calculate_interaction_zscores.R 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. # Calculate WT statistics from df_bg
  183. wt_stats <- df_bg %>%
  184. filter(conc_num == 0) %>%
  185. summarise(
  186. WT_L = mean(mean_L, na.rm = TRUE),
  187. WT_sd_L = mean(sd_L, na.rm = TRUE),
  188. WT_K = mean(mean_K, na.rm = TRUE),
  189. WT_sd_K = mean(sd_K, na.rm = TRUE),
  190. WT_r = mean(mean_r, na.rm = TRUE),
  191. WT_sd_r = mean(sd_r, na.rm = TRUE),
  192. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  193. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  194. )
  195. # Add WT statistics to df
  196. df <- df %>%
  197. mutate(
  198. WT_L = wt_stats$WT_L,
  199. WT_sd_L = wt_stats$WT_sd_L,
  200. WT_K = wt_stats$WT_K,
  201. WT_sd_K = wt_stats$WT_sd_K,
  202. WT_r = wt_stats$WT_r,
  203. WT_sd_r = wt_stats$WT_sd_r,
  204. WT_AUC = wt_stats$WT_AUC,
  205. WT_sd_AUC = wt_stats$WT_sd_AUC
  206. )
  207. # Compute mean values at zero concentration
  208. mean_L_zero_df <- df %>%
  209. filter(conc_num == 0) %>%
  210. group_by(across(all_of(group_vars))) %>%
  211. summarise(
  212. mean_L_zero = mean(mean_L, na.rm = TRUE),
  213. mean_K_zero = mean(mean_K, na.rm = TRUE),
  214. mean_r_zero = mean(mean_r, na.rm = TRUE),
  215. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  216. .groups = "drop"
  217. )
  218. # Join mean_L_zero_df to df
  219. df <- df %>%
  220. left_join(mean_L_zero_df, by = group_vars)
  221. # Calculate Raw Shifts and Z Shifts
  222. df <- df %>%
  223. mutate(
  224. Raw_Shift_L = mean_L_zero - WT_L,
  225. Raw_Shift_K = mean_K_zero - WT_K,
  226. Raw_Shift_r = mean_r_zero - WT_r,
  227. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  228. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  229. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  230. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  231. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  232. )
  233. calculations <- df %>%
  234. group_by(across(all_of(group_vars))) %>%
  235. mutate(
  236. NG_sum = sum(NG, na.rm = TRUE),
  237. DB_sum = sum(DB, na.rm = TRUE),
  238. SM_sum = sum(SM, na.rm = TRUE),
  239. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  240. # Expected values
  241. Exp_L = WT_L + Raw_Shift_L,
  242. Exp_K = WT_K + Raw_Shift_K,
  243. Exp_r = WT_r + Raw_Shift_r,
  244. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  245. # Deltas
  246. Delta_L = mean_L - Exp_L,
  247. Delta_K = mean_K - Exp_K,
  248. Delta_r = mean_r - Exp_r,
  249. Delta_AUC = mean_AUC - Exp_AUC,
  250. # Adjust deltas for NG and SM
  251. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  252. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  253. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  254. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  255. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  256. # Calculate Z-scores
  257. Zscore_L = Delta_L / WT_sd_L,
  258. Zscore_K = Delta_K / WT_sd_K,
  259. Zscore_r = Delta_r / WT_sd_r,
  260. Zscore_AUC = Delta_AUC / WT_sd_AUC
  261. ) %>%
  262. group_modify(~ {
  263. # Perform linear models only if there are enough unique conc_num_factor levels
  264. if (length(unique(.x$conc_num_factor)) > 1) {
  265. # Filter and calculate each lm() separately with individual checks for NAs
  266. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  267. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  268. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  270. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  271. .x %>%
  272. mutate(
  273. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  274. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  275. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  276. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  277. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  278. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  279. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  280. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  281. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  282. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  283. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  284. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  285. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  286. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  287. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  288. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  289. )
  290. } else {
  291. # If not enough conc_num_factor levels, set lm-related values to NA
  292. .x %>%
  293. mutate(
  294. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  295. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  296. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  297. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  298. )
  299. }
  300. }) %>%
  301. ungroup()
  302. # For interaction plot error bars
  303. delta_means <- calculations %>%
  304. group_by(across(all_of(group_vars))) %>%
  305. summarise(
  306. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  307. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  308. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  309. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  310. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  311. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  312. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  313. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  314. .groups = "drop"
  315. )
  316. calculations <- calculations %>%
  317. left_join(delta_means, by = group_vars)
  318. # Summary statistics for lm scores
  319. lm_means_sds <- calculations %>%
  320. summarise(
  321. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  322. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  323. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  324. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  325. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  326. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  327. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  328. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  329. .groups = "drop"
