calculate_interaction_zscores.R 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("unix")
  10. })
  11. options(warn = 2)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. invisible(rlimit_as(soft_limit, hard_limit))
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. out_dir <- normalizePath(args[1], mustWork = FALSE)
  37. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  38. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  39. # The remaining arguments should be in groups of 3
  40. exp_args <- args[-(1:3)]
  41. if (length(exp_args) %% 3 != 0) {
  42. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  43. }
  44. experiments <- list()
  45. for (i in seq(1, length(exp_args), by = 3)) {
  46. exp_name <- exp_args[i + 1]
  47. experiments[[exp_name]] <- list(
  48. path = normalizePath(exp_args[i], mustWork = FALSE),
  49. sd = as.numeric(exp_args[i + 2])
  50. )
  51. }
  52. list(
  53. out_dir = out_dir,
  54. sgd_gene_list = sgd_gene_list,
  55. easy_results_file = easy_results_file,
  56. experiments = experiments
  57. )
  58. }
  59. args <- parse_arguments()
  60. # Should we keep output in exp dirs or combine in the study output dir?
  61. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  62. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  63. # Define themes and scales
  64. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  65. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  66. theme_foundation %+replace%
  67. theme(
  68. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  69. text = element_text(),
  70. panel.background = element_rect(colour = NA),
  71. plot.background = element_rect(colour = NA),
  72. panel.border = element_rect(colour = NA),
  73. axis.title = element_text(face = "bold", size = rel(1)),
  74. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  75. axis.title.x = element_text(vjust = -0.2, size = 18),
  76. axis.line = element_line(colour = "black"),
  77. axis.text.x = element_text(size = 16),
  78. axis.text.y = element_text(size = 16),
  79. panel.grid.major = element_line(colour = "#f0f0f0"),
  80. panel.grid.minor = element_blank(),
  81. legend.key = element_rect(colour = NA),
  82. legend.position = legend_position,
  83. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  84. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  85. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  86. strip.text = element_text(face = "bold")
  87. )
  88. }
  89. scale_fill_publication <- function(...) {
  90. discrete_scale("fill", "Publication", manual_pal(values = c(
  91. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  92. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  93. )), ...)
  94. }
  95. scale_colour_publication <- function(...) {
  96. discrete_scale("colour", "Publication", manual_pal(values = c(
  97. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  98. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  99. )), ...)
  100. }
  101. # Load the initial dataframe from the easy_results_file
  102. load_and_process_data <- function(easy_results_file, sd = 3) {
  103. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  104. df <- df %>%
  105. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  106. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  107. # Rename columns
  108. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  109. mutate(
  110. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  111. delta_bg = last_bg - first_bg,
  112. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  113. NG = if_else(L == 0 & !is.na(L), 1, 0),
  114. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  115. SM = 0,
  116. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  117. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  118. ) %>%
  119. mutate(
  120. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  121. )
  122. return(df)
  123. }
  124. # Update Gene names using the SGD gene list
  125. update_gene_names <- function(df, sgd_gene_list) {
  126. # Load SGD gene list
  127. genes <- read.delim(file = sgd_gene_list,
  128. quote = "", header = FALSE,
  129. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  130. # Create a named vector for mapping ORF to GeneName
  131. gene_map <- setNames(genes$V5, genes$V4)
  132. # Vectorized match to find the GeneName from gene_map
  133. mapped_genes <- gene_map[df$ORF]
  134. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  135. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  136. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  137. df <- df %>%
  138. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  139. return(df)
  140. }
  141. calculate_summary_stats <- function(df, variables, group_vars) {
  142. summary_stats <- df %>%
  143. group_by(across(all_of(group_vars))) %>%
  144. summarise(
  145. N = n(),
  146. across(all_of(variables), list(
  147. mean = ~mean(., na.rm = TRUE),
  148. median = ~median(., na.rm = TRUE),
  149. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  150. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  151. sd = ~sd(., na.rm = TRUE),
  152. se = ~sd(., na.rm = TRUE) / sqrt(N) - 1 # TODO needs comment for explanation
  153. ), .names = "{.fn}_{.col}"),
  154. .groups = "drop"
  155. )
  156. # Create a cleaned version of df that doesn't overlap with summary_stats
  157. cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
  158. df_cleaned <- df %>%
  159. select(all_of(cols_to_keep))
  160. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  161. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  162. }
  163. calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
  164. # Calculate total concentration variables
  165. total_conc_num <- length(unique(df$conc_num))
