calculate_interaction_zscores.R 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Summary statistics for lm scores
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_mean_L = mean(mean_L, na.rm = TRUE),
  259. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  260. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  261. mean_mean_K = mean(mean_K, na.rm = TRUE),
  262. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  263. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  264. mean_mean_r = mean(mean_r, na.rm = TRUE),
  265. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  266. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  267. mean_mean_AUC = mean(mean_AUC, na.rm = TRUE),
  268. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  269. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Continue with gene Z-scores and interactions
  272. calculations <- calculations %>%
  273. left_join(lm_means_sds, by = group_vars) %>%
  274. group_by(across(all_of(group_vars))) %>%
  275. mutate(
  276. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  277. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  278. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  279. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  280. )
  281. # Build summary stats (interactions)
  282. interactions <- calculations %>%
  283. group_by(across(all_of(group_vars))) %>%
  284. summarise(
  285. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  286. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  287. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  288. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  289. # Interaction Z-scores
  290. Z_lm_L = first(Z_lm_L),
  291. Z_lm_K = first(Z_lm_K),
  292. Z_lm_r = first(Z_lm_r),
  293. Z_lm_AUC = first(Z_lm_AUC),
  294. # Raw Shifts
  295. Raw_Shift_L = first(Raw_Shift_L),
  296. Raw_Shift_K = first(Raw_Shift_K),
  297. Raw_Shift_r = first(Raw_Shift_r),
  298. Raw_Shift_AUC = first(Raw_Shift_AUC),
  299. # Z Shifts
  300. Z_Shift_L = first(Z_Shift_L),
  301. Z_Shift_K = first(Z_Shift_K),
  302. Z_Shift_r = first(Z_Shift_r),
  303. Z_Shift_AUC = first(Z_Shift_AUC),
  304. # NG, DB, SM values
  305. NG = first(NG),
  306. DB = first(DB),
  307. SM = first(SM)
  308. )
  309. # Creating the final calculations and interactions dataframes with only required columns for csv output
  310. calculations_df <- calculations %>%
  311. select(
  312. all_of(group_vars),
  313. conc_num, conc_num_factor, conc_num_factor_factor,
  314. N, NG, DB, SM,
  315. mean_L, median_L, sd_L, se_L,
  316. mean_K, median_K, sd_K, se_K,
  317. mean_r, median_r, sd_r, se_r,
  318. mean_AUC, median_AUC, sd_AUC, se_AUC,
  319. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  320. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  321. WT_L, WT_K, WT_r, WT_AUC,
  322. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  323. Exp_L, Exp_K, Exp_r, Exp_AUC,
  324. Delta_L, Delta_K, Delta_r, Delta_AUC,
  325. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  326. )
  327. interactions_df <- interactions %>%
  328. select(
  329. all_of(group_vars),
  330. NG, DB, SM,
  331. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  332. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  333. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  334. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  335. )
  336. calculations_no_overlap <- calculations %>%
  337. # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
  338. select(-any_of(c(
  339. "DB", "NG", "SM",
  340. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  341. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  342. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  343. )))
  344. # Use left_join to avoid dimension mismatch issues
  345. full_data <- calculations_no_overlap %>%
  346. left_join(interactions, by = group_vars)
  347. # Return full_data and the two required dataframes (calculations and interactions)
  348. return(list(
  349. calculations = calculations_df,
  350. interactions = interactions_df,
  351. full_data = full_data
  352. ))
  353. }
  354. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  355. message("Generating ", filename, ".pdf and ", filename, ".html")
  356. # Check if we're dealing with multiple plot groups
  357. plot_groups <- if ("plots" %in% names(plot_configs)) {
  358. list(plot_configs) # Single group
  359. } else {
  360. plot_configs # Multiple groups
  361. }