  330. )
  331. # Add lm score means and standard deviations to calculations
  332. calculations <- calculations %>%
  333. mutate(
  334. lm_mean_L = lm_means_sds$lm_mean_L,
  335. lm_sd_L = lm_means_sds$lm_sd_L,
  336. lm_mean_K = lm_means_sds$lm_mean_K,
  337. lm_sd_K = lm_means_sds$lm_sd_K,
  338. lm_mean_r = lm_means_sds$lm_mean_r,
  339. lm_sd_r = lm_means_sds$lm_sd_r,
  340. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  341. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  342. )
  343. # Calculate Z-lm scores
  344. calculations <- calculations %>%
  345. mutate(
  346. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  347. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  348. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  349. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  350. )
  351. # Build summary stats (interactions)
  352. interactions <- calculations %>%
  353. group_by(across(all_of(group_vars))) %>%
  354. summarise(
  355. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  356. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  357. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  358. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  359. # Interaction Z-scores
  360. Z_lm_L = first(Z_lm_L),
  361. Z_lm_K = first(Z_lm_K),
  362. Z_lm_r = first(Z_lm_r),
  363. Z_lm_AUC = first(Z_lm_AUC),
  364. # Raw Shifts
  365. Raw_Shift_L = first(Raw_Shift_L),
  366. Raw_Shift_K = first(Raw_Shift_K),
  367. Raw_Shift_r = first(Raw_Shift_r),
  368. Raw_Shift_AUC = first(Raw_Shift_AUC),
  369. # Z Shifts
  370. Z_Shift_L = first(Z_Shift_L),
  371. Z_Shift_K = first(Z_Shift_K),
  372. Z_Shift_r = first(Z_Shift_r),
  373. Z_Shift_AUC = first(Z_Shift_AUC),
  374. # R Squared values
  375. R_Squared_L = first(R_Squared_L),
  376. R_Squared_K = first(R_Squared_K),
  377. R_Squared_r = first(R_Squared_r),
  378. R_Squared_AUC = first(R_Squared_AUC),
  379. # NG, DB, SM values
  380. NG = first(NG),
  381. DB = first(DB),
  382. SM = first(SM),
  383. .groups = "drop"
  384. )
  385. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  386. interactions <- interactions %>%
  387. filter(!is.na(Z_lm_L)) %>%
  388. mutate(
  389. Overlap = case_when(
  390. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  391. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  392. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  393. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  394. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  395. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  396. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  397. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  398. TRUE ~ "No Effect"
  399. ),
  400. # For correlations
  401. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  402. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  403. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  404. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  405. )
  406. # Creating the final calculations and interactions dataframes with only required columns for csv output
  407. calculations_df <- calculations %>%
  408. select(
  409. all_of(group_vars),
  410. conc_num, conc_num_factor, conc_num_factor_factor, N,
  411. mean_L, median_L, sd_L, se_L,
  412. mean_K, median_K, sd_K, se_K,
  413. mean_r, median_r, sd_r, se_r,
  414. mean_AUC, median_AUC, sd_AUC, se_AUC,
  415. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  416. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  417. WT_L, WT_K, WT_r, WT_AUC,
  418. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  419. Exp_L, Exp_K, Exp_r, Exp_AUC,
  420. Delta_L, Delta_K, Delta_r, Delta_AUC,
  421. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  422. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  423. )
  424. interactions_df <- interactions %>%
  425. select(
  426. all_of(group_vars),
  427. NG, DB, SM,
  428. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  429. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  430. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  431. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  432. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  433. Overlap
  434. )
  435. # Join calculations and interactions to avoid dimension mismatch
  436. calculations_no_overlap <- calculations %>%
  437. select(-any_of(c("DB", "NG", "SM",
  438. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  439. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  440. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  441. full_data <- calculations_no_overlap %>%
  442. left_join(interactions_df, by = group_vars)
  443. # Return final dataframes
  444. return(list(
  445. calculations = calculations_df,
  446. interactions = interactions_df,
  447. full_data = full_data
  448. ))
  449. }
  450. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  451. message("Generating ", filename, ".pdf and ", filename, ".html")
  452. # Check if we're dealing with multiple plot groups
  453. plot_groups <- if ("plots" %in% names(plot_configs)) {
  454. list(plot_configs) # Single group
  455. } else {
  456. plot_configs # Multiple groups
  457. }
  458. # Open the PDF device once for all plots
  459. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  460. # Loop through each plot group
  461. for (group in plot_groups) {
  462. static_plots <- list()
  463. plotly_plots <- list()
  464. # Retrieve grid layout if it exists, otherwise skip
  465. grid_layout <- group$grid_layout
  466. plots <- group$plots
  467. # Only handle grid layout if it exists
  468. if (!is.null(grid_layout)) {
  469. # Set grid_ncol to 1 if not specified
  470. if (is.null(grid_layout$ncol)) {
  471. grid_layout$ncol <- 1
  472. }