  166. # Pull the background means and standard deviations from zero concentration
  167. bg_means <- list(
  168. L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
  169. K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
  170. r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
  171. AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
  172. )
  173. bg_sd <- list(
  174. L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
  175. K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
  176. r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
  177. AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
  178. )
  179. stats <- calculate_summary_stats(df,
  180. variables = variables,
  181. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  182. )$summary_stats
  183. stats <- df %>%
  184. group_by(across(all_of(group_vars))) %>%
  185. mutate(
  186. WT_L = mean_L,
  187. WT_K = mean_K,
  188. WT_r = mean_r,
  189. WT_AUC = mean_AUC,
  190. WT_sd_L = sd_L,
  191. WT_sd_K = sd_K,
  192. WT_sd_r = sd_r,
  193. WT_sd_AUC = sd_AUC
  194. )
  195. stats <- stats %>%
  196. mutate(
  197. Raw_Shift_L = first(mean_L) - bg_means$L,
  198. Raw_Shift_K = first(mean_K) - bg_means$K,
  199. Raw_Shift_r = first(mean_r) - bg_means$r,
  200. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  201. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  202. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  203. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  204. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  205. )
  206. stats <- stats %>%
  207. mutate(
  208. Exp_L = WT_L + Raw_Shift_L,
  209. Exp_K = WT_K + Raw_Shift_K,
  210. Exp_r = WT_r + Raw_Shift_r,
  211. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC
  216. )
  217. stats <- stats %>%
  218. mutate(
  219. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  220. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  221. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  222. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  223. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Zscore_L = Delta_L / WT_sd_L,
  228. Zscore_K = Delta_K / WT_sd_K,
  229. Zscore_r = Delta_r / WT_sd_r,
  230. Zscore_AUC = Delta_AUC / WT_sd_AUC
  231. )
  232. # Calculate linear models
  233. lm_L <- lm(Delta_L ~ conc_num, data = stats)
  234. lm_K <- lm(Delta_K ~ conc_num, data = stats)
  235. lm_r <- lm(Delta_r ~ conc_num, data = stats)
  236. lm_AUC <- lm(Delta_AUC ~ conc_num, data = stats)
  237. interactions <- stats %>%
  238. group_by(across(all_of(group_vars))) %>%
  239. summarise(
  240. OrfRep = first(OrfRep),
  241. Gene = first(Gene),
  242. num = first(num),
  243. conc_num = first(conc_num),
  244. conc_num_factor = first(conc_num_factor),
  245. Raw_Shift_L = first(Raw_Shift_L),
  246. Raw_Shift_K = first(Raw_Shift_K),
  247. Raw_Shift_r = first(Raw_Shift_r),
  248. Raw_Shift_AUC = first(Raw_Shift_AUC),
  249. Z_Shift_L = first(Z_Shift_L),
  250. Z_Shift_K = first(Z_Shift_K),
  251. Z_Shift_r = first(Z_Shift_r),
  252. Z_Shift_AUC = first(Z_Shift_AUC),
  253. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  254. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  255. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  256. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  257. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  258. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  259. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  260. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  261. R_Squared_L = summary(lm_L)$r.squared,
  262. R_Squared_K = summary(lm_K)$r.squared,
  263. R_Squared_r = summary(lm_r)$r.squared,
  264. R_Squared_AUC = summary(lm_AUC)$r.squared,
  265. lm_intercept_L = coef(lm_L)[1],
  266. lm_slope_L = coef(lm_L)[2],
  267. lm_intercept_K = coef(lm_K)[1],
  268. lm_slope_K = coef(lm_K)[2],
  269. lm_intercept_r = coef(lm_r)[1],
  270. lm_slope_r = coef(lm_r)[2],
  271. lm_intercept_AUC = coef(lm_AUC)[1],
  272. lm_slope_AUC = coef(lm_AUC)[2],
  273. NG = sum(NG, na.rm = TRUE),
  274. DB = sum(DB, na.rm = TRUE),
  275. SM = sum(SM, na.rm = TRUE),
  276. .groups = "keep"
  277. )
  278. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  279. interactions <- interactions %>%
  280. mutate(
  281. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  282. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  283. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  284. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  285. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  286. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  287. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  288. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  289. ) %>%
  290. arrange(desc(Z_lm_L), desc(NG))
  291. # Declare column order for output
  292. calculations <- stats %>%
  293. select(
  294. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  295. "mean_L", "mean_K", "mean_r", "mean_AUC",
  296. "median_L", "median_K", "median_r", "median_AUC",
  297. "sd_L", "sd_K", "sd_r", "sd_AUC",
  298. "se_L", "se_K", "se_r", "se_AUC",
  299. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  300. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  301. "WT_L", "WT_K", "WT_r", "WT_AUC",
  302. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  303. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  304. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  305. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  306. "NG", "SM", "DB")
  307. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  308. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  309. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  310. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  311. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  312. calculations_joined = calculations_joined))
