calculate_interaction_zscores.R 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_process_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  122. ) %>%
  123. mutate(
  124. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  125. )
  126. return(df)
  127. }
  128. # Update Gene names using the SGD gene list
  129. update_gene_names <- function(df, sgd_gene_list) {
  130. # Load SGD gene list
  131. genes <- read.delim(file = sgd_gene_list,
  132. quote = "", header = FALSE,
  133. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  134. # Create a named vector for mapping ORF to GeneName
  135. gene_map <- setNames(genes$V5, genes$V4)
  136. # Vectorized match to find the GeneName from gene_map
  137. mapped_genes <- gene_map[df$ORF]
  138. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  139. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  140. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  141. df <- df %>%
  142. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  143. return(df)
  144. }
  145. calculate_summary_stats <- function(df, variables, group_vars) {
  146. summary_stats <- df %>%
  147. group_by(across(all_of(group_vars))) %>%
  148. summarise(
  149. N = n(),
  150. across(
  151. all_of(variables),
  152. list(
  153. mean = ~mean(., na.rm = TRUE),
  154. median = ~median(., na.rm = TRUE),
  155. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  156. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  157. sd = ~sd(., na.rm = TRUE),
  158. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  159. ),
  160. .names = "{.fn}_{.col}"
  161. ),
  162. .groups = "drop"
  163. )
  164. # Create a cleaned version of df that doesn't overlap with summary_stats
  165. cleaned_df <- df %>%
  166. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  167. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  168. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  169. }
  170. calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("L", "K", "r", "AUC"),
  171. group_vars = c("OrfRep", "Gene", "num")) {
  172. # Calculate total concentration variables
  173. total_conc_num <- length(unique(df$conc_num))
  174. calculations <- df %>%
  175. group_by(OrfRep, Gene, num) %>%
  176. mutate(
  177. NG = sum(NG, na.rm = TRUE),
  178. DB = sum(DB, na.rm = TRUE),
  179. SM = sum(SM, na.rm = TRUE),
  180. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  181. # Store the background data
  182. WT_L = bg_stats$WT_L,
  183. WT_K = bg_stats$WT_K,
  184. WT_r = bg_stats$WT_r,
  185. WT_AUC = bg_stats$WT_AUC,
  186. WT_sd_L = bg_stats$WT_sd_L,
  187. WT_sd_K = bg_stats$WT_sd_K,
  188. WT_sd_r = bg_stats$WT_sd_r,
  189. WT_sd_AUC = bg_stats$WT_sd_AUC,
  190. Raw_Shift_L = first(mean_L) - bg_means$L,
  191. Raw_Shift_K = first(mean_K) - bg_means$K,
  192. Raw_Shift_r = first(mean_r) - bg_means$r,
  193. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  194. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  195. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  196. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  197. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC,
  198. Exp_L = WT_L + Raw_Shift_L,
  199. Exp_K = WT_K + Raw_Shift_K,
  200. Exp_r = WT_r + Raw_Shift_r,
  201. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  202. Delta_L = mean_L - Exp_L,
  203. Delta_K = mean_K - Exp_K,
  204. Delta_r = mean_r - Exp_r,
  205. Delta_AUC = mean_AUC - Exp_AUC,
  206. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  207. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  208. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  209. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  210. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  211. # Calculate Z-scores
  212. Zscore_L = Delta_L / WT_sd_L,
  213. Zscore_K = Delta_K / WT_sd_K,
  214. Zscore_r = Delta_r / WT_sd_r,
  215. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  216. # Fit linear models and store in list-columns
  217. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  218. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  219. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  220. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  221. # Extract coefficients using purrr::map_dbl
  222. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  223. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  224. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  225. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  226. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  227. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  228. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  229. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  230. # Calculate lm_Score_* based on coefficients
  231. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  232. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  233. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  234. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  235. # Calculate R-squared values
  236. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  237. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  238. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  239. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared),
  240. # Calculate Z_lm_* Scores