  473. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  474. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  475. num_plots <- length(plots)
  476. nrow <- ceiling(num_plots / grid_layout$ncol)
  477. message("No nrow provided, automatically using nrow = ", nrow)
  478. grid_layout$nrow <- nrow
  479. }
  480. }
  481. for (i in seq_along(plots)) {
  482. config <- plots[[i]]
  483. df <- config$df
  484. # Filter points outside of y-limits if specified
  485. if (!is.null(config$ylim_vals)) {
  486. out_of_bounds_df <- df %>%
  487. filter(
  488. is.na(.data[[config$y_var]]) |
  489. .data[[config$y_var]] < config$ylim_vals[1] |
  490. .data[[config$y_var]] > config$ylim_vals[2]
  491. )
  492. # Print rows being filtered out
  493. if (nrow(out_of_bounds_df) > 0) {
  494. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  495. # print(out_of_bounds_df)
  496. }
  497. # Filter the valid data for plotting
  498. df <- df %>%
  499. filter(
  500. !is.na(.data[[config$y_var]]) &
  501. .data[[config$y_var]] >= config$ylim_vals[1] &
  502. .data[[config$y_var]] <= config$ylim_vals[2]
  503. )
  504. }
  505. # Set up aes mapping based on plot type
  506. aes_mapping <- if (config$plot_type == "bar") {
  507. if (!is.null(config$color_var)) {
  508. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  509. } else {
  510. aes(x = .data[[config$x_var]])
  511. }
  512. } else if (config$plot_type == "density") {
  513. if (!is.null(config$color_var)) {
  514. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  515. } else {
  516. aes(x = .data[[config$x_var]])
  517. }
  518. } else {
  519. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  520. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  521. } else if (!is.null(config$y_var)) {
  522. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  523. } else {
  524. aes(x = .data[[config$x_var]])
  525. }
  526. }
  527. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  528. # Add appropriate plot layer based on plot type
  529. plot <- switch(config$plot_type,
  530. "scatter" = generate_scatter_plot(plot, config),
  531. "box" = generate_boxplot(plot, config),
  532. "density" = plot + geom_density(),
  533. "bar" = plot + geom_bar(),
  534. plot # default (unused)
  535. )
  536. # Add labels and title
  537. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  538. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  539. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  540. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  541. # Add annotations if specified
  542. if (!is.null(config$annotations)) {
  543. for (annotation in config$annotations) {
  544. plot <- plot +
  545. annotate(
  546. "text",
  547. x = ifelse(is.null(annotation$x), 0, annotation$x),
  548. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  549. label = annotation$label,
  550. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  551. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  552. size = ifelse(is.null(annotation$size), 3, annotation$size),
  553. color = ifelse(is.null(annotation$color), "black", annotation$color)
  554. )
  555. }
  556. }
  557. # Add error bars if specified
  558. if (!is.null(config$error_bar) && config$error_bar) {
  559. y_mean_col <- paste0("mean_", config$y_var)
  560. y_sd_col <- paste0("sd_", config$y_var)
  561. # If color_var is provided and no fixed error bar color is set, use aes() to map color dynamically
  562. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  563. plot <- plot + geom_errorbar(
  564. aes(
  565. x = .data[[config$x_var]],
  566. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  567. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  568. color = .data[[config$color_var]] # Dynamic color from the data
  569. )
  570. )
  571. } else {
  572. # If a fixed error bar color is set, use it outside aes
  573. plot <- plot + geom_errorbar(
  574. aes(
  575. x = .data[[config$x_var]],
  576. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  577. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  578. ),
  579. color = config$error_bar_params$color # Fixed color
  580. )
  581. }
  582. }
  583. # Convert ggplot to plotly for interactive version
  584. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  585. # Store both static and interactive versions
  586. static_plots[[i]] <- plot
  587. plotly_plots[[i]] <- plotly_plot
  588. }
  589. # Print the plots in the current group to the PDF
  590. if (is.null(grid_layout)) {
  591. # Print each plot individually on separate pages if no grid layout is specified
  592. for (plot in static_plots) {
  593. print(plot)
  594. }
  595. } else {
  596. # Arrange plots in grid layout on a single page
  597. grid.arrange(
  598. grobs = static_plots,
  599. ncol = grid_layout$ncol,
  600. nrow = grid_layout$nrow
  601. )
  602. grid.newpage()
  603. }
  604. }
  605. # Close the PDF device after all plots are done
  606. dev.off()
  607. # Save HTML file with interactive plots if needed
  608. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  609. message("Saving combined HTML file: ", out_html_file)
  610. htmltools::save_html(
  611. htmltools::tagList(plotly_plots),
  612. file = out_html_file
  613. )
  614. }
  615. generate_scatter_plot <- function(plot, config) {
  616. # Define the points
  617. shape <- if (!is.null(config$shape)) config$shape else 3
  618. size <- if (!is.null(config$size)) config$size else 1.5
  619. position <-
  620. if (!is.null(config$position) && config$position == "jitter") {
  621. position_jitter(width = 0.4, height = 0.1)
  622. } else {
  623. "identity"
  624. }
  625. plot <- plot + geom_point(
  626. shape = shape,
  627. size = size,
  628. position = position
  629. )
  630. if (!is.null(config$cyan_points) && config$cyan_points) {
  631. plot <- plot + geom_point(
  632. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  633. color = "cyan",
  634. shape = 3,
  635. size = 0.5
  636. )
  637. }
  638. # Add Smooth Line if specified
  639. if (!is.null(config$smooth) && config$smooth) {
