. # Define relationships for different-variable correlations
  846. relationships <- list(
  847. list(x = "L", y = "K"),
  848. list(x = "L", y = "r"),
  849. list(x = "L", y = "AUC"),
  850. list(x = "K", y = "r"),
  851. list(x = "K", y = "AUC"),
  852. list(x = "r", y = "AUC")
  853. )
  854. plot_configs <- list()
  855. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  856. highlight_cyan_options <- c(FALSE, TRUE)
  857. for (highlight_cyan in highlight_cyan_options) {
  858. for (rel in relationships) {
  859. # Extract relevant variable names for Z_lm values
  860. x_var <- paste0("Z_lm_", rel$x)
  861. y_var <- paste0("Z_lm_", rel$y)
  862. # Access the correlation statistics from the correlation_stats list
  863. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  864. stats <- correlation_stats[[relationship_name]]
  865. intercept <- stats$intercept
  866. slope <- stats$slope
  867. r_squared <- stats$r_squared
  868. # Generate the label for the plot
  869. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  870. # Construct plot config
  871. plot_config <- list(
  872. df = df,
  873. x_var = x_var,
  874. y_var = y_var,
  875. plot_type = "scatter",
  876. title = plot_label,
  877. annotations = list(
  878. list(
  879. x = mean(df[[x_var]], na.rm = TRUE),
  880. y = mean(df[[y_var]], na.rm = TRUE),
  881. label = paste("R-squared =", round(r_squared, 3))
  882. )
  883. ),
  884. smooth = TRUE,
  885. smooth_color = "tomato3",
  886. lm_line = list(
  887. intercept = intercept,
  888. slope = slope
  889. ),
  890. shape = 3,
  891. size = 0.5,
  892. color_var = "Overlap",
  893. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  894. )
  895. plot_configs <- append(plot_configs, list(plot_config))
  896. }
  897. }
  898. return(list(plots = plot_configs))
  899. }
  900. main <- function() {
  901. lapply(names(args$experiments), function(exp_name) {
  902. exp <- args$experiments[[exp_name]]
  903. exp_path <- exp$path
  904. exp_sd <- exp$sd
  905. out_dir <- file.path(exp_path, "zscores")
  906. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  907. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  908. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  909. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  910. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  911. message("Loading and filtering data for experiment: ", exp_name)
  912. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  913. update_gene_names(args$sgd_gene_list) %>%
  914. as_tibble()
  915. # Filter rows above delta background tolerance
  916. df_above_tolerance <- df %>% filter(DB == 1)
  917. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  918. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  919. # Save some constants
  920. max_conc <- max(df$conc_num_factor)
  921. message("Calculating summary statistics before quality control")
  922. df_stats <- calculate_summary_stats(
  923. df = df,
  924. variables = summary_vars,
  925. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  926. message("Calculating summary statistics after quality control")
  927. ss <- calculate_summary_stats(
  928. df = df_na,
  929. variables = summary_vars,
  930. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  931. df_na_ss <- ss$summary_stats
  932. df_na_stats <- ss$df_with_stats
  933. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  934. # For plotting (ggplot warns on NAs)
  935. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  936. df_na_stats <- df_na_stats %>%
  937. mutate(
  938. WT_L = mean_L,
  939. WT_K = mean_K,
  940. WT_r = mean_r,
  941. WT_AUC = mean_AUC,
  942. WT_sd_L = sd_L,
  943. WT_sd_K = sd_K,
  944. WT_sd_r = sd_r,
  945. WT_sd_AUC = sd_AUC
  946. )
  947. # Pull the background means and standard deviations from zero concentration for interactions
  948. bg_stats <- df_na_stats %>%
  949. filter(conc_num == 0) %>%
  950. summarise(
  951. mean_L = first(mean_L),
  952. mean_K = first(mean_K),
  953. mean_r = first(mean_r),
  954. mean_AUC = first(mean_AUC),
  955. sd_L = first(sd_L),
  956. sd_K = first(sd_K),
  957. sd_r = first(sd_r),
  958. sd_AUC = first(sd_AUC)
  959. )
  960. message("Calculating summary statistics after quality control excluding zero values")
  961. df_no_zeros_stats <- calculate_summary_stats(
  962. df = df_no_zeros,
  963. variables = summary_vars,
  964. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  965. )$df_with_stats
  966. message("Filtering by 2SD of K")
  967. df_na_within_2sd_k <- df_na_stats %>%
  968. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  969. df_na_outside_2sd_k <- df_na_stats %>%
  970. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  971. message("Calculating summary statistics for L within 2SD of K")
  972. # TODO We're omitting the original z_max calculation, not sure if needed?