  313. }
  314. generate_and_save_plots <- function(out_dir, file_name, plot_configs, grid_layout = NULL) {
  315. message("Generating ", file_name, ".pdf and ", file_name, ".html")
  316. # Prepare lists to collect plots
  317. static_plots <- list()
  318. plotly_plots <- list()
  319. for (i in seq_along(plot_configs)) {
  320. config <- plot_configs[[i]]
  321. df <- config$df
  322. # Build the aes_mapping based on config
  323. aes_mapping <- if (is.null(config$color_var)) {
  324. if (is.null(config$y_var)) {
  325. aes(x = .data[[config$x_var]])
  326. } else {
  327. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  328. }
  329. } else {
  330. if (is.null(config$y_var)) {
  331. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  332. } else {
  333. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  334. }
  335. }
  336. # Start building the plot with aes_mapping
  337. plot_base <- ggplot(df, aes_mapping)
  338. # Use appropriate helper function based on plot type
  339. plot <- switch(config$plot_type,
  340. "scatter" = generate_scatter_plot(plot_base, config),
  341. "box" = generate_box_plot(plot_base, config),
  342. "density" = plot_base + geom_density(),
  343. "bar" = plot_base + geom_bar(),
  344. plot_base # default case if no type matches
  345. )
  346. # Apply additional settings if provided
  347. if (!is.null(config$legend_position)) {
  348. plot <- plot + theme(legend.position = config$legend_position)
  349. }
  350. # Add title and labels if provided
  351. if (!is.null(config$title)) {
  352. plot <- plot + ggtitle(config$title)
  353. }
  354. if (!is.null(config$x_label)) {
  355. plot <- plot + xlab(config$x_label)
  356. }
  357. if (!is.null(config$y_label)) {
  358. plot <- plot + ylab(config$y_label)
  359. }
  360. # Add interactive tooltips for plotly plots
  361. tooltip_vars <- c()
  362. if (config$plot_type == "scatter") {
  363. tooltip_vars <- c(config$x_var, config$y_var)
  364. }
  365. # Convert to plotly object
  366. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  367. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  368. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  369. }
  370. # Add plots to lists
  371. static_plots[[i]] <- plot
  372. plotly_plots[[i]] <- plotly_plot
  373. }
  374. # Save static PDF plots
  375. pdf(file.path(out_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  376. lapply(static_plots, print)
  377. dev.off()
  378. # Combine and save interactive HTML plots
  379. combined_plot <- subplot(plotly_plots,
  380. nrows = ifelse(is.null(grid_layout$nrow), length(plotly_plots), grid_layout$nrow),
  381. margin = 0.05)
  382. saveWidget(combined_plot, file = file.path(out_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  383. }
  384. generate_scatter_plot <- function(plot, config) {
  385. # Determine Shape, Size, and Position for geom_point
  386. shape <- if (!is.null(config$shape)) config$shape else 3
  387. size <- if (!is.null(config$size)) config$size else 0.1
  388. position <- if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
  389. # Add geom_point with determined parameters
  390. plot <- plot + geom_point(
  391. shape = shape,
  392. size = size,
  393. position = position
  394. )
  395. if (!is.null(config$cyan_points)) {
  396. plot <- plot + geom_point(
  397. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  398. color = "cyan",
  399. shape = 3,
  400. size = 0.5
  401. )
  402. }
  403. # Add Smooth Line if specified
  404. if (!is.null(config$add_smooth) && config$add_smooth) {
  405. if (!is.null(config$lm_line)) {
  406. plot <- plot +
  407. geom_abline(
  408. intercept = config$lm_line$intercept,
  409. slope = config$lm_line$slope,
  410. color = "blue"
  411. )
  412. } else {
  413. plot <- plot +
  414. geom_smooth(
  415. method = "lm",
  416. se = FALSE,
  417. color = "blue"
  418. )
  419. }
  420. }
  421. # Add SD Bands if specified
  422. if (!is.null(config$sd_band_values)) {
  423. for (sd_band in config$sd_band_values) {
  424. plot <- plot +
  425. annotate(
  426. "rect",
  427. xmin = -Inf, xmax = Inf,
  428. ymin = sd_band, ymax = Inf,
  429. fill = "#542788",
  430. alpha = 0.3
  431. ) +
  432. annotate(
  433. "rect",
  434. xmin = -Inf, xmax = Inf,
  435. ymin = -sd_band, ymax = -Inf,
  436. fill = "orange",
  437. alpha = 0.3
  438. ) +
  439. geom_hline(
  440. yintercept = c(-sd_band, sd_band),
  441. color = "gray"
  442. )
  443. }
  444. }
  445. # Add Rectangles if specified
  446. if (!is.null(config$rectangles)) {
  447. for (rect in config$rectangles) {
  448. plot <- plot + annotate(
  449. "rect",
  450. xmin = rect$xmin,
  451. xmax = rect$xmax,
  452. ymin = rect$ymin,
  453. ymax = rect$ymax,
  454. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  455. color = ifelse(is.null(rect$color), "black", rect$color),
  456. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  457. )
  458. }
  459. }
  460. # Add Error Bars if specified
  461. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  462. y_mean_col <- paste0("mean_", config$y_var)
  463. y_sd_col <- paste0("sd_", config$y_var)
  464. plot <- plot +
  465. geom_errorbar(
  466. aes(
  467. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  468. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  469. ),
  470. alpha = 0.3
  471. )
  472. }
  473. # Customize X-axis if specified
  474. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  475. plot <- plot +
  476. scale_x_discrete(
  477. name = config$x_label,
  478. breaks = config$x_breaks,
  479. labels = config$x_labels
  480. )
  481. }
  482. # Apply coord_cartesian if specified
  483. if (!is.null(config$coord_cartesian)) {