  640. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  641. if (!is.null(config$lm_line)) {
  642. plot <- plot +
  643. geom_abline(
  644. intercept = config$lm_line$intercept,
  645. slope = config$lm_line$slope,
  646. color = smooth_color
  647. )
  648. } else {
  649. plot <- plot +
  650. geom_smooth(
  651. method = "lm",
  652. se = FALSE,
  653. color = smooth_color
  654. )
  655. }
  656. }
  657. # Add SD Bands if specified
  658. if (!is.null(config$sd_band)) {
  659. plot <- plot +
  660. annotate(
  661. "rect",
  662. xmin = -Inf, xmax = Inf,
  663. ymin = config$sd_band, ymax = Inf,
  664. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  665. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  666. ) +
  667. annotate(
  668. "rect",
  669. xmin = -Inf, xmax = Inf,
  670. ymin = -config$sd_band, ymax = -Inf,
  671. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  672. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  673. ) +
  674. geom_hline(
  675. yintercept = c(-config$sd_band, config$sd_band),
  676. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  677. )
  678. }
  679. # Add Rectangles if specified
  680. if (!is.null(config$rectangles)) {
  681. for (rect in config$rectangles) {
  682. plot <- plot + annotate(
  683. "rect",
  684. xmin = rect$xmin,
  685. xmax = rect$xmax,
  686. ymin = rect$ymin,
  687. ymax = rect$ymax,
  688. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  689. color = ifelse(is.null(rect$color), "black", rect$color),
  690. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  691. )
  692. }
  693. }
  694. # Customize X-axis if specified
  695. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  696. # Check if x_var is factor or character (for discrete x-axis)
  697. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  698. plot <- plot +
  699. scale_x_discrete(
  700. name = config$x_label,
  701. breaks = config$x_breaks,
  702. labels = config$x_labels
  703. )
  704. } else {
  705. plot <- plot +
  706. scale_x_continuous(
  707. name = config$x_label,
  708. breaks = config$x_breaks,
  709. labels = config$x_labels
  710. )
  711. }
  712. }
  713. # Set Y-axis limits if specified
  714. if (!is.null(config$ylim_vals)) {
  715. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  716. }
  717. return(plot)
  718. }
  719. generate_boxplot <- function(plot, config) {
  720. # Convert x_var to a factor within aes mapping
  721. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  722. # Customize X-axis if specified
  723. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  724. # Check if x_var is factor or character (for discrete x-axis)
  725. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  726. plot <- plot +
  727. scale_x_discrete(
  728. name = config$x_label,
  729. breaks = config$x_breaks,
  730. labels = config$x_labels
  731. )
  732. } else {
  733. plot <- plot +
  734. scale_x_continuous(
  735. name = config$x_label,
  736. breaks = config$x_breaks,
  737. labels = config$x_labels
  738. )
  739. }
  740. }
  741. return(plot)
  742. }
  743. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  744. plot_type = "scatter", stages = c("before", "after")) {
  745. plot_configs <- list()
  746. for (var in variables) {
  747. for (stage in stages) {
  748. df_plot <- if (stage == "before") df_before else df_after
  749. # Check for non-finite values in the y-variable
  750. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  751. # Adjust settings based on plot_type
  752. plot_config <- list(
  753. df = df_plot_filtered,
  754. x_var = "scan",
  755. y_var = var,
  756. plot_type = plot_type,
  757. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  758. color_var = "conc_num_factor_factor",
  759. size = 0.2,
  760. error_bar = (plot_type == "scatter"),
  761. legend_position = "bottom"
  762. )
  763. # Add config to plots list
  764. plot_configs <- append(plot_configs, list(plot_config))
  765. }
  766. }
  767. return(list(plots = plot_configs))
  768. }
  769. generate_interaction_plot_configs <- function(df, type) {
  770. # Define the y-limits for the plots
  771. limits_map <- list(
  772. L = c(0, 130),
  773. K = c(-20, 160),
  774. r = c(0, 1),
  775. AUC = c(0, 12500)
  776. )
  777. stats_plot_configs <- list()
  778. stats_boxplot_configs <- list()
  779. delta_plot_configs <- list()
  780. # Overall statistics plots
  781. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  782. for (plot_type in c("scatter", "box")) {
  783. for (var in names(limits_map)) {
  784. y_limits <- limits_map[[var]]
  785. y_span <- y_limits[2] - y_limits[1]
  786. # Common plot configuration
  787. plot_config <- list(
  788. df = df,
  789. plot_type = plot_type,
  790. x_var = "conc_num_factor_factor",
  791. y_var = var,
  792. shape = 16,
  793. x_label = unique(df$Drug)[1],
  794. coord_cartesian = y_limits,
  795. x_breaks = unique(df$conc_num_factor_factor),
  796. x_labels = as.character(unique(df$conc_num))
  797. )
  798. # Add specific configurations for scatter and box plots
  799. if (plot_type == "scatter") {
  800. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  801. plot_config$error_bar <- TRUE
  802. plot_config$error_bar_params <- list(
  803. color = "red",
  804. center_point = TRUE
  805. )
  806. plot_config$position <- "jitter"
  807. annotations <- list(
  808. list(x = 0.25, y = y_limits[1] + 0.1 * y_span, label = " NG:"),
  809. list(x = 0.25, y = y_limits[1] + 0.05 * y_span, label = " DB:"),
  810. list(x = 0.25, y = y_limits[1], label = " SM:")
  811. )
  812. # Loop over unique x values and add NG, DB, SM values at calculated y positions
  813. for (x_val in unique(df$conc_num_factor_factor)) {
  814. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  815. annotations <- append(annotations, list(
  816. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
  817. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
  818. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
  819. ))
  820. }
  821. plot_config$annotations <- annotations