  241. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  242. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  243. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  244. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  245. ) %>%
  246. ungroup()
  247. # Summarize some of the stats
  248. interactions <- calculations %>%
  249. group_by(OrfRep, Gene, num) %>%
  250. mutate(
  251. # Calculate raw shifts
  252. Raw_Shift_L = first(Raw_Shift_L),
  253. Raw_Shift_K = first(Raw_Shift_K),
  254. Raw_Shift_r = first(Raw_Shift_r),
  255. Raw_Shift_AUC = first(Raw_Shift_AUC),
  256. # Calculate Z-shifts
  257. Z_Shift_L = first(Z_Shift_L),
  258. Z_Shift_K = first(Z_Shift_K),
  259. Z_Shift_r = first(Z_Shift_r),
  260. Z_Shift_AUC = first(Z_Shift_AUC),
  261. # Sum Z-scores
  262. Sum_Z_Score_L = sum(Zscore_L),
  263. Sum_Z_Score_K = sum(Zscore_K),
  264. Sum_Z_Score_r = sum(Zscore_r),
  265. Sum_Z_Score_AUC = sum(Zscore_AUC),
  266. # Calculate Average Z-scores
  267. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  268. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  269. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  270. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  271. ) %>%
  272. arrange(desc(Z_lm_L), desc(NG)) %>%
  273. ungroup()
  274. # Declare column order for output
  275. calculations <- calculations %>%
  276. select(
  277. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  278. "mean_L", "mean_K", "mean_r", "mean_AUC",
  279. "median_L", "median_K", "median_r", "median_AUC",
  280. "sd_L", "sd_K", "sd_r", "sd_AUC",
  281. "se_L", "se_K", "se_r", "se_AUC",
  282. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  283. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  284. "WT_L", "WT_K", "WT_r", "WT_AUC",
  285. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  286. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  287. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  288. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  289. "NG", "SM", "DB")
  290. interactions <- interactions %>%
  291. select(
  292. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  293. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  294. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  295. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  296. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  297. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  298. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  299. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  300. cleaned_df <- df %>%
  301. select(-any_of(
  302. setdiff(intersect(names(df), names(interactions)),
  303. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  304. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  305. return(list(
  306. calculations = calculations,
  307. interactions = interactions,
  308. interactions_joined = interactions_joined))
  309. }
  310. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  311. message("Generating ", filename, ".pdf and ", filename, ".html")
  312. # Prepare lists to collect plots
  313. static_plots <- list()
  314. plotly_plots <- list()
  315. for (i in seq_along(plot_configs)) {
  316. config <- plot_configs[[i]]
  317. df <- config$df
  318. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  319. if (is.null(config$color_var)) {
  320. aes(x = .data[[config$x_var]])
  321. } else {
  322. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  323. }
  324. } else if (is.null(config$color_var)) {
  325. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  326. } else {
  327. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  328. }
  329. # Start building the plot with aes_mapping
  330. plot_base <- ggplot(df, aes_mapping)
  331. # Use appropriate helper function based on plot type
  332. plot <- switch(config$plot_type,
  333. "scatter" = generate_scatter_plot(plot_base, config),
  334. "box" = generate_box_plot(plot_base, config),
  335. "density" = plot_base + geom_density(),
  336. "bar" = plot_base + geom_bar(),
  337. plot_base # default case if no type matches
  338. )
  339. # Apply additional settings
  340. if (!is.null(config$legend_position)) {
  341. plot <- plot + theme(legend.position = config$legend_position)
  342. }
  343. # Add title and labels
  344. if (!is.null(config$title)) {
  345. plot <- plot + ggtitle(config$title)
  346. }
  347. if (!is.null(config$x_label)) {
  348. plot <- plot + xlab(config$x_label)
  349. }
  350. if (!is.null(config$y_label)) {
  351. plot <- plot + ylab(config$y_label)
  352. }
  353. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  354. if (is.null(config$color_var)) {
  355. plot <- plot + scale_color_discrete(guide = "none")
  356. }
  357. # Add interactive tooltips for plotly
  358. tooltip_vars <- c()
  359. if (config$plot_type == "scatter") {
  360. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  361. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  362. } else if (!is.null(config$gene_point) && config$gene_point) {
  363. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  364. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  365. tooltip_vars <- c(config$x_var, config$y_var)
  366. }
  367. }
  368. # Convert to plotly object
  369. if (length(tooltip_vars) > 0) {
  370. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  371. } else {