  484. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  485. }
  486. # Set Y-axis limits if specified
  487. if (!is.null(config$ylim_vals)) {
  488. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  489. }
  490. # Add Annotations if specified
  491. if (!is.null(config$annotations)) {
  492. for (annotation in config$annotations) {
  493. plot <- plot +
  494. annotate(
  495. "text",
  496. x = annotation$x,
  497. y = annotation$y,
  498. label = annotation$label,
  499. na.rm = TRUE
  500. )
  501. }
  502. }
  503. # Add Title if specified
  504. if (!is.null(config$title)) {
  505. plot <- plot + ggtitle(config$title)
  506. }
  507. # Adjust Legend Position if specified
  508. if (!is.null(config$legend_position)) {
  509. plot <- plot + theme(legend.position = config$legend_position)
  510. }
  511. return(plot)
  512. }
  513. generate_box_plot <- function(plot, config) {
  514. plot <- plot + geom_boxplot()
  515. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  516. plot <- plot + scale_x_discrete(
  517. name = config$x_label,
  518. breaks = config$x_breaks,
  519. labels = config$x_labels
  520. )
  521. }
  522. if (!is.null(config$coord_cartesian)) {
  523. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  524. }
  525. return(plot)
  526. }
  527. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  528. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  529. plots <- list()
  530. for (var in variables) {
  531. for (stage in stages) {
  532. df_plot <- if (stage == "before") df_before else df_after
  533. # Adjust settings based on plot_type
  534. if (plot_type == "scatter") {
  535. error_bar <- TRUE
  536. position <- "jitter"
  537. } else if (plot_type == "box") {
  538. error_bar <- FALSE
  539. position <- NULL
  540. }
  541. config <- list(
  542. df = df_plot,
  543. x_var = "scan",
  544. y_var = var,
  545. plot_type = plot_type,
  546. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  547. error_bar = error_bar,
  548. color_var = "conc_num_factor",
  549. position = position
  550. )
  551. plots <- append(plots, list(config))
  552. }
  553. }
  554. return(plots)
  555. }
  556. generate_interaction_plot_configs <- function(df, variables) {
  557. configs <- list()
  558. limits_map <- list(
  559. L = c(-65, 65),
  560. K = c(-65, 65),
  561. r = c(-0.65, 0.65),
  562. AUC = c(-6500, 6500)
  563. )
  564. df_filtered <- filter_data(df, variables, missing = TRUE, limits_map = limits_map)
  565. # Define annotation label functions
  566. generate_annotation_labels <- function(df, var, annotation_name) {
  567. switch(annotation_name,
  568. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  569. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  570. NG = paste("NG =", df$NG),
  571. DB = paste("DB =", df$DB),
  572. SM = paste("SM =", df$SM),
  573. NULL # Default case for unrecognized annotation names
  574. )
  575. }
  576. # Define annotation positions relative to the y-axis range
  577. calculate_annotation_positions <- function(y_range) {
  578. y_min <- min(y_range)
  579. y_max <- max(y_range)
  580. y_span <- y_max - y_min
  581. list(
  582. ZShift = y_max - 0.1 * y_span,
  583. lm_ZScore = y_max - 0.2 * y_span,
  584. NG = y_min + 0.2 * y_span,
  585. DB = y_min + 0.1 * y_span,
  586. SM = y_min + 0.05 * y_span
  587. )
  588. }
  589. # Create configurations for each variable
  590. for (variable in variables) {
  591. y_range <- limits_map[[variable]]
  592. annotation_positions <- calculate_annotation_positions(y_range)
  593. lm_line <- list(
  594. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  595. slope = df_filtered[[paste0("lm_slope_", variable)]]
  596. )
  597. # Determine x-axis midpoint
  598. num_levels <- length(levels(df_filtered$conc_num_factor))
  599. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  600. # Generate annotations
  601. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  602. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  603. y_pos <- annotation_positions[[annotation_name]]
  604. if (!is.null(label)) {
  605. list(x = x_pos, y = y_pos, label = label)
  606. } else {
  607. message(paste("Warning: No annotation found for", annotation_name))
  608. NULL
  609. }
  610. })
  611. # Remove NULL annotations
  612. annotations <- Filter(Negate(is.null), annotations)
  613. # Shared plot settings
  614. plot_settings <- list(
  615. df = df_filtered,
  616. x_var = "conc_num_factor",
  617. y_var = variable,
  618. ylim_vals = y_range,
  619. annotations = annotations,
  620. lm_line = lm_line,
  621. x_breaks = levels(df_filtered$conc_num_factor),
  622. x_labels = levels(df_filtered$conc_num_factor),
  623. x_label = unique(df_filtered$Drug[1]),
  624. coord_cartesian = y_range # Use the actual y-limits
  625. )
  626. # Scatter plot config
  627. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  628. plot_type = "scatter",
  629. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  630. error_bar = TRUE,
  631. position = "jitter"
  632. ))
  633. # Box plot config
  634. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  635. plot_type = "box",
  636. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  637. error_bar = FALSE
  638. ))
  639. }
  640. return(configs)
  641. }
  642. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE) {
  643. sd_bands <- c(1, 2, 3)
  644. configs <- list()
  645. # SD-based plots for L and K
  646. for (variable in c("L", "K")) {
  647. for (sd_band in sd_bands) {
  648. # Determine columns based on whether it's lm or not
  649. if (is_lm) {
  650. rank_var <- paste0("Rank_lm_", variable)
  651. zscore_var <- paste0("Z_lm_", variable)
  652. y_label <- paste("Int Z score", variable)
  653. } else {
  654. rank_var <- paste0("Rank_", variable)