  822. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  823. } else if (plot_type == "box") {
  824. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  825. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  826. # Append to boxplot configurations
  827. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  828. }
  829. }
  830. }
  831. # Delta interaction plots
  832. if (type == "reference") {
  833. group_vars <- c("OrfRep", "Gene", "num")
  834. } else if (type == "deletion") {
  835. group_vars <- c("OrfRep", "Gene")
  836. }
  837. delta_limits_map <- list(
  838. L = c(-60, 60),
  839. K = c(-60, 60),
  840. r = c(-0.6, 0.6),
  841. AUC = c(-6000, 6000)
  842. )
  843. grouped_data <- df %>%
  844. group_by(across(all_of(group_vars))) %>%
  845. group_split()
  846. for (group_data in grouped_data) {
  847. OrfRep <- first(group_data$OrfRep)
  848. Gene <- first(group_data$Gene)
  849. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  850. if (type == "reference") {
  851. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  852. } else if (type == "deletion") {
  853. OrfRepTitle <- OrfRep
  854. }
  855. for (var in names(delta_limits_map)) {
  856. y_limits <- delta_limits_map[[var]]
  857. y_span <- y_limits[2] - y_limits[1]
  858. # Error bars
  859. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  860. # Z_Shift and lm values
  861. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  862. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  863. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  864. # NG, DB, SM values
  865. NG_value <- first(group_data$NG, default = 0)
  866. DB_value <- first(group_data$DB, default = 0)
  867. SM_value <- first(group_data$SM, default = 0)
  868. # Use the pre-calculated lm intercept and slope from the dataframe
  869. lm_intercept_col <- paste0("lm_intercept_", var)
  870. lm_slope_col <- paste0("lm_slope_", var)
  871. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  872. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  873. plot_config <- list(
  874. df = group_data,
  875. plot_type = "scatter",
  876. x_var = "conc_num_factor_factor",
  877. y_var = paste0("Delta_", var),
  878. x_label = unique(group_data$Drug)[1],
  879. title = paste(OrfRepTitle, Gene, num, sep = " "),
  880. coord_cartesian = y_limits,
  881. annotations = list(
  882. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  883. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  884. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  885. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  886. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  887. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  888. ),
  889. error_bar = TRUE,
  890. error_bar_params = list(
  891. ymin = 0 - (2 * WT_sd_value),
  892. ymax = 0 + (2 * WT_sd_value),
  893. color = "black"
  894. ),
  895. smooth = TRUE,
  896. x_breaks = unique(group_data$conc_num_factor_factor),
  897. x_labels = as.character(unique(group_data$conc_num)),
  898. ylim_vals = y_limits,
  899. y_filter = FALSE,
  900. lm_line = list(
  901. intercept = lm_intercept_value,
  902. slope = lm_slope_value
  903. )
  904. )
  905. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  906. }
  907. }
  908. # Return plot configs
  909. return(list(
  910. list(grid_layout = list(ncol = 2), plots = stats_plot_configs),
  911. list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs),
  912. list(grid_layout = list(ncol = 4), plots = delta_plot_configs[1:24]) # nrow calculated dynamically
  913. ))
  914. }
  915. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  916. sd_bands <- c(1, 2, 3)
  917. plot_configs <- list()
  918. variables <- c("L", "K")
  919. # Adjust (if necessary) and rank columns
  920. for (variable in variables) {
  921. if (adjust) {
  922. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  923. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  924. }
  925. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  926. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  927. }
  928. # Helper function to create a plot configuration
  929. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  930. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  931. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  932. # Default plot config
  933. plot_config <- list(
  934. df = df,
  935. x_var = rank_var,
  936. y_var = zscore_var,
  937. plot_type = "scatter",
  938. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  939. sd_band = sd_band,
  940. fill_positive = "#542788",
  941. fill_negative = "orange",
  942. alpha_positive = 0.3,
  943. alpha_negative = 0.3,
  944. annotations = NULL,
  945. shape = 3,
  946. size = 0.1,
  947. y_label = y_label,
  948. x_label = "Rank",
  949. legend_position = "none"
  950. )
  951. if (with_annotations) {
  952. # Add specific annotations for plots with annotations
  953. plot_config$annotations <- list(
  954. list(
  955. x = median(df[[rank_var]], na.rm = TRUE),
  956. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  957. label = paste("Deletion Enhancers =", num_enhancers)
  958. ),
  959. list(
  960. x = median(df[[rank_var]], na.rm = TRUE),
  961. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  962. label = paste("Deletion Suppressors =", num_suppressors)
  963. )
  964. )
  965. }
  966. return(plot_config)
  967. }
  968. # Generate plots for each variable
  969. for (variable in variables) {
  970. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  971. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  972. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  973. # Loop through SD bands
  974. for (sd_band in sd_bands) {
  975. # Create plot with annotations
  976. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  977. # Create plot without annotations
  978. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  979. }
  980. }
  981. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  982. }
  983. generate_correlation_plot_configs <- function(df, correlation_stats) {