  372. plotly_plot <- ggplotly(plot, tooltip = "none")
  373. }
  374. # Adjust legend position if specified
  375. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  376. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  377. }
  378. # Add plots to lists
  379. static_plots[[i]] <- plot
  380. plotly_plots[[i]] <- plotly_plot
  381. }
  382. # Save static PDF plots
  383. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  384. lapply(static_plots, print)
  385. dev.off()
  386. # Combine and save interactive HTML plots
  387. combined_plot <- subplot(
  388. plotly_plots,
  389. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  390. grid_layout$nrow
  391. } else {
  392. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  393. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  394. },
  395. margin = 0.05
  396. )
  397. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  398. }
  399. generate_scatter_plot <- function(plot, config) {
  400. shape <- if (!is.null(config$shape)) config$shape else 3
  401. size <- if (!is.null(config$size)) config$size else 0.1
  402. position <-
  403. if (!is.null(config$position) && config$position == "jitter") {
  404. position_jitter(width = 0.1, height = 0)
  405. } else {
  406. "identity"
  407. }
  408. plot <- plot + geom_point(
  409. shape = shape,
  410. size = size,
  411. position = position
  412. )
  413. if (!is.null(config$cyan_points) && config$cyan_points) {
  414. plot <- plot + geom_point(
  415. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  416. color = "cyan",
  417. shape = 3,
  418. size = 0.5
  419. )
  420. }
  421. # Add Smooth Line if specified
  422. if (!is.null(config$smooth) && config$smooth) {
  423. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  424. if (!is.null(config$lm_line)) {
  425. plot <- plot +
  426. geom_abline(
  427. intercept = config$lm_line$intercept,
  428. slope = config$lm_line$slope,
  429. color = smooth_color
  430. )
  431. } else {
  432. plot <- plot +
  433. geom_smooth(
  434. method = "lm",
  435. se = FALSE,
  436. color = smooth_color
  437. )
  438. }
  439. }
  440. # Add SD Bands if specified
  441. if (!is.null(config$sd_band)) {
  442. plot <- plot +
  443. annotate(
  444. "rect",
  445. xmin = -Inf, xmax = Inf,
  446. ymin = config$sd_band, ymax = Inf,
  447. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  448. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  449. ) +
  450. annotate(
  451. "rect",
  452. xmin = -Inf, xmax = Inf,
  453. ymin = -config$sd_band, ymax = -Inf,
  454. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  455. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  456. ) +
  457. geom_hline(
  458. yintercept = c(-config$sd_band, config$sd_band),
  459. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  460. )
  461. }
  462. # Add Rectangles if specified
  463. if (!is.null(config$rectangles)) {
  464. for (rect in config$rectangles) {
  465. plot <- plot + annotate(
  466. "rect",
  467. xmin = rect$xmin,
  468. xmax = rect$xmax,
  469. ymin = rect$ymin,
  470. ymax = rect$ymax,
  471. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  472. color = ifelse(is.null(rect$color), "black", rect$color),
  473. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  474. )
  475. }
  476. }
  477. # Add Error Bars if specified
  478. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  479. y_mean_col <- paste0("mean_", config$y_var)
  480. y_sd_col <- paste0("sd_", config$y_var)
  481. plot <- plot +
  482. geom_errorbar(
  483. aes(
  484. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  485. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  486. ),
  487. alpha = 0.3
  488. )
  489. }
  490. # Customize X-axis if specified
  491. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  492. plot <- plot +
  493. scale_x_discrete(
  494. name = config$x_label,
  495. breaks = config$x_breaks,
  496. labels = config$x_labels
  497. )
  498. }
  499. # Apply coord_cartesian if specified
  500. if (!is.null(config$coord_cartesian)) {
  501. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  502. }
  503. # Set Y-axis limits if specified
  504. if (!is.null(config$ylim_vals)) {
  505. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  506. }
  507. # Add Annotations if specified
  508. if (!is.null(config$annotations)) {
  509. for (annotation in config$annotations) {
  510. plot <- plot +
  511. annotate(
  512. "text",
  513. x = annotation$x,
  514. y = annotation$y,
  515. label = annotation$label,
  516. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  517. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  518. size = ifelse(is.null(annotation$size), 4, annotation$size),
  519. color = ifelse(is.null(annotation$color), "black", annotation$color)
  520. )
  521. }
  522. }
  523. # Add Title if specified
  524. if (!is.null(config$title)) {
  525. plot <- plot + ggtitle(config$title)
  526. }
  527. # Adjust Legend Position if specified
  528. if (!is.null(config$legend_position)) {
  529. plot <- plot + theme(legend.position = config$legend_position)
  530. }
  531. return(plot)
  532. }
  533. generate_box_plot <- function(plot, config) {
  534. plot <- plot + geom_boxplot()
  535. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  536. plot <- plot + scale_x_discrete(
  537. name = config$x_label,