  973. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  974. write.csv(ss,
  975. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  976. row.names = FALSE)
  977. message("Calculating summary statistics for L outside 2SD of K")
  978. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  979. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  980. write.csv(ss$summary_stats,
  981. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  982. row.names = FALSE)
  983. # Each list of plots corresponds to a file
  984. l_vs_k_plot_configs <- list(
  985. plots = list(
  986. list(
  987. df = df,
  988. x_var = "L",
  989. y_var = "K",
  990. plot_type = "scatter",
  991. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  992. title = "Raw L vs K before quality control",
  993. color_var = "conc_num_factor_factor",
  994. error_bar = FALSE,
  995. legend_position = "right"
  996. )
  997. )
  998. )
  999. frequency_delta_bg_plot_configs <- list(
  1000. plots = list(
  1001. list(
  1002. df = df_stats,
  1003. x_var = "delta_bg",
  1004. y_var = NULL,
  1005. plot_type = "density",
  1006. title = "Density plot for Delta Background by [Drug] (All Data)",
  1007. color_var = "conc_num_factor_factor",
  1008. x_label = "Delta Background",
  1009. y_label = "Density",
  1010. error_bar = FALSE,
  1011. legend_position = "right"
  1012. ),
  1013. list(
  1014. df = df_stats,
  1015. x_var = "delta_bg",
  1016. y_var = NULL,
  1017. plot_type = "bar",
  1018. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1019. color_var = "conc_num_factor_factor",
  1020. x_label = "Delta Background",
  1021. y_label = "Count",
  1022. error_bar = FALSE,
  1023. legend_position = "right"
  1024. )
  1025. )
  1026. )
  1027. above_threshold_plot_configs <- list(
  1028. plots = list(
  1029. list(
  1030. df = df_above_tolerance,
  1031. x_var = "L",
  1032. y_var = "K",
  1033. plot_type = "scatter",
  1034. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1035. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1036. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1037. color_var = "conc_num_factor_factor",
  1038. position = "jitter",
  1039. annotations = list(
  1040. list(
  1041. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1042. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1043. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1044. )
  1045. ),
  1046. error_bar = FALSE,
  1047. legend_position = "right"
  1048. )
  1049. )
  1050. )
  1051. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1052. variables = summary_vars,
  1053. df_before = df_stats,
  1054. df_after = df_na_stats_filtered
  1055. )
  1056. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1057. variables = summary_vars,
  1058. df_before = df_stats,
  1059. df_after = df_na_stats_filtered,
  1060. plot_type = "box"
  1061. )
  1062. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1063. variables = summary_vars,
  1064. stages = c("after"), # Only after QC
  1065. df_after = df_no_zeros_stats
  1066. )
  1067. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1068. variables = summary_vars,
  1069. stages = c("after"), # Only after QC
  1070. df_after = df_no_zeros_stats,
  1071. plot_type = "box"
  1072. )
  1073. l_outside_2sd_k_plot_configs <- list(
  1074. plots = list(
  1075. list(
  1076. df = df_na_l_outside_2sd_k_stats,
  1077. x_var = "L",
  1078. y_var = "K",
  1079. plot_type = "scatter",
  1080. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1081. color_var = "conc_num_factor_factor",
  1082. position = "jitter",
  1083. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1084. annotations = list(
  1085. list(
  1086. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1087. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1088. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1089. )
  1090. ),
  1091. error_bar = FALSE,
  1092. legend_position = "right"
  1093. )
  1094. )
  1095. )
  1096. delta_bg_outside_2sd_k_plot_configs <- list(
  1097. plots = list(
  1098. list(
  1099. df = df_na_l_outside_2sd_k_stats,
  1100. x_var = "delta_bg",
  1101. y_var = "K",
  1102. plot_type = "scatter",
  1103. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1104. color_var = "conc_num_factor_factor",
  1105. position = "jitter",
  1106. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1107. annotations = list(
  1108. list(
  1109. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1110. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1111. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1112. )
  1113. ),
  1114. error_bar = FALSE,
  1115. legend_position = "right"
  1116. )
  1117. )
  1118. )
  1119. message("Generating quality control plots in parallel")
  1120. # future::plan(future::multicore, workers = parallel::detectCores())
  1121. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1122. plot_configs <- list(
  1123. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1124. plot_configs = l_vs_k_plot_configs),