  984. # Define relationships for different-variable correlations
  985. relationships <- list(
  986. list(x = "L", y = "K"),
  987. list(x = "L", y = "r"),
  988. list(x = "L", y = "AUC"),
  989. list(x = "K", y = "r"),
  990. list(x = "K", y = "AUC"),
  991. list(x = "r", y = "AUC")
  992. )
  993. plot_configs <- list()
  994. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  995. highlight_cyan_options <- c(FALSE, TRUE)
  996. for (highlight_cyan in highlight_cyan_options) {
  997. for (rel in relationships) {
  998. # Extract relevant variable names for Z_lm values
  999. x_var <- paste0("Z_lm_", rel$x)
  1000. y_var <- paste0("Z_lm_", rel$y)
  1001. # Access the correlation statistics from the correlation_stats list
  1002. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1003. stats <- correlation_stats[[relationship_name]]
  1004. intercept <- stats$intercept
  1005. slope <- stats$slope
  1006. r_squared <- stats$r_squared
  1007. # Generate the label for the plot
  1008. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1009. # Construct plot config
  1010. plot_config <- list(
  1011. df = df,
  1012. x_var = x_var,
  1013. y_var = y_var,
  1014. plot_type = "scatter",
  1015. title = plot_label,
  1016. annotations = list(
  1017. list(
  1018. x = mean(df[[x_var]], na.rm = TRUE),
  1019. y = mean(df[[y_var]], na.rm = TRUE),
  1020. label = paste("R-squared =", round(r_squared, 3))
  1021. )
  1022. ),
  1023. smooth = TRUE,
  1024. smooth_color = "tomato3",
  1025. lm_line = list(
  1026. intercept = intercept,
  1027. slope = slope
  1028. ),
  1029. shape = 3,
  1030. size = 0.5,
  1031. color_var = "Overlap",
  1032. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  1033. )
  1034. plot_configs <- append(plot_configs, list(plot_config))
  1035. }
  1036. }
  1037. return(list(plots = plot_configs))
  1038. }
  1039. main <- function() {
  1040. lapply(names(args$experiments), function(exp_name) {
  1041. exp <- args$experiments[[exp_name]]
  1042. exp_path <- exp$path
  1043. exp_sd <- exp$sd
  1044. out_dir <- file.path(exp_path, "zscores")
  1045. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1046. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1047. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1048. # Each list of plots corresponds to a separate file
  1049. message("Loading and filtering data for experiment: ", exp_name)
  1050. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1051. update_gene_names(args$sgd_gene_list) %>%
  1052. as_tibble()
  1053. l_vs_k_plot_configs <- list(
  1054. plots = list(
  1055. list(
  1056. df = df,
  1057. x_var = "L",
  1058. y_var = "K",
  1059. plot_type = "scatter",
  1060. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1061. title = "Raw L vs K before quality control",
  1062. color_var = "conc_num_factor_factor",
  1063. error_bar = FALSE,
  1064. legend_position = "right"
  1065. )
  1066. )
  1067. )
  1068. message("Calculating summary statistics before quality control")
  1069. df_stats <- calculate_summary_stats(
  1070. df = df,
  1071. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1072. group_vars = c("conc_num"))$df_with_stats
  1073. frequency_delta_bg_plot_configs <- list(
  1074. plots = list(
  1075. list(
  1076. df = df_stats,
  1077. x_var = "delta_bg",
  1078. y_var = NULL,
  1079. plot_type = "density",
  1080. title = "Density plot for Delta Background by [Drug] (All Data)",
  1081. color_var = "conc_num_factor_factor",
  1082. x_label = "Delta Background",
  1083. y_label = "Density",
  1084. error_bar = FALSE,
  1085. legend_position = "right"
  1086. ),
  1087. list(
  1088. df = df_stats,
  1089. x_var = "delta_bg",
  1090. y_var = NULL,
  1091. plot_type = "bar",
  1092. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1093. color_var = "conc_num_factor_factor",
  1094. x_label = "Delta Background",
  1095. y_label = "Count",
  1096. error_bar = FALSE,
  1097. legend_position = "right"
  1098. )
  1099. )
  1100. )
  1101. message("Filtering rows above delta background tolerance for plotting")
  1102. df_above_tolerance <- df %>% filter(DB == 1)
  1103. above_threshold_plot_configs <- list(
  1104. plots = list(
  1105. list(
  1106. df = df_above_tolerance,
  1107. x_var = "L",
  1108. y_var = "K",
  1109. plot_type = "scatter",
  1110. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1111. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1112. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1113. color_var = "conc_num_factor_factor",
  1114. position = "jitter",
  1115. annotations = list(
  1116. list(
  1117. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1118. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1119. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1120. )
  1121. ),
  1122. error_bar = FALSE,
  1123. legend_position = "right"
  1124. )
  1125. )
  1126. )
  1127. message("Setting rows above delta background tolerance to NA")
  1128. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1129. message("Calculating summary statistics across all strains")
  1130. ss <- calculate_summary_stats(
  1131. df = df_na,
  1132. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1133. group_vars = c("conc_num"))
  1134. df_na_ss <- ss$summary_stats
  1135. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1136. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1137. # This can help bypass missing values ggplot warnings during testing
  1138. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1139. message("Calculating summary statistics excluding zero values")
  1140. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1141. df_no_zeros_stats <- calculate_summary_stats(
  1142. df = df_no_zeros,
  1143. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1144. group_vars = c("conc_num")
  1145. )$df_with_stats
  1146. message("Filtering by 2SD of K")
  1147. df_na_within_2sd_k <- df_na_stats %>%
  1148. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1149. df_na_outside_2sd_k <- df_na_stats %>%