  362. # Open the PDF device once for all plots
  363. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  364. # Loop through each plot group
  365. for (group in plot_groups) {
  366. static_plots <- list()
  367. plotly_plots <- list()
  368. grid_layout <- group$grid_layout
  369. plots <- group$plots
  370. for (i in seq_along(plots)) {
  371. config <- plots[[i]]
  372. df <- config$df
  373. # Set up aes mapping based on plot type
  374. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  375. if (!is.null(config$color_var)) {
  376. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  377. } else {
  378. aes(x = .data[[config$x_var]])
  379. }
  380. } else {
  381. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  382. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  383. } else if (!is.null(config$y_var)) {
  384. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  385. } else {
  386. aes(x = .data[[config$x_var]])
  387. }
  388. }
  389. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  390. # Add appropriate plot layer based on plot type
  391. plot <- switch(config$plot_type,
  392. "scatter" = generate_scatter_plot(plot, config),
  393. "box" = generate_boxplot(plot, config),
  394. "density" = plot + geom_density(),
  395. "bar" = plot + geom_bar(),
  396. plot # default (unused)
  397. )
  398. # Add labels and title
  399. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  400. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  401. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  402. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  403. # Add error bars if specified
  404. if (!is.null(config$error_bar) && config$error_bar) {
  405. error_bar_color <- config$error_bar_params$color %||% "red"
  406. y_mean_col <- paste0("mean_", config$y_var)
  407. y_sd_col <- paste0("sd_", config$y_var)
  408. if (!is.null(config$error_bar_params$center_point)) {
  409. plot <- plot + geom_point(aes(
  410. x = .data[[config$x_var]],
  411. y = .data[[y_mean_col]]),
  412. color = error_bar_color,
  413. shape = 16)
  414. }
  415. # Use error_bar_params if provided, otherwise calculate from mean and sd
  416. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  417. plot <- plot + geom_errorbar(aes(
  418. ymin = config$error_bar_params$ymin,
  419. ymax = config$error_bar_params$ymax),
  420. color = error_bar_color)
  421. } else {
  422. plot <- plot + geom_errorbar(aes(
  423. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  424. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]),
  425. color = error_bar_color)
  426. }
  427. }
  428. # Convert ggplot to plotly for interactive version
  429. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  430. # Store both static and interactive versions
  431. static_plots[[i]] <- plot
  432. plotly_plots[[i]] <- plotly_plot
  433. }
  434. # Print the plots in the current group to the PDF
  435. if (is.null(grid_layout)) {
  436. # Print each plot individually on separate pages if no grid layout is specified
  437. for (plot in static_plots) {
  438. print(plot)
  439. }
  440. } else {
  441. # Arrange plots in grid layout on a single page
  442. grid.arrange(
  443. grobs = static_plots,
  444. ncol = grid_layout$ncol,
  445. nrow = grid_layout$nrow
  446. )
  447. }
  448. }
  449. # Close the PDF device after all plots are done
  450. dev.off()
  451. # Save HTML file with interactive plots if needed
  452. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  453. # message("Saving combined HTML file: ", out_html_file)
  454. # htmltools::save_html(
  455. # htmltools::tagList(plotly_plots),
  456. # file = out_html_file
  457. # )
  458. }
  459. generate_scatter_plot <- function(plot, config) {
  460. # Define the points
  461. shape <- if (!is.null(config$shape)) config$shape else 3
  462. size <- if (!is.null(config$size)) config$size else 1.5
  463. position <-
  464. if (!is.null(config$position) && config$position == "jitter") {
  465. position_jitter(width = 0.3, height = 0.1)
  466. } else {
  467. "identity"
  468. }
  469. plot <- plot + geom_point(
  470. shape = shape,
  471. size = size,
  472. position = position
  473. )
  474. if (!is.null(config$cyan_points) && config$cyan_points) {
  475. plot <- plot + geom_point(
  476. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  477. color = "cyan",
  478. shape = 3,
  479. size = 0.5
  480. )
  481. }
  482. # Add Smooth Line if specified