  1125. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1126. plot_configs = frequency_delta_bg_plot_configs),
  1127. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1128. plot_configs = above_threshold_plot_configs),
  1129. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1130. plot_configs = plate_analysis_plot_configs),
  1131. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1132. plot_configs = plate_analysis_boxplot_configs),
  1133. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1134. plot_configs = plate_analysis_no_zeros_plot_configs),
  1135. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1136. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1137. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1138. plot_configs = l_outside_2sd_k_plot_configs),
  1139. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1140. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1141. )
  1142. # Generating quality control plots in parallel
  1143. # furrr::future_map(plot_configs, function(config) {
  1144. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1145. # }, .options = furrr_options(seed = TRUE))
  1146. # Process background strains
  1147. bg_strains <- c("YDL227C")
  1148. lapply(bg_strains, function(strain) {
  1149. message("Processing background strain: ", strain)
  1150. # Handle missing data by setting zero values to NA
  1151. # and then removing any rows with NA in L col
  1152. df_bg <- df_na %>%
  1153. filter(OrfRep == strain) %>%
  1154. mutate(
  1155. L = if_else(L == 0, NA, L),
  1156. K = if_else(K == 0, NA, K),
  1157. r = if_else(r == 0, NA, r),
  1158. AUC = if_else(AUC == 0, NA, AUC)
  1159. ) %>%
  1160. filter(!is.na(L))
  1161. # Recalculate summary statistics for the background strain
  1162. message("Calculating summary statistics for background strain")
  1163. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1164. summary_stats_bg <- ss_bg$summary_stats
  1165. write.csv(summary_stats_bg,
  1166. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1167. row.names = FALSE)
  1168. # Set the missing values to the highest theoretical value at each drug conc for L
  1169. # Leave other values as 0 for the max/min
  1170. df_reference <- df_na_stats %>% # formerly X2_RF
  1171. filter(OrfRep == strain) %>%
  1172. filter(!is.na(L)) %>%
  1173. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1174. mutate(
  1175. max_l_theoretical = max(max_L, na.rm = TRUE),
  1176. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1177. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1178. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1179. ungroup()
  1180. # Ditto for deletion strains
  1181. df_deletion <- df_na_stats %>% # formerly X2
  1182. filter(OrfRep != strain) %>%
  1183. filter(!is.na(L)) %>%
  1184. mutate(SM = 0) %>%
  1185. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1186. mutate(
  1187. max_l_theoretical = max(max_L, na.rm = TRUE),
  1188. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1189. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1190. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1191. ungroup()
  1192. message("Calculating reference strain interaction scores")
  1193. df_reference_stats <- calculate_summary_stats(
  1194. df = df_reference,
  1195. variables = interaction_vars,
  1196. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1197. )$df_with_stats
  1198. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1199. zscore_calculations_reference <- reference_results$calculations
  1200. zscore_interactions_reference <- reference_results$interactions
  1201. zscore_interactions_reference_joined <- reference_results$full_data
  1202. message("Calculating deletion strain(s) interactions scores")
  1203. df_deletion_stats <- calculate_summary_stats(
  1204. df = df_deletion,
  1205. variables = interaction_vars,
  1206. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1207. )$df_with_stats
  1208. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1209. zscore_calculations <- deletion_results$calculations
  1210. zscore_interactions <- deletion_results$interactions
  1211. zscore_interactions_joined <- deletion_results$full_data
  1212. # Writing Z-Scores to file
  1213. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1214. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1215. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1216. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1217. # Create interaction plots
  1218. message("Generating reference interaction plots")
  1219. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1220. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1221. message("Generating deletion interaction plots")
  1222. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1223. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1224. # Define conditions for enhancers and suppressors
  1225. # TODO Add to study config?