  1150. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1151. message("Calculating summary statistics for L within 2SD of K")
  1152. # TODO We're omitting the original z_max calculation, not sure if needed?
  1153. ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
  1154. group_vars = c("conc_num"))$summary_stats
  1155. write.csv(ss,
  1156. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1157. row.names = FALSE)
  1158. message("Calculating summary statistics for L outside 2SD of K")
  1159. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
  1160. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1161. write.csv(ss$summary_stats,
  1162. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1163. row.names = FALSE)
  1164. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1165. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1166. df_before = df_stats,
  1167. df_after = df_na_stats_filtered
  1168. )
  1169. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1170. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1171. df_before = df_stats,
  1172. df_after = df_na_stats_filtered,
  1173. plot_type = "box"
  1174. )
  1175. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1176. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1177. stages = c("after"), # Only after QC
  1178. df_after = df_no_zeros_stats
  1179. )
  1180. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1181. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1182. stages = c("after"), # Only after QC
  1183. df_after = df_no_zeros_stats,
  1184. plot_type = "box"
  1185. )
  1186. l_outside_2sd_k_plot_configs <- list(
  1187. plots = list(
  1188. list(
  1189. df = df_na_l_outside_2sd_k_stats,
  1190. x_var = "L",
  1191. y_var = "K",
  1192. plot_type = "scatter",
  1193. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1194. color_var = "conc_num_factor_factor",
  1195. position = "jitter",
  1196. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1197. annotations = list(
  1198. list(
  1199. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1200. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1201. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1202. )
  1203. ),
  1204. error_bar = FALSE,
  1205. legend_position = "right"
  1206. )
  1207. )
  1208. )
  1209. delta_bg_outside_2sd_k_plot_configs <- list(
  1210. plots = list(
  1211. list(
  1212. df = df_na_l_outside_2sd_k_stats,
  1213. x_var = "delta_bg",
  1214. x_label = "Delta Background",
  1215. y_var = "K",
  1216. plot_type = "scatter",
  1217. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1218. color_var = "conc_num_factor_factor",
  1219. position = "jitter",
  1220. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1221. annotations = list(
  1222. list(
  1223. x = 0.05,
  1224. y = 0.95,
  1225. hjust = 0,
  1226. vjust = 1,
  1227. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1228. size = 5
  1229. )
  1230. ),
  1231. error_bar = FALSE,
  1232. legend_position = "right"
  1233. )
  1234. )
  1235. )
  1236. message("Generating quality control plots in parallel")
  1237. # future::plan(future::multicore, workers = parallel::detectCores())
  1238. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1239. plot_configs <- list(
  1240. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1241. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1242. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1243. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1244. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1245. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1246. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1247. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1248. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1249. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1250. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1251. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 12, page_height = 8),
  1252. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1253. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1254. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1255. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1256. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1257. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1258. )
  1259. # Parallelize background and quality control plot generation
  1260. # furrr::future_map(plot_configs, function(config) {
  1261. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1262. # page_width = config$page_width, page_height = config$page_height)
  1263. # }, .options = furrr_options(seed = TRUE))
  1264. # Loop over background strains
  1265. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1266. # have to rename or group the output files by dir or something so they don't get clobbered
  1267. bg_strains <- c("YDL227C")
  1268. lapply(bg_strains, function(strain) {
  1269. message("Processing background strain: ", strain)
  1270. # Handle missing data by setting zero values to NA
  1271. # and then removing any rows with NA in L col
  1272. df_bg <- df_na %>%
  1273. filter(OrfRep == strain) %>%
  1274. mutate(
  1275. L = if_else(L == 0, NA, L),
  1276. K = if_else(K == 0, NA, K),
  1277. r = if_else(r == 0, NA, r),
  1278. AUC = if_else(AUC == 0, NA, AUC)
  1279. ) %>%
  1280. filter(!is.na(L))
  1281. message("Calculating background strain summary statistics")
  1282. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
  1283. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1284. summary_stats_bg <- ss_bg$summary_stats
  1285. df_bg_stats <- ss_bg$df_with_stats
  1286. write.csv(
  1287. summary_stats_bg,
  1288. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1289. row.names = FALSE)
  1290. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1291. df_reference <- df_na_stats %>% # formerly X2_RF
  1292. filter(OrfRep == strain) %>%
  1293. filter(!is.na(L)) %>%
  1294. group_by(OrfRep, Drug, conc_num) %>%
  1295. mutate(