  483. if (!is.null(config$smooth) && config$smooth) {
  484. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  485. if (!is.null(config$lm_line)) {
  486. plot <- plot +
  487. geom_abline(
  488. intercept = config$lm_line$intercept,
  489. slope = config$lm_line$slope,
  490. color = smooth_color
  491. )
  492. } else {
  493. plot <- plot +
  494. geom_smooth(
  495. method = "lm",
  496. se = FALSE,
  497. color = smooth_color
  498. )
  499. }
  500. }
  501. # Add SD Bands if specified
  502. if (!is.null(config$sd_band)) {
  503. plot <- plot +
  504. annotate(
  505. "rect",
  506. xmin = -Inf, xmax = Inf,
  507. ymin = config$sd_band, ymax = Inf,
  508. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  509. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  510. ) +
  511. annotate(
  512. "rect",
  513. xmin = -Inf, xmax = Inf,
  514. ymin = -config$sd_band, ymax = -Inf,
  515. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  516. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  517. ) +
  518. geom_hline(
  519. yintercept = c(-config$sd_band, config$sd_band),
  520. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  521. )
  522. }
  523. # Add Rectangles if specified
  524. if (!is.null(config$rectangles)) {
  525. for (rect in config$rectangles) {
  526. plot <- plot + annotate(
  527. "rect",
  528. xmin = rect$xmin,
  529. xmax = rect$xmax,
  530. ymin = rect$ymin,
  531. ymax = rect$ymax,
  532. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  533. color = ifelse(is.null(rect$color), "black", rect$color),
  534. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  535. )
  536. }
  537. }
  538. # Customize X-axis if specified
  539. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  540. # Check if x_var is factor or character (for discrete x-axis)
  541. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  542. plot <- plot +
  543. scale_x_discrete(
  544. name = config$x_label,
  545. breaks = config$x_breaks,
  546. labels = config$x_labels
  547. )
  548. } else {
  549. plot <- plot +
  550. scale_x_continuous(
  551. name = config$x_label,
  552. breaks = config$x_breaks,
  553. labels = config$x_labels
  554. )
  555. }
  556. }
  557. # Set Y-axis limits if specified
  558. if (!is.null(config$ylim_vals)) {
  559. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  560. }
  561. # Add annotations if specified
  562. if (!is.null(config$annotations)) {
  563. for (annotation in config$annotations) {
  564. plot <- plot +
  565. annotate(
  566. "text",
  567. x = annotation$x,
  568. y = annotation$y,
  569. label = annotation$label,
  570. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  571. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  572. size = ifelse(is.null(annotation$size), 6, annotation$size),
  573. color = ifelse(is.null(annotation$color), "black", annotation$color)
  574. )
  575. }
  576. }
  577. return(plot)
  578. }
  579. generate_boxplot <- function(plot, config) {
  580. # Convert x_var to a factor within aes mapping
  581. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  582. # Customize X-axis if specified
  583. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  584. # Check if x_var is factor or character (for discrete x-axis)
  585. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  586. plot <- plot +
  587. scale_x_discrete(
  588. name = config$x_label,
  589. breaks = config$x_breaks,
  590. labels = config$x_labels
  591. )
  592. } else {
  593. plot <- plot +
  594. scale_x_continuous(
  595. name = config$x_label,
  596. breaks = config$x_breaks,
  597. labels = config$x_labels
  598. )
  599. }
  600. }
  601. return(plot)
  602. }
  603. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  604. plot_type = "scatter", stages = c("before", "after")) {
  605. plot_configs <- list()
  606. for (var in variables) {
  607. for (stage in stages) {
  608. df_plot <- if (stage == "before") df_before else df_after
  609. # Check for non-finite values in the y-variable
  610. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  611. # Adjust settings based on plot_type
  612. plot_config <- list(
  613. df = df_plot_filtered,
  614. x_var = "scan",
  615. y_var = var,
  616. plot_type = plot_type,
  617. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  618. color_var = "conc_num_factor_factor",
  619. position = if (plot_type == "scatter") "jitter" else NULL,
  620. size = 0.2,
  621. error_bar = (plot_type == "scatter")
  622. )