  1226. threshold <- 2
  1227. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1228. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1229. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1230. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1231. # Subset data
  1232. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1233. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1234. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1235. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1236. # Save enhancers and suppressors
  1237. message("Writing enhancer/suppressor csv files")
  1238. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1239. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1240. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1241. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1242. # Combine conditions for enhancers and suppressors
  1243. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1244. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1245. # Save combined enhancers and suppressors
  1246. write.csv(enhancers_and_suppressors_L,
  1247. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1248. write.csv(enhancers_and_suppressors_K,
  1249. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1250. # Handle linear model based enhancers and suppressors
  1251. lm_threshold <- 2 # TODO add to study config?
  1252. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1253. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1254. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1255. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1256. # Save linear model based enhancers and suppressors
  1257. message("Writing linear model enhancer/suppressor csv files")
  1258. write.csv(enhancers_lm_L,
  1259. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1260. write.csv(suppressors_lm_L,
  1261. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1262. write.csv(enhancers_lm_K,
  1263. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1264. write.csv(suppressors_lm_K,
  1265. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1266. message("Generating rank plots")
  1267. rank_plot_configs <- generate_rank_plot_configs(
  1268. df = zscore_interactions_joined,
  1269. is_lm = FALSE,
  1270. adjust = TRUE
  1271. )
  1272. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1273. plot_configs = rank_plot_configs)
  1274. message("Generating ranked linear model plots")
  1275. rank_lm_plot_configs <- generate_rank_plot_configs(
  1276. df = zscore_interactions_joined,
  1277. is_lm = TRUE,
  1278. adjust = TRUE
  1279. )
  1280. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1281. plot_configs = rank_lm_plot_configs)
  1282. message("Generating filtered ranked plots")
  1283. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1284. df = zscore_interactions_filtered,
  1285. is_lm = FALSE,
  1286. adjust = FALSE,
  1287. overlap_color = TRUE
  1288. )
  1289. generate_and_save_plots(
  1290. out_dir = out_dir,
  1291. filename = "RankPlots_na_rm",
  1292. plot_configs = rank_plot_filtered_configs)
  1293. message("Generating filtered ranked linear model plots")
  1294. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1295. df = zscore_interactions_filtered,
  1296. is_lm = TRUE,
  1297. adjust = FALSE,
  1298. overlap_color = TRUE
  1299. )
  1300. generate_and_save_plots(
  1301. out_dir = out_dir,
  1302. filename = "rank_plots_lm_na_rm",
  1303. plot_configs = rank_plot_lm_filtered_configs)
  1304. message("Generating correlation curve parameter pair plots")
  1305. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1306. generate_and_save_plots(
  1307. out_dir = out_dir,
  1308. filename = "correlation_cpps",
  1309. plot_configs = correlation_plot_configs,
  1310. )
  1311. })
  1312. })
  1313. }
  1314. main()
  1315. # For future simplification of joined dataframes
  1316. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))