  538. breaks = config$x_breaks,
  539. labels = config$x_labels
  540. )
  541. }
  542. if (!is.null(config$coord_cartesian)) {
  543. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  544. }
  545. return(plot)
  546. }
  547. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  548. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  549. plots <- list()
  550. for (var in variables) {
  551. for (stage in stages) {
  552. df_plot <- if (stage == "before") df_before else df_after
  553. # Adjust settings based on plot_type
  554. if (plot_type == "scatter") {
  555. error_bar <- TRUE
  556. position <- "jitter"
  557. } else if (plot_type == "box") {
  558. error_bar <- FALSE
  559. position <- NULL
  560. }
  561. config <- list(
  562. df = df_plot,
  563. x_var = "scan",
  564. y_var = var,
  565. plot_type = plot_type,
  566. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  567. error_bar = error_bar,
  568. color_var = "conc_num_factor",
  569. position = position
  570. )
  571. plots <- append(plots, list(config))
  572. }
  573. }
  574. return(plots)
  575. }
  576. generate_interaction_plot_configs <- function(df, variables) {
  577. configs <- list()
  578. limits_map <- list(
  579. L = c(-65, 65),
  580. K = c(-65, 65),
  581. r = c(-0.65, 0.65),
  582. AUC = c(-6500, 6500)
  583. )
  584. df_filtered <- process_data(df, variables, filter_na = TRUE, limits_map = limits_map)
  585. # Define annotation label functions
  586. generate_annotation_labels <- function(df, var, annotation_name) {
  587. switch(annotation_name,
  588. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  589. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  590. NG = paste("NG =", df$NG),
  591. DB = paste("DB =", df$DB),
  592. SM = paste("SM =", df$SM),
  593. NULL # Default case for unrecognized annotation names
  594. )
  595. }
  596. # Define annotation positions relative to the y-axis range
  597. calculate_annotation_positions <- function(y_range) {
  598. y_min <- min(y_range)
  599. y_max <- max(y_range)
  600. y_span <- y_max - y_min
  601. list(
  602. ZShift = y_max - 0.1 * y_span,
  603. lm_ZScore = y_max - 0.2 * y_span,
  604. NG = y_min + 0.2 * y_span,
  605. DB = y_min + 0.1 * y_span,
  606. SM = y_min + 0.05 * y_span
  607. )
  608. }
  609. # Create configurations for each variable
  610. for (variable in variables) {
  611. y_range <- limits_map[[variable]]
  612. annotation_positions <- calculate_annotation_positions(y_range)
  613. lm_line <- list(
  614. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  615. slope = df_filtered[[paste0("lm_slope_", variable)]]
  616. )
  617. # Determine x-axis midpoint
  618. num_levels <- length(levels(df_filtered$conc_num_factor))
  619. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  620. # Generate annotations
  621. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  622. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  623. y_pos <- annotation_positions[[annotation_name]]
  624. if (!is.null(label)) {
  625. list(x = x_pos, y = y_pos, label = label)
  626. } else {
  627. message(paste("Warning: No annotation found for", annotation_name))
  628. NULL
  629. }
  630. })
  631. # Remove NULL annotations
  632. annotations <- Filter(Negate(is.null), annotations)
  633. # Shared plot settings
  634. plot_settings <- list(
  635. df = df_filtered,
  636. x_var = "conc_num_factor",
  637. y_var = variable,
  638. ylim_vals = y_range,
  639. annotations = annotations,
  640. lm_line = lm_line,
  641. x_breaks = levels(df_filtered$conc_num_factor),
  642. x_labels = levels(df_filtered$conc_num_factor),
  643. x_label = unique(df_filtered$Drug[1]),
  644. coord_cartesian = y_range # Use the actual y-limits
  645. )
  646. # Scatter plot config
  647. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  648. plot_type = "scatter",
  649. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  650. error_bar = TRUE,
  651. position = "jitter"
  652. ))
  653. # Box plot config
  654. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  655. plot_type = "box",
  656. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  657. error_bar = FALSE
  658. ))
  659. }
  660. return(configs)
  661. }
  662. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE, overlap_color = FALSE) {
  663. sd_bands <- c(1, 2, 3)
  664. configs <- list()
  665. # SD-based plots for L and K
  666. for (variable in c("L", "K")) {
  667. if (is_lm) {
  668. rank_var <- paste0("Rank_lm_", variable)
  669. zscore_var <- paste0("Z_lm_", variable)
  670. y_label <- paste("Int Z score", variable)
  671. } else {
  672. rank_var <- paste0("Rank_", variable)
  673. zscore_var <- paste0("Avg_Zscore_", variable)
  674. y_label <- paste("Avg Z score", variable)
  675. }
  676. for (sd_band in sd_bands) {
  677. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  678. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  679. # Annotated plot configuration
  680. configs[[length(configs) + 1]] <- list(
  681. df = df_filtered,
  682. x_var = rank_var,
  683. y_var = zscore_var,
  684. plot_type = "scatter",
  685. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  686. sd_band = sd_band,
  687. fill_positive = "#542788",
  688. fill_negative = "orange",
  689. alpha_positive = 0.3,
  690. alpha_negative = 0.3,
  691. annotations = list(
  692. list(