  655. zscore_var <- paste0("Avg_Zscore_", variable)
  656. y_label <- paste("Avg Z score", variable)
  657. }
  658. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  659. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  660. # Annotated plot configuration
  661. configs[[length(configs) + 1]] <- list(
  662. df = df_filtered,
  663. x_var = rank_var,
  664. y_var = zscore_var,
  665. plot_type = "scatter",
  666. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  667. sd_band = sd_band,
  668. annotations = list(
  669. list(
  670. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  671. y = 10,
  672. label = paste("Deletion Enhancers =", num_enhancers)
  673. ),
  674. list(
  675. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  676. y = -10,
  677. label = paste("Deletion Suppressors =", num_suppressors)
  678. )
  679. ),
  680. sd_band_values = sd_band,
  681. shape = 3,
  682. size = 0.1,
  683. y_label = y_label,
  684. x_label = "Rank",
  685. legend_position = "none"
  686. )
  687. # Non-Annotated Plot Configuration
  688. configs[[length(configs) + 1]] <- list(
  689. df = df_filtered,
  690. x_var = rank_var,
  691. y_var = zscore_var,
  692. plot_type = "scatter",
  693. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  694. sd_band = sd_band,
  695. annotations = NULL,
  696. sd_band_values = sd_band,
  697. shape = 3,
  698. size = 0.1,
  699. y_label = y_label,
  700. x_label = "Rank",
  701. legend_position = "none"
  702. )
  703. }
  704. }
  705. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  706. for (variable in variables) {
  707. for (plot_type in c("Avg_Zscore_vs_lm", "Rank_Avg_Zscore_vs_lm")) {
  708. # Define specific variables based on plot type
  709. if (plot_type == "Avg_Zscore_vs_lm") {
  710. x_var <- paste0("Avg_Zscore_", variable)
  711. y_var <- paste0("Z_lm_", variable)
  712. title_suffix <- paste("Avg Zscore vs lm", variable)
  713. rectangles <- list(
  714. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  715. fill = NA, color = "grey20", alpha = 0.1
  716. )
  717. )
  718. } else {
  719. x_var <- paste0("Rank_", variable)
  720. y_var <- paste0("Rank_lm_", variable)
  721. title_suffix <- paste("Rank Avg Zscore vs lm", variable)
  722. rectangles <- NULL
  723. }
  724. # Check if there is sufficient variation
  725. if (length(unique(df_filtered[[x_var]])) < 2 || length(unique(df_filtered[[y_var]])) < 2) {
  726. print(df_filtered %>% select(all_of(c("scan", "Plate", "Row", "Col", "num", "conc_num", x_var, y_var))))
  727. message("Not enough variation in ", x_var, " or ", y_var, " to fit linear model. Skipping.")
  728. next
  729. }
  730. # Fit linear model
  731. lm_fit <- lm(df_filtered[[y_var]] ~ df_filtered[[x_var]], data = df_filtered)
  732. # # Check for perfect fit
  733. # if (summary(lm_fit)$sigma == 0) {
  734. # next # Skip this iteration if the fit is perfect
  735. # }
  736. r_squared <- summary(lm_fit)$r.squared
  737. configs[[length(configs) + 1]] <- list(
  738. df = df_filtered,
  739. x_var = x_var,
  740. y_var = y_var,
  741. plot_type = "scatter",
  742. title = title_suffix,
  743. annotations = list(
  744. list(
  745. x = 0,
  746. y = 0,
  747. label = paste("R-squared =", round(r_squared, 2))
  748. )
  749. ),
  750. sd_band_values = NULL, # Not applicable
  751. shape = 3,
  752. size = 0.1,
  753. add_smooth = TRUE,
  754. lm_line = list(intercept = coef(lm_fit)[1], slope = coef(lm_fit)[2]),
  755. legend_position = "right",
  756. color_var = "Overlap",
  757. x_label = x_var,
  758. y_label = y_var,
  759. rectangles = rectangles
  760. )
  761. }
  762. }
  763. return(configs)
  764. }
  765. generate_correlation_plot_configs <- function(df) {
  766. # Define relationships for plotting
  767. relationships <- list(
  768. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  769. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  770. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  771. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  772. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  773. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  774. )
  775. configs <- list()
  776. for (rel in relationships) {
  777. # Fit linear model
  778. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  779. lm_summary <- summary(lm_model)
  780. # Construct plot configuration
  781. config <- list(
  782. df = df,
  783. x_var = rel$x,
  784. y_var = rel$y,
  785. plot_type = "scatter",
  786. title = rel$label,
  787. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  788. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  789. annotations = list(
  790. list(x = 0, y = 0, label = paste("R-squared =", round(lm_summary$r.squared, 3)))
  791. ),
  792. add_smooth = TRUE, # Add regression line
  793. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  794. legend_position = "right",
  795. shape = 3,
  796. size = 0.5,
  797. color_var = "Overlap",
  798. rectangles = list(
  799. list(
  800. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  801. fill = NA, color = "grey20", alpha = 0.1
  802. )
  803. ),
  804. cyan_points = TRUE
  805. )
  806. configs[[length(configs) + 1]] <- config
  807. }
  808. return(configs)
  809. }
  810. filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FALSE,
  811. rank = FALSE, limits_map = NULL, verbose = TRUE) {
  812. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  813. z_lm_cols <- paste0("Z_lm_", variables)
  814. # Adjust NAs to .001 for linear model
  815. if (adjust) {
  816. if (verbose) message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns")
  817. df <- df %>%
  818. mutate(
  819. across(all_of(avg_zscore_cols), ~ ifelse(is.na(.), 0.001, .)),
  820. across(all_of(z_lm_cols), ~ ifelse(is.na(.), 0.001, .))