  623. # Add config to plots list
  624. plot_configs <- append(plot_configs, list(plot_config))
  625. }
  626. }
  627. return(list(plots = plot_configs))
  628. }
  629. generate_interaction_plot_configs <- function(df, type) {
  630. # Define the y-limits for the plots
  631. limits_map <- list(
  632. L = c(0, 130),
  633. K = c(-20, 160),
  634. r = c(0, 1),
  635. AUC = c(0, 12500)
  636. )
  637. stats_plot_configs <- list()
  638. stats_boxplot_configs <- list()
  639. delta_plot_configs <- list()
  640. # Overall statistics plots
  641. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  642. for (plot_type in c("scatter", "box")) {
  643. for (var in names(limits_map)) {
  644. y_limits <- limits_map[[var]]
  645. y_span <- y_limits[2] - y_limits[1]
  646. # Common plot configuration
  647. plot_config <- list(
  648. df = df,
  649. x_var = "conc_num_factor_factor",
  650. y_var = var,
  651. shape = 16,
  652. x_label = unique(df$Drug)[1],
  653. coord_cartesian = y_limits,
  654. x_breaks = unique(df$conc_num_factor_factor),
  655. x_labels = as.character(unique(df$conc_num))
  656. )
  657. # Add specific configurations for scatter and box plots
  658. if (plot_type == "scatter") {
  659. plot_config$plot_type <- "scatter"
  660. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  661. plot_config$error_bar <- TRUE
  662. plot_config$error_bar_params <- list(
  663. color = "red",
  664. center_point = TRUE
  665. )
  666. plot_config$position <- "jitter"
  667. annotations <- list(
  668. list(x = -0.25, y = y_limits[1] + 0.1 * y_span, label = "NG ="), # Slightly above y-min
  669. list(x = -0.25, y = y_limits[1] + 0.05 * y_span, label = "DB ="),
  670. list(x = -0.25, y = y_limits[1], label = "SM =")
  671. )
  672. # Loop over unique x values and add NG, DB, SM values at calculated y positions
  673. for (x_val in unique(df$conc_num_factor_factor)) {
  674. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  675. annotations <- append(annotations, list(
  676. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
  677. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
  678. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
  679. ))
  680. }
  681. plot_config$annotations <- annotations
  682. # Append to scatter plot configurations
  683. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  684. } else if (plot_type == "box") {
  685. plot_config$plot_type <- "box"
  686. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  687. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  688. # Append to boxplot configurations
  689. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  690. }
  691. }
  692. }
  693. # Delta interaction plots
  694. if (type == "reference") {
  695. group_vars <- c("OrfRep", "Gene", "num")
  696. } else if (type == "deletion") {
  697. group_vars <- c("OrfRep", "Gene")
  698. }
  699. delta_limits_map <- list(
  700. L = c(-60, 60),
  701. K = c(-60, 60),
  702. r = c(-0.6, 0.6),
  703. AUC = c(-6000, 6000)
  704. )
  705. grouped_data <- df %>%
  706. group_by(across(all_of(group_vars))) %>%
  707. group_split()
  708. for (group_data in grouped_data) {
  709. OrfRep <- first(group_data$OrfRep)
  710. Gene <- first(group_data$Gene)
  711. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  712. if (type == "reference") {
  713. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  714. } else if (type == "deletion") {
  715. OrfRepTitle <- OrfRep
  716. }
  717. for (var in names(delta_limits_map)) {
  718. y_limits <- delta_limits_map[[var]]
  719. y_span <- y_limits[2] - y_limits[1]
  720. # Error bars
  721. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  722. # Z_Shift and lm values
  723. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  724. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  725. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  726. # NG, DB, SM values
  727. NG_value <- first(group_data$NG, default = 0)
  728. DB_value <- first(group_data$DB, default = 0)
  729. SM_value <- first(group_data$SM, default = 0)
  730. # Use the pre-calculated lm intercept and slope from the dataframe
  731. lm_intercept_col <- paste0("lm_intercept_", var)
  732. lm_slope_col <- paste0("lm_slope_", var)
  733. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  734. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  735. plot_config <- list(
  736. df = group_data,
  737. plot_type = "scatter",
  738. x_var = "conc_num_factor_factor",
  739. y_var = var,