  693. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  694. y = 10,
  695. label = paste("Deletion Enhancers =", num_enhancers),
  696. hjust = 0.5,
  697. vjust = 1
  698. ),
  699. list(
  700. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  701. y = -10,
  702. label = paste("Deletion Suppressors =", num_suppressors),
  703. hjust = 0.5,
  704. vjust = 0
  705. )
  706. ),
  707. shape = 3,
  708. size = 0.1,
  709. y_label = y_label,
  710. x_label = "Rank",
  711. legend_position = "none"
  712. )
  713. # Non-Annotated Plot Configuration
  714. configs[[length(configs) + 1]] <- list(
  715. df = df_filtered,
  716. x_var = rank_var,
  717. y_var = zscore_var,
  718. plot_type = "scatter",
  719. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  720. sd_band = sd_band,
  721. fill_positive = "#542788",
  722. fill_negative = "orange",
  723. alpha_positive = 0.3,
  724. alpha_negative = 0.3,
  725. annotations = NULL,
  726. shape = 3,
  727. size = 0.1,
  728. y_label = y_label,
  729. x_label = "Rank",
  730. legend_position = "none"
  731. )
  732. }
  733. }
  734. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  735. for (variable in variables) {
  736. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  737. title <- paste(plot_type, variable)
  738. # Define specific variables based on plot type
  739. if (plot_type == "Avg Zscore vs lm") {
  740. x_var <- paste0("Avg_Zscore_", variable)
  741. y_var <- paste0("Z_lm_", variable)
  742. rectangles <- list(
  743. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  744. fill = NA, color = "grey20", alpha = 0.1
  745. )
  746. )
  747. } else if (plot_type == "Rank Avg Zscore vs lm") {
  748. x_var <- paste0("Rank_", variable)
  749. y_var <- paste0("Rank_lm_", variable)
  750. rectangles <- NULL
  751. }
  752. # Fit linear model
  753. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_filtered)
  754. lm_summary <- summary(lm_model)
  755. # Extract intercept and slope from the model coefficients
  756. intercept <- coef(lm_model)[1]
  757. slope <- coef(lm_model)[2]
  758. configs[[length(configs) + 1]] <- list(
  759. df = df_filtered,
  760. x_var = x_var,
  761. y_var = y_var,
  762. plot_type = "scatter",
  763. title = title,
  764. annotations = list(
  765. list(
  766. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  767. y = 10,
  768. label = paste("Deletion Enhancers =", num_enhancers),
  769. hjust = 0.5,
  770. vjust = 1
  771. ),
  772. list(
  773. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  774. y = -10,
  775. label = paste("Deletion Suppressors =", num_suppressors),
  776. hjust = 0.5,
  777. vjust = 0
  778. )
  779. ),
  780. shape = 3,
  781. size = 0.1,
  782. smooth = TRUE,
  783. smooth_color = "black",
  784. lm_line = list(intercept = intercept, slope = slope),
  785. legend_position = "right",
  786. color_var = if (overlap_color) "Overlap" else NULL,
  787. x_label = x_var,
  788. y_label = y_var,
  789. rectangles = rectangles
  790. )
  791. }
  792. }
  793. return(configs)
  794. }
  795. generate_correlation_plot_configs <- function(df) {
  796. # Define relationships for plotting
  797. relationships <- list(
  798. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  799. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  800. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  801. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  802. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  803. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  804. )
  805. configs <- list()
  806. for (rel in relationships) {
  807. # Fit linear model
  808. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  809. lm_summary <- summary(lm_model)
  810. # Construct plot configuration
  811. config <- list(
  812. df = df,
  813. x_var = rel$x,
  814. y_var = rel$y,
  815. plot_type = "scatter",
  816. title = rel$label,
  817. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  818. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  819. annotations = list(
  820. list(
  821. x = Inf,
  822. y = Inf,
  823. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  824. hjust = 1.1,
  825. vjust = 2,
  826. size = 4,
  827. color = "black"
  828. )
  829. ),
  830. smooth = TRUE,
  831. smooth_color = "tomato3",
  832. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  833. legend_position = "right",
  834. shape = 3,
  835. size = 0.5,
  836. color_var = "Overlap",
  837. rectangles = list(
  838. list(
  839. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  840. fill = NA, color = "grey20", alpha = 0.1
  841. )
  842. ),
  843. cyan_points = TRUE
  844. )
  845. configs[[length(configs) + 1]] <- config
  846. }
  847. return(configs)
  848. }
  849. process_data <- function(df, variables, filter_nf = FALSE, filter_na = FALSE, adjust = FALSE,
  850. rank = FALSE, limits_map = NULL) {
  851. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  852. z_lm_cols <- paste0("Z_lm_", variables)
  853. rank_avg_zscore_cols <- paste0("Rank_", variables)
  854. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  855. if (filter_nf) {
  856. message("Filtering non-finite values")
  857. df <- df %>%
  858. filter(if_all(all_of(variables), ~ is.finite(.)))
  859. }
  860. if (filter_na) {
  861. message("Filtering NA values")
  862. df <- df %>%
  863. filter(if_all(all_of(variables), ~ !is.na(.)))