  821. )
  822. }
  823. # Filter non-finite values
  824. if (nf) {
  825. non_finite_df <- df %>%
  826. filter(if_any(all_of(variables), ~ !is.finite(.)))
  827. if (verbose && nrow(non_finite_df) > 0) {
  828. message("Filtering non-finite rows for variable(s) ", paste(variables, collapse = ", "), ":")
  829. print(non_finite_df %>% select(all_of(c("scan", "Plate", "Row", "Col", "num", "conc_num", variables))), n = 30)
  830. }
  831. df <- df %>%
  832. filter(if_all(all_of(variables), ~ is.finite(.)))
  833. }
  834. # Filter missing values
  835. if (missing) {
  836. missing_df <- df %>%
  837. filter(if_any(all_of(variables), ~ is.na(.)))
  838. if (verbose && nrow(missing_df) > 0) {
  839. message("Filtering missing data for variable(s) ", paste(variables, collapse = ", "), ":")
  840. print(missing_df %>% select(all_of(c("scan", "Plate", "Row", "Col", "num", "conc_num", variables))), n = 30)
  841. }
  842. df <- df %>%
  843. filter(if_all(all_of(variables), ~ !is.na(.)))
  844. }
  845. # Apply Limits from 'limits_map' if provided
  846. if (!is.null(limits_map)) {
  847. for (variable in names(limits_map)) {
  848. if (variable %in% variables) {
  849. ylim_vals <- limits_map[[variable]]
  850. out_of_range_df <- df %>%
  851. filter(.data[[variable]] < ylim_vals[1] | .data[[variable]] > ylim_vals[2])
  852. if (verbose && nrow(out_of_range_df) > 0) {
  853. message("Applying limits for variable ", variable, ": [", ylim_vals[1], ", ", ylim_vals[2], "].")
  854. message("Filtering out-of-range data for variable ", variable, ":")
  855. print(out_of_range_df %>% select(all_of(c("scan", "Plate", "Row", "Col", "num", "conc_num", variables))), n = 30)
  856. }
  857. df <- df %>%
  858. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  859. }
  860. }
  861. }
  862. # Calculate Rank Columns if 'rank' is TRUE
  863. if (rank) {
  864. if (verbose) message("Calculating ranks for variable(s): ", paste(variables, collapse = ", "))
  865. for (variable in variables) {
  866. avg_zscore_col <- paste0("Avg_Zscore_", variable)
  867. rank_col <- paste0("Rank_", variable)
  868. df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
  869. z_lm_col <- paste0("Z_lm_", variable)
  870. rank_lm_col <- paste0("Rank_lm_", variable)
  871. df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
  872. }
  873. }
  874. return(df)
  875. }
  876. main <- function() {
  877. lapply(names(args$experiments), function(exp_name) {
  878. exp <- args$experiments[[exp_name]]
  879. exp_path <- exp$path
  880. exp_sd <- exp$sd
  881. out_dir <- file.path(exp_path, "zscores")
  882. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  883. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  884. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  885. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  886. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  887. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  888. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  889. message("Loading and filtering data for experiment: ", exp_name)
  890. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  891. update_gene_names(args$sgd_gene_list) %>%
  892. as_tibble()
  893. # Filter rows above delta background tolerance
  894. df_above_tolerance <- df %>% filter(DB == 1)
  895. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  896. df_no_zeros <- df_na %>% filter(L > 0)
  897. # Save some constants
  898. max_conc <- max(df$conc_num)
  899. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  900. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  901. message("Calculating summary statistics before quality control")
  902. ss <- calculate_summary_stats(
  903. df = df,
  904. variables = summary_vars,
  905. group_vars = c("conc_num", "conc_num_factor"))
  906. df_stats <- ss$df_with_stats
  907. message("Filtering non-finite data")
  908. df_filtered_stats <- filter_data(df_stats, c("L"), nf = TRUE)
  909. message("Calculating summary statistics after quality control")
  910. ss <- calculate_summary_stats(
  911. df = df_na,
  912. variables = summary_vars,
  913. group_vars = c("conc_num", "conc_num_factor"))
  914. df_na_ss <- ss$summary_stats
  915. df_na_stats <- ss$df_with_stats
  916. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  917. df_na_filtered_stats <- filter_data(df_na_stats, c("L"), nf = TRUE)
  918. message("Calculating summary statistics after quality control excluding zero values")
  919. ss <- calculate_summary_stats(
  920. df = df_no_zeros,
  921. variables = summary_vars,
  922. group_vars = c("conc_num", "conc_num_factor"))
  923. df_no_zeros_stats <- ss$df_with_stats
  924. df_no_zeros_filtered_stats <- filter_data(df_no_zeros_stats, c("L"), nf = TRUE)
  925. message("Filtering by 2SD of K")
  926. df_na_within_2sd_k <- df_na_stats %>%
  927. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  928. df_na_outside_2sd_k <- df_na_stats %>%
  929. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  930. message("Calculating summary statistics for L within 2SD of K")
  931. # TODO We're omitting the original z_max calculation, not sure if needed?