  740. x_label = unique(group_data$Drug)[1],
  741. title = paste(OrfRepTitle, Gene, num, sep = " "),
  742. coord_cartesian = y_limits,
  743. annotations = list(
  744. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  745. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  746. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  747. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  748. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  749. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  750. ),
  751. error_bar = TRUE,
  752. error_bar_params = list(
  753. ymin = 0 - (2 * WT_sd_value),
  754. ymax = 0 + (2 * WT_sd_value),
  755. color = "black"
  756. ),
  757. smooth = TRUE,
  758. x_breaks = unique(group_data$conc_num_factor_factor),
  759. x_labels = as.character(unique(group_data$conc_num)),
  760. ylim_vals = y_limits,
  761. lm_line = list(
  762. intercept = lm_intercept_value,
  763. slope = lm_slope_value
  764. )
  765. )
  766. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  767. }
  768. }
  769. # Calculate dynamic grid layout
  770. grid_ncol <- 4
  771. num_plots <- length(delta_plot_configs)
  772. grid_nrow <- ceiling(num_plots / grid_ncol)
  773. return(list(
  774. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
  775. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
  776. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  777. ))
  778. }
  779. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  780. sd_bands <- c(1, 2, 3)
  781. plot_configs <- list()
  782. variables <- c("L", "K")
  783. # Adjust (if necessary) and rank columns
  784. for (variable in variables) {
  785. if (adjust) {
  786. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  787. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  788. }
  789. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  790. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  791. }
  792. # Helper function to create a plot configuration
  793. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  794. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  795. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  796. # Default plot config
  797. plot_config <- list(
  798. df = df,
  799. x_var = rank_var,
  800. y_var = zscore_var,
  801. plot_type = "scatter",
  802. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  803. sd_band = sd_band,
  804. fill_positive = "#542788",
  805. fill_negative = "orange",
  806. alpha_positive = 0.3,
  807. alpha_negative = 0.3,
  808. annotations = NULL,
  809. shape = 3,
  810. size = 0.1,
  811. y_label = y_label,
  812. x_label = "Rank",
  813. legend_position = "none"
  814. )
  815. if (with_annotations) {
  816. # Add specific annotations for plots with annotations
  817. plot_config$annotations <- list(
  818. list(
  819. x = median(df[[rank_var]], na.rm = TRUE),
  820. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  821. label = paste("Deletion Enhancers =", num_enhancers)
  822. ),
  823. list(
  824. x = median(df[[rank_var]], na.rm = TRUE),
  825. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  826. label = paste("Deletion Suppressors =", num_suppressors)
  827. )
  828. )
  829. }
  830. return(plot_config)
  831. }
  832. # Generate plots for each variable
  833. for (variable in variables) {
  834. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  835. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  836. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  837. # Loop through SD bands
  838. for (sd_band in sd_bands) {
  839. # Create plot with annotations
  840. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  841. # Create plot without annotations
  842. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  843. }
  844. }
  845. # Calculate dynamic grid layout based on the number of plots
  846. grid_ncol <- 3
  847. num_plots <- length(plot_configs)
  848. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  849. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  850. }
  851. generate_correlation_plot_configs <- function(df, correlation_stats) {
  852. # Define relationships for different-variable correlations
  853. relationships <- list(
  854. list(x = "L", y = "K"),
  855. list(x = "L", y = "r"),
  856. list(x = "L", y = "AUC"),
  857. list(x = "K", y = "r"),
  858. list(x = "K", y = "AUC"),
  859. list(x = "r", y = "AUC")
  860. )
  861. plot_configs <- list()
  862. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  863. highlight_cyan_options <- c(FALSE, TRUE)