  864. }
  865. if (!is.null(limits_map)) {
  866. message("Filtering data outside y-limits (for plotting)")
  867. for (variable in names(limits_map)) {
  868. if (variable %in% variables) {
  869. ylim_vals <- limits_map[[variable]]
  870. df <- df %>%
  871. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  872. }
  873. }
  874. }
  875. if (adjust) {
  876. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  877. df <- df %>%
  878. mutate(
  879. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  880. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  881. )
  882. }
  883. # Calculate and add rank columns
  884. # TODO probably should be moved to separate function
  885. if (rank) {
  886. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  887. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  888. df <- df %>%
  889. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  890. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  891. df <- df %>%
  892. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  893. }
  894. return(df)
  895. }
  896. main <- function() {
  897. lapply(names(args$experiments), function(exp_name) {
  898. exp <- args$experiments[[exp_name]]
  899. exp_path <- exp$path
  900. exp_sd <- exp$sd
  901. out_dir <- file.path(exp_path, "zscores")
  902. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  903. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  904. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  905. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  906. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  907. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  908. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  909. message("Loading and filtering data for experiment: ", exp_name)
  910. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  911. update_gene_names(args$sgd_gene_list) %>%
  912. as_tibble()
  913. # Filter rows above delta background tolerance
  914. df_above_tolerance <- df %>% filter(DB == 1)
  915. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  916. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  917. # Save some constants
  918. max_conc <- max(as.numeric(df$conc_num_factor))
  919. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  920. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  921. message("Calculating summary statistics before quality control")
  922. df_stats <- calculate_summary_stats(
  923. df = df,
  924. variables = summary_vars,
  925. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  926. message("Filtering non-finite data")
  927. # df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
  928. message("Calculating summary statistics after quality control")
  929. ss <- calculate_summary_stats(
  930. df = df_na,
  931. variables = summary_vars,
  932. group_vars = c("conc_num", "conc_num_factor"))
  933. df_na_ss <- ss$summary_stats
  934. df_na_stats <- ss$df_with_stats
  935. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  936. # df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
  937. # Pull the background means and standard deviations from zero concentration
  938. bg_stats <- df_na_stats %>%
  939. filter(conc_num == 0) %>%
  940. summarise(
  941. WT_L = first(mean_L),
  942. WT_K = first(mean_K),
  943. WT_r = first(mean_r),
  944. WT_AUC = first(mean_AUC),
  945. WT_sd_L = first(sd_L),
  946. WT_sd_K = first(sd_K),
  947. WT_sd_r = first(sd_r),
  948. WT_sd_AUC = first(sd_AUC)
  949. )
  950. message("Calculating summary statistics after quality control excluding zero values")
  951. ss <- calculate_summary_stats(
  952. df = df_no_zeros,
  953. variables = summary_vars,
  954. group_vars = c("conc_num", "conc_num_factor"))
  955. df_no_zeros_stats <- ss$df_with_stats
  956. # df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
  957. message("Filtering by 2SD of K")
  958. df_na_within_2sd_k <- df_na_stats %>%
  959. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  960. df_na_outside_2sd_k <- df_na_stats %>%
  961. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  962. message("Calculating summary statistics for L within 2SD of K")
  963. # TODO We're omitting the original z_max calculation, not sure if needed?
  964. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  965. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  966. write.csv(ss$summary_stats,
  967. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  968. row.names = FALSE)
  969. message("Calculating summary statistics for L outside 2SD of K")
  970. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  971. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  972. write.csv(ss$summary_stats,
  973. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  974. row.names = FALSE)
  975. # Each plots list corresponds to a file
  976. l_vs_k_plot_configs <- list(
  977. list(
  978. df = df,
  979. x_var = "L",
  980. y_var = "K",
  981. plot_type = "scatter",
  982. delta_bg_point = TRUE,
  983. title = "Raw L vs K before quality control",
  984. color_var = "conc_num_factor",
  985. error_bar = FALSE,
  986. legend_position = "right"
  987. )
  988. )
  989. frequency_delta_bg_plot_configs <- list(
  990. list(
  991. df = df_stats,
  992. x_var = "delta_bg",
  993. y_var = NULL,
  994. plot_type = "density",
  995. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  996. color_var = "conc_num_factor",
  997. x_label = "Delta Background",
  998. y_label = "Density",
  999. error_bar = FALSE,
  1000. legend_position = "right"),
  1001. list(
  1002. df = df_stats,
  1003. x_var = "delta_bg",
  1004. y_var = NULL,
  1005. plot_type = "bar",
  1006. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1007. color_var = "conc_num_factor",
  1008. x_label = "Delta Background",
  1009. y_label = "Count",
  1010. error_bar = FALSE,
  1011. legend_position = "right")
  1012. )
  1013. above_threshold_plot_configs <- list(
  1014. list(
  1015. df = df_above_tolerance,
  1016. x_var = "L",
  1017. y_var = "K",
  1018. plot_type = "scatter",
  1019. delta_bg_point = TRUE,
  1020. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1021. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1022. color_var = "conc_num_factor",
  1023. position = "jitter",
  1024. annotations = list(
  1025. list(
  1026. x = l_half_median,
  1027. y = k_half_median,
  1028. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1029. )
  1030. ),
  1031. error_bar = FALSE,
  1032. legend_position = "right"
  1033. )
  1034. )
  1035. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1036. variables = summary_vars,
  1037. df_before = df_stats,
  1038. df_after = df_na_stats,
  1039. )