  932. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  933. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  934. write.csv(ss$summary_stats,
  935. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  936. row.names = FALSE)
  937. message("Calculating summary statistics for L outside 2SD of K")
  938. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  939. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  940. write.csv(ss$summary_stats,
  941. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  942. row.names = FALSE)
  943. # Each plots list corresponds to a file
  944. l_vs_k_plots <- list(
  945. list(
  946. df = df,
  947. x_var = "L",
  948. y_var = "K",
  949. plot_type = "scatter",
  950. delta_bg_point = TRUE,
  951. title = "Raw L vs K before quality control",
  952. color_var = "conc_num_factor",
  953. error_bar = FALSE,
  954. legend_position = "right"
  955. )
  956. )
  957. frequency_delta_bg_plots <- list(
  958. list(
  959. df = df_filtered_stats,
  960. x_var = "delta_bg",
  961. y_var = NULL,
  962. plot_type = "density",
  963. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  964. color_var = "conc_num_factor",
  965. x_label = "Delta Background",
  966. y_label = "Density",
  967. error_bar = FALSE,
  968. legend_position = "right"),
  969. list(
  970. df = df_filtered_stats,
  971. x_var = "delta_bg",
  972. y_var = NULL,
  973. plot_type = "bar",
  974. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  975. color_var = "conc_num_factor",
  976. x_label = "Delta Background",
  977. y_label = "Count",
  978. error_bar = FALSE,
  979. legend_position = "right")
  980. )
  981. above_threshold_plots <- list(
  982. list(
  983. df = df_above_tolerance,
  984. x_var = "L",
  985. y_var = "K",
  986. plot_type = "scatter",
  987. delta_bg_point = TRUE,
  988. title = paste("Raw L vs K for strains above Delta Background threshold of",
  989. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  990. color_var = "conc_num_factor",
  991. position = "jitter",
  992. annotations = list(
  993. list(
  994. x = l_half_median,
  995. y = k_half_median,
  996. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  997. )
  998. ),
  999. error_bar = FALSE,
  1000. legend_position = "right"
  1001. )
  1002. )
  1003. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1004. variables = summary_vars,
  1005. df_before = df_filtered_stats,
  1006. df_after = df_na_filtered_stats,
  1007. )
  1008. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1009. variables = summary_vars,
  1010. df_before = df_filtered_stats,
  1011. df_after = df_na_filtered_stats,
  1012. plot_type = "box"
  1013. )
  1014. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1015. variables = summary_vars,
  1016. stages = c("after"), # Only after QC
  1017. df_after = df_no_zeros_filtered_stats,
  1018. )
  1019. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1020. variables = summary_vars,
  1021. stages = c("after"), # Only after QC
  1022. df_after = df_no_zeros_filtered_stats,
  1023. plot_type = "box"
  1024. )
  1025. l_outside_2sd_k_plots <- list(
  1026. list(
  1027. df = df_na_l_outside_2sd_k_stats,
  1028. x_var = "L",
  1029. y_var = "K",
  1030. plot_type = "scatter",
  1031. delta_bg_point = TRUE,
  1032. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1033. color_var = "conc_num_factor",
  1034. position = "jitter",
  1035. legend_position = "right"
  1036. )
  1037. )
  1038. delta_bg_outside_2sd_k_plots <- list(
  1039. list(
  1040. df = df_na_l_outside_2sd_k_stats,
  1041. x_var = "delta_bg",
  1042. y_var = "K",
  1043. plot_type = "scatter",
  1044. gene_point = TRUE,
  1045. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1046. color_var = "conc_num_factor",
  1047. position = "jitter",
  1048. legend_position = "right"
  1049. )
  1050. )
  1051. # message("Generating quality control plots")
  1052. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  1053. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  1054. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  1055. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plot_configs)
  1056. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplot_configs)
  1057. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plot_configs)
  1058. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplot_configs)
  1059. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  1060. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  1061. # Process background strains
  1062. bg_strains <- c("YDL227C")
  1063. lapply(bg_strains, function(strain) {
  1064. message("Processing background strain: ", strain)
  1065. # Handle missing data by setting zero values to NA
  1066. # and then removing any rows with NA in L col
  1067. df_bg <- df_na %>%
  1068. filter(OrfRep == strain) %>%
  1069. mutate(
  1070. L = if_else(L == 0, NA, L),
  1071. K = if_else(K == 0, NA, K),
  1072. r = if_else(r == 0, NA, r),
  1073. AUC = if_else(AUC == 0, NA, AUC)
  1074. ) %>%
  1075. filter(!is.na(L))
  1076. # Recalculate summary statistics for the background strain
  1077. message("Calculating summary statistics for background strain")
  1078. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1079. summary_stats_bg <- ss_bg$summary_stats
  1080. # df_bg_stats <- ss_bg$df_with_stats
  1081. write.csv(summary_stats_bg,
  1082. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1083. row.names = FALSE)
  1084. # Filter reference and deletion strains
  1085. # Formerly X2_RF (reference strains)
  1086. df_reference <- df_na_stats %>%
  1087. filter(OrfRep == strain) %>%
  1088. mutate(SM = 0)
  1089. # Formerly X2 (deletion strains)
  1090. df_deletion <- df_na_stats %>%
  1091. filter(OrfRep != strain) %>%
  1092. mutate(SM = 0)
  1093. # Set the missing values to the highest theoretical value at each drug conc for L
  1094. # Leave other values as 0 for the max/min
  1095. reference_strain <- df_reference %>%
  1096. group_by(conc_num, conc_num_factor) %>%
  1097. mutate(
  1098. max_l_theoretical = max(max_L, na.rm = TRUE),
  1099. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1100. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1101. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1102. ungroup()
  1103. # Ditto for deletion strains
  1104. deletion_strains <- df_deletion %>%
  1105. group_by(conc_num, conc_num_factor) %>%
  1106. mutate(
  1107. max_l_theoretical = max(max_L, na.rm = TRUE),
  1108. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1109. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1110. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1111. ungroup()
  1112. message("Calculating reference strain interaction scores")
  1113. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = c("OrfRep", "Gene", "num"))
  1114. zscores_calculations_reference <- reference_results$calculations
  1115. zscores_interactions_reference <- reference_results$interactions
  1116. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1117. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1118. message("Calculating deletion strain(s) interactions scores")
  1119. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = c("OrfRep", "Gene", "num"))
  1120. zscores_calculations <- deletion_results$calculations
  1121. zscores_interactions <- deletion_results$interactions
  1122. zscores_calculations_joined <- deletion_results$calculations_joined
  1123. zscores_interactions_joined <- deletion_results$interactions_joined
  1124. # Writing Z-Scores to file
  1125. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1126. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1127. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1128. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1129. # Create interaction plots
  1130. message("Generating reference interaction plots")
  1131. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1132. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1133. message("Generating deletion interaction plots")
  1134. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1135. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1136. # Define conditions for enhancers and suppressors
  1137. # TODO Add to study config file?