  864. for (highlight_cyan in highlight_cyan_options) {
  865. for (rel in relationships) {
  866. # Extract relevant variable names for Z_lm values
  867. x_var <- paste0("Z_lm_", rel$x)
  868. y_var <- paste0("Z_lm_", rel$y)
  869. # Access the correlation statistics from the correlation_stats list
  870. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  871. stats <- correlation_stats[[relationship_name]]
  872. intercept <- stats$intercept
  873. slope <- stats$slope
  874. r_squared <- stats$r_squared
  875. # Generate the label for the plot
  876. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  877. # Construct plot config
  878. plot_config <- list(
  879. df = df,
  880. x_var = x_var,
  881. y_var = y_var,
  882. plot_type = "scatter",
  883. title = plot_label,
  884. annotations = list(
  885. list(
  886. x = mean(df[[x_var]], na.rm = TRUE),
  887. y = mean(df[[y_var]], na.rm = TRUE),
  888. label = paste("R-squared =", round(r_squared, 3))
  889. )
  890. ),
  891. smooth = TRUE,
  892. smooth_color = "tomato3",
  893. lm_line = list(
  894. intercept = intercept,
  895. slope = slope
  896. ),
  897. shape = 3,
  898. size = 0.5,
  899. color_var = "Overlap",
  900. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  901. )
  902. plot_configs <- append(plot_configs, list(plot_config))
  903. }
  904. }
  905. return(list(plots = plot_configs))
  906. }
  907. main <- function() {
  908. lapply(names(args$experiments), function(exp_name) {
  909. exp <- args$experiments[[exp_name]]
  910. exp_path <- exp$path
  911. exp_sd <- exp$sd
  912. out_dir <- file.path(exp_path, "zscores")
  913. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  914. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  915. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  916. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  917. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  918. message("Loading and filtering data for experiment: ", exp_name)
  919. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  920. update_gene_names(args$sgd_gene_list) %>%
  921. as_tibble()
  922. # Filter rows above delta background tolerance
  923. df_above_tolerance <- df %>% filter(DB == 1)
  924. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  925. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  926. # Save some constants
  927. max_conc <- max(df$conc_num_factor)
  928. message("Calculating summary statistics before quality control")
  929. df_stats <- calculate_summary_stats(
  930. df = df,
  931. variables = summary_vars,
  932. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  933. message("Calculating summary statistics after quality control")
  934. ss <- calculate_summary_stats(
  935. df = df_na,
  936. variables = summary_vars,
  937. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  938. df_na_ss <- ss$summary_stats
  939. df_na_stats <- ss$df_with_stats
  940. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  941. # For plotting (ggplot warns on NAs)
  942. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  943. df_na_stats <- df_na_stats %>%
  944. mutate(
  945. WT_L = mean_L,
  946. WT_K = mean_K,
  947. WT_r = mean_r,
  948. WT_AUC = mean_AUC,
  949. WT_sd_L = sd_L,
  950. WT_sd_K = sd_K,
  951. WT_sd_r = sd_r,
  952. WT_sd_AUC = sd_AUC
  953. )
  954. # Pull the background means and standard deviations from zero concentration for interactions
  955. bg_stats <- df_na_stats %>%
  956. filter(conc_num == 0) %>%
  957. summarise(
  958. mean_L = first(mean_L),
  959. mean_K = first(mean_K),
  960. mean_r = first(mean_r),
  961. mean_AUC = first(mean_AUC),
  962. sd_L = first(sd_L),
  963. sd_K = first(sd_K),
  964. sd_r = first(sd_r),
  965. sd_AUC = first(sd_AUC)
  966. )
  967. message("Calculating summary statistics after quality control excluding zero values")
  968. df_no_zeros_stats <- calculate_summary_stats(
  969. df = df_no_zeros,
  970. variables = summary_vars,
  971. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  972. )$df_with_stats
  973. message("Filtering by 2SD of K")
  974. df_na_within_2sd_k <- df_na_stats %>%
  975. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  976. df_na_outside_2sd_k <- df_na_stats %>%
  977. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  978. message("Calculating summary statistics for L within 2SD of K")
  979. # TODO We're omitting the original z_max calculation, not sure if needed?