  1040. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1041. variables = summary_vars,
  1042. df_before = df_stats,
  1043. df_after = df_na_stats,
  1044. plot_type = "box"
  1045. )
  1046. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1047. variables = summary_vars,
  1048. stages = c("after"), # Only after QC
  1049. df_after = df_no_zeros_stats,
  1050. )
  1051. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1052. variables = summary_vars,
  1053. stages = c("after"), # Only after QC
  1054. df_after = df_no_zeros_stats,
  1055. plot_type = "box"
  1056. )
  1057. l_outside_2sd_k_plot_configs <- list(
  1058. list(
  1059. df = df_na_l_outside_2sd_k_stats,
  1060. x_var = "L",
  1061. y_var = "K",
  1062. plot_type = "scatter",
  1063. delta_bg_point = TRUE,
  1064. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1065. color_var = "conc_num_factor",
  1066. position = "jitter",
  1067. legend_position = "right"
  1068. )
  1069. )
  1070. delta_bg_outside_2sd_k_plot_configs <- list(
  1071. list(
  1072. df = df_na_l_outside_2sd_k_stats,
  1073. x_var = "delta_bg",
  1074. y_var = "K",
  1075. plot_type = "scatter",
  1076. gene_point = TRUE,
  1077. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1078. color_var = "conc_num_factor",
  1079. position = "jitter",
  1080. legend_position = "right"
  1081. )
  1082. )
  1083. message("Generating quality control plots")
  1084. # TODO trying out some parallelization
  1085. # future::plan(future::multicore, workers = parallel::detectCores())
  1086. future::plan(future::multisession, workers = 3)
  1087. plot_configs <- list(
  1088. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1089. plot_configs = l_vs_k_plot_configs),
  1090. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1091. plot_configs = frequency_delta_bg_plot_configs),
  1092. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1093. plot_configs = above_threshold_plot_configs),
  1094. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1095. plot_configs = plate_analysis_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1097. plot_configs = plate_analysis_boxplot_configs),
  1098. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1099. plot_configs = plate_analysis_no_zeros_plot_configs),
  1100. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1101. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1102. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1103. plot_configs = l_outside_2sd_k_plot_configs),
  1104. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1105. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1106. )
  1107. # Generating quality control plots in parallel
  1108. # furrr::future_map(plot_configs, function(config) {
  1109. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1110. # }, .options = furrr_options(seed = TRUE))
  1111. # Process background strains
  1112. bg_strains <- c("YDL227C")
  1113. lapply(bg_strains, function(strain) {
  1114. message("Processing background strain: ", strain)
  1115. # Handle missing data by setting zero values to NA
  1116. # and then removing any rows with NA in L col
  1117. df_bg <- df_na %>%
  1118. filter(OrfRep == strain) %>%
  1119. mutate(
  1120. L = if_else(L == 0, NA, L),
  1121. K = if_else(K == 0, NA, K),
  1122. r = if_else(r == 0, NA, r),
  1123. AUC = if_else(AUC == 0, NA, AUC)
  1124. ) %>%
  1125. filter(!is.na(L))
  1126. # Recalculate summary statistics for the background strain
  1127. message("Calculating summary statistics for background strain")
  1128. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1129. summary_stats_bg <- ss_bg$summary_stats
  1130. write.csv(summary_stats_bg,
  1131. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1132. row.names = FALSE)
  1133. # Filter reference and deletion strains
  1134. df_reference <- df_na_stats %>% # formerly X2_RF
  1135. filter(OrfRep == strain) %>%
  1136. mutate(SM = 0)
  1137. df_deletion <- df_na_stats %>% # formerly X2
  1138. filter(OrfRep != strain) %>%
  1139. mutate(SM = 0)
  1140. # Set the missing values to the highest theoretical value at each drug conc for L
  1141. # Leave other values as 0 for the max/min
  1142. reference_strain <- df_reference %>%
  1143. group_by(conc_num, conc_num_factor) %>%
  1144. mutate(
  1145. max_l_theoretical = max(max_L, na.rm = TRUE),
  1146. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1147. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1148. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1149. ungroup()
  1150. # Ditto for deletion strains
  1151. deletion_strains <- df_deletion %>%
  1152. group_by(conc_num, conc_num_factor) %>%
  1153. mutate(
  1154. max_l_theoretical = max(max_L, na.rm = TRUE),
  1155. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1156. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1157. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1158. ungroup()
  1159. message("Calculating reference strain interaction scores")
  1160. df_reference_stats <- calculate_summary_stats(
  1161. df = reference_strain,
  1162. variables = interaction_vars,
  1163. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1164. )$df_with_stats
  1165. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1166. zscores_calculations_reference <- reference_results$calculations
  1167. zscores_interactions_reference <- reference_results$interactions
  1168. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1169. message("Calculating deletion strain(s) interactions scores")
  1170. df_deletion_stats <- calculate_summary_stats(
  1171. df = deletion_strains,
  1172. variables = interaction_vars,
  1173. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1174. )$df_with_stats
  1175. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1176. zscores_calculations <- deletion_results$calculations
  1177. zscores_interactions <- deletion_results$interactions
  1178. zscores_interactions_joined <- deletion_results$interactions_joined
  1179. # Writing Z-Scores to file
  1180. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1181. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1182. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1183. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1184. # Create interaction plots
  1185. message("Generating reference interaction plots")
  1186. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1187. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1188. message("Generating deletion interaction plots")
  1189. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1190. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1191. # Define conditions for enhancers and suppressors
  1192. # TODO Add to study config?