  1138. threshold <- 2
  1139. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1140. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1141. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1142. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1143. # Subset data
  1144. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1145. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1146. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1147. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1148. # Save enhancers and suppressors
  1149. message("Writing enhancer/suppressor csv files")
  1150. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1151. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1152. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1153. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1154. # Combine conditions for enhancers and suppressors
  1155. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1156. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1157. # Save combined enhancers and suppressors
  1158. write.csv(enhancers_and_suppressors_L,
  1159. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1160. write.csv(enhancers_and_suppressors_K,
  1161. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1162. # Handle linear model based enhancers and suppressors
  1163. lm_threshold <- 2
  1164. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1165. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1166. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1167. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1168. # Save linear model based enhancers and suppressors
  1169. message("Writing linear model enhancer/suppressor csv files")
  1170. write.csv(enhancers_lm_L,
  1171. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1172. write.csv(suppressors_lm_L,
  1173. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1174. write.csv(enhancers_lm_K,
  1175. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1176. write.csv(suppressors_lm_K,
  1177. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1178. message("Generating rank plots")
  1179. zscores_interactions_joined_filtered <- filter_data(
  1180. df = zscores_interactions_joined,
  1181. variables = interaction_vars,
  1182. missing = TRUE,
  1183. adjust = TRUE,
  1184. rank = TRUE)
  1185. rank_plot_configs <- generate_rank_plot_configs(
  1186. df = zscores_interactions_joined_filtered,
  1187. variables = interaction_vars,
  1188. is_lm = FALSE
  1189. )
  1190. generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots",
  1191. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1192. message("Generating ranked linear model plots")
  1193. rank_lm_plot_configs <- generate_rank_plot_configs(
  1194. df = zscores_interactions_joined_filtered,
  1195. variables = interaction_vars,
  1196. is_lm = TRUE
  1197. )
  1198. generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots_lm",
  1199. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1200. message("Filtering and reranking plots")
  1201. # Formerly X_NArm
  1202. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1203. group_by(across(all_of(c("OrfRep", "Gene", "num")))) %>%
  1204. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  1205. mutate(
  1206. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1207. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1208. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1209. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
  1210. Overlap = case_when(
  1211. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1212. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1213. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1214. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1215. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1216. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1217. TRUE ~ "No Effect"
  1218. )
  1219. )
  1220. # Re-rank
  1221. zscores_interactions_filtered <- filter_data(
  1222. df = zscores_interactions_filtered,
  1223. variables = interaction_vars,
  1224. missing = TRUE, # TODO what I'm currently having issues with
  1225. rank = TRUE
  1226. )
  1227. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1228. df = zscores_interactions_filtered,
  1229. variables = interaction_vars,
  1230. is_lm = FALSE
  1231. )
  1232. message("Generating filtered ranked plots")
  1233. generate_and_save_plots(
  1234. out_dir = out_dir,
  1235. file_name = "RankPlots_na_rm",
  1236. plot_configs = rank_plot_filtered_configs,
  1237. grid_layout = list(ncol = 3, nrow = 2))
  1238. message("Generating filtered ranked linear model plots")
  1239. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1240. df = zscores_interactions_filtered,
  1241. variables = interaction_vars,
  1242. is_lm = TRUE
  1243. )
  1244. generate_and_save_plots(
  1245. out_dir = out_dir,
  1246. file_name = "RankPlots_lm_na_rm",
  1247. plot_configs = rank_plot_lm_filtered_configs,
  1248. grid_layout = list(ncol = 3, nrow = 2))
  1249. message("Generating correlation plots")
  1250. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1251. generate_and_save_plots(
  1252. out_dir = out_dir,
  1253. file_name = "Avg_Zscore_vs_lm_NA_rm",
  1254. plot_configs = correlation_plot_configs,
  1255. grid_layout = list(ncol = 2, nrow = 2))
  1256. })
  1257. })
  1258. }
  1259. main()