  980. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  981. write.csv(ss,
  982. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  983. row.names = FALSE)
  984. message("Calculating summary statistics for L outside 2SD of K")
  985. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  986. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  987. write.csv(ss$summary_stats,
  988. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  989. row.names = FALSE)
  990. # Each list of plots corresponds to a file
  991. l_vs_k_plot_configs <- list(
  992. plots = list(
  993. list(
  994. df = df,
  995. x_var = "L",
  996. y_var = "K",
  997. plot_type = "scatter",
  998. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  999. title = "Raw L vs K before quality control",
  1000. color_var = "conc_num_factor_factor",
  1001. error_bar = FALSE,
  1002. legend_position = "right"
  1003. )
  1004. )
  1005. )
  1006. frequency_delta_bg_plot_configs <- list(
  1007. plots = list(
  1008. list(
  1009. df = df_stats,
  1010. x_var = "delta_bg",
  1011. y_var = NULL,
  1012. plot_type = "density",
  1013. title = "Density plot for Delta Background by [Drug] (All Data)",
  1014. color_var = "conc_num_factor_factor",
  1015. x_label = "Delta Background",
  1016. y_label = "Density",
  1017. error_bar = FALSE,
  1018. legend_position = "right"
  1019. ),
  1020. list(
  1021. df = df_stats,
  1022. x_var = "delta_bg",
  1023. y_var = NULL,
  1024. plot_type = "bar",
  1025. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1026. color_var = "conc_num_factor_factor",
  1027. x_label = "Delta Background",
  1028. y_label = "Count",
  1029. error_bar = FALSE,
  1030. legend_position = "right"
  1031. )
  1032. )
  1033. )
  1034. above_threshold_plot_configs <- list(
  1035. plots = list(
  1036. list(
  1037. df = df_above_tolerance,
  1038. x_var = "L",
  1039. y_var = "K",
  1040. plot_type = "scatter",
  1041. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1042. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1043. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1044. color_var = "conc_num_factor_factor",
  1045. position = "jitter",
  1046. annotations = list(
  1047. list(
  1048. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1049. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1050. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1051. )
  1052. ),
  1053. error_bar = FALSE,
  1054. legend_position = "right"
  1055. )
  1056. )
  1057. )
  1058. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1059. variables = summary_vars,
  1060. df_before = df_stats,
  1061. df_after = df_na_stats_filtered
  1062. )
  1063. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1064. variables = summary_vars,
  1065. df_before = df_stats,
  1066. df_after = df_na_stats_filtered,
  1067. plot_type = "box"
  1068. )
  1069. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1070. variables = summary_vars,
  1071. stages = c("after"), # Only after QC
  1072. df_after = df_no_zeros_stats
  1073. )
  1074. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1075. variables = summary_vars,
  1076. stages = c("after"), # Only after QC
  1077. df_after = df_no_zeros_stats,
  1078. plot_type = "box"
  1079. )
  1080. l_outside_2sd_k_plot_configs <- list(
  1081. plots = list(
  1082. list(
  1083. df = df_na_l_outside_2sd_k_stats,
  1084. x_var = "L",
  1085. y_var = "K",
  1086. plot_type = "scatter",
  1087. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1088. color_var = "conc_num_factor_factor",
  1089. position = "jitter",
  1090. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1091. annotations = list(
  1092. list(
  1093. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1094. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1095. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1096. )
  1097. ),
  1098. error_bar = FALSE,
  1099. legend_position = "right"
  1100. )
  1101. )
  1102. )
  1103. delta_bg_outside_2sd_k_plot_configs <- list(
  1104. plots = list(
  1105. list(
  1106. df = df_na_l_outside_2sd_k_stats,
  1107. x_var = "delta_bg",
  1108. y_var = "K",
  1109. plot_type