  1193. threshold <- 2
  1194. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1195. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1196. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1197. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1198. # Subset data
  1199. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1200. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1201. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1202. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1203. # Save enhancers and suppressors
  1204. message("Writing enhancer/suppressor csv files")
  1205. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1206. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1207. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1208. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1209. # Combine conditions for enhancers and suppressors
  1210. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1211. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1212. # Save combined enhancers and suppressors
  1213. write.csv(enhancers_and_suppressors_L,
  1214. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1215. write.csv(enhancers_and_suppressors_K,
  1216. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1217. # Handle linear model based enhancers and suppressors
  1218. lm_threshold <- 2
  1219. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1220. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1221. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1222. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1223. # Save linear model based enhancers and suppressors
  1224. message("Writing linear model enhancer/suppressor csv files")
  1225. write.csv(enhancers_lm_L,
  1226. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1227. write.csv(suppressors_lm_L,
  1228. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1229. write.csv(enhancers_lm_K,
  1230. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1231. write.csv(suppressors_lm_K,
  1232. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1233. message("Generating rank plots")
  1234. # Formerly InteractionScores_AdjustMissing
  1235. zscores_interactions_joined_ranked <- process_data(
  1236. df = zscores_interactions_joined,
  1237. variables = interaction_vars,
  1238. adjust = TRUE,
  1239. rank = TRUE)
  1240. rank_plot_configs <- generate_rank_plot_configs(
  1241. df = zscores_interactions_joined_ranked,
  1242. variables = interaction_vars,
  1243. is_lm = FALSE
  1244. )
  1245. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots",
  1246. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1247. message("Generating ranked linear model plots")
  1248. rank_lm_plot_configs <- generate_rank_plot_configs(
  1249. df = zscores_interactions_joined_ranked,
  1250. variables = interaction_vars,
  1251. is_lm = TRUE
  1252. )
  1253. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots_lm",
  1254. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1255. message("Filtering and reranking plots")
  1256. # Formerly X_NArm
  1257. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1258. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1259. mutate(
  1260. Overlap = case_when(
  1261. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1262. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1263. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1264. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1265. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1266. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1267. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1268. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1269. TRUE ~ "No Effect"
  1270. ),
  1271. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1272. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1273. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1274. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1275. )
  1276. # Re-rank
  1277. zscores_interactions_filtered_ranked <- process_data(
  1278. df = zscores_interactions_filtered,
  1279. variables = interaction_vars,
  1280. rank = TRUE
  1281. )
  1282. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1283. df = zscores_interactions_filtered_ranked,
  1284. variables = interaction_vars,
  1285. is_lm = FALSE,
  1286. overlap_color = TRUE
  1287. )
  1288. message("Generating filtered ranked plots")
  1289. generate_and_save_plots(
  1290. out_dir = out_dir,
  1291. filename = "RankPlots_na_rm",
  1292. plot_configs = rank_plot_filtered_configs,
  1293. grid_layout = list(ncol = 3, nrow = 2))
  1294. message("Generating filtered ranked linear model plots")
  1295. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1296. df = zscores_interactions_filtered_ranked,
  1297. variables = interaction_vars,
  1298. is_lm = TRUE,
  1299. overlap_color = TRUE
  1300. )
  1301. generate_and_save_plots(
  1302. out_dir = out_dir,
  1303. filename = "RankPlots_lm_na_rm",
  1304. plot_configs = rank_plot_lm_filtered_configs,
  1305. grid_layout = list(ncol = 3, nrow = 2))
  1306. message("Generating correlation plots")
  1307. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1308. generate_and_save_plots(
  1309. out_dir = out_dir,
  1310. filename = "Avg_Zscore_vs_lm_NA_rm",
  1311. plot_configs = correlation_plot_configs,
  1312. grid_layout = list(ncol = 2, nrow = 2))
  1313. })
  1314. })
  1315. }
  1316. main()