  1296. max_l_theoretical = max(max_L, na.rm = TRUE),
  1297. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1298. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1299. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1300. ungroup()
  1301. message("Calculating reference strain summary statistics")
  1302. df_reference_stats <- calculate_summary_stats(
  1303. df = df_reference,
  1304. variables = c("L", "K", "r", "AUC"),
  1305. group_vars = c("OrfRep", "Gene", "Drug", "num", "conc_num", "conc_num_factor_factor")
  1306. )$df_with_stats
  1307. message("Calculating reference strain interaction scores")
  1308. results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug", "num"))
  1309. df_calculations_reference <- results$calculations
  1310. df_interactions_reference <- results$interactions
  1311. df_interactions_reference_joined <- results$full_data
  1312. write.csv(df_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1313. write.csv(df_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1314. message("Generating reference interaction plots")
  1315. reference_plot_configs <- generate_interaction_plot_configs(df_interactions_reference_joined, "reference")
  1316. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 18, page_height = 16)
  1317. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1318. df_deletion <- df_na_stats %>% # formerly X2
  1319. filter(OrfRep != strain) %>%
  1320. filter(!is.na(L)) %>%
  1321. group_by(OrfRep, Gene, conc_num) %>%
  1322. mutate(
  1323. max_l_theoretical = max(max_L, na.rm = TRUE),
  1324. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1325. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1326. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1327. ungroup()
  1328. message("Calculating deletion strain(s) summary statistics")
  1329. df_deletion_stats <- calculate_summary_stats(
  1330. df = df_deletion,
  1331. variables = c("L", "K", "r", "AUC"),
  1332. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1333. )$df_with_stats
  1334. message("Calculating deletion strain(s) interactions scores")
  1335. results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1336. df_calculations <- results$calculations
  1337. df_interactions <- results$interactions
  1338. df_interactions_joined <- results$full_data
  1339. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1340. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1341. message("Generating deletion interaction plots")
  1342. deletion_plot_configs <- generate_interaction_plot_configs(df_interactions_joined, "deletion")
  1343. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1344. message("Writing enhancer/suppressor csv files")
  1345. interaction_threshold <- 2 # TODO add to study config?
  1346. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1347. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1348. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1349. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1350. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1351. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1352. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1353. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1354. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1355. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1356. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1357. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1358. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1359. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1360. write.csv(enhancers_and_suppressors_L,
  1361. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1362. write.csv(enhancers_and_suppressors_K,
  1363. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1364. message("Writing linear model enhancer/suppressor csv files")
  1365. lm_interaction_threshold <- 2 # TODO add to study config?
  1366. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1367. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1368. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1369. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1370. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1371. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1372. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1373. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1374. message("Generating rank plots")
  1375. rank_plot_configs <- generate_rank_plot_configs(
  1376. df_interactions_joined,
  1377. is_lm = FALSE,
  1378. adjust = TRUE
  1379. )
  1380. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1381. page_width = 18, page_height = 12)
  1382. message("Generating ranked linear model plots")
  1383. rank_lm_plot_configs <- generate_rank_plot_configs(
  1384. df_interactions_joined,
  1385. is_lm = TRUE,
  1386. adjust = TRUE
  1387. )
  1388. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1389. page_width = 18, page_height = 12)
  1390. message("Generating filtered ranked plots")
  1391. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1392. df_interactions_joined,
  1393. is_lm = FALSE,
  1394. adjust = FALSE,
  1395. overlap_color = TRUE
  1396. )
  1397. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1398. page_width = 18, page_height = 12)
  1399. message("Generating filtered ranked linear model plots")
  1400. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1401. df_interactions_joined,
  1402. is_lm = TRUE,
  1403. adjust = FALSE,
  1404. overlap_color = TRUE
  1405. )
  1406. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1407. page_width = 18, page_height = 12)
  1408. message("Generating correlation curve parameter pair plots")
  1409. correlation_plot_configs <- generate_correlation_plot_configs(
  1410. df_interactions_joined
  1411. )
  1412. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1413. page_width = 10, page_height = 7)
  1414. })
  1415. })
  1416. }
  1417. main()
  1418. # For future simplification of joined dataframes
  1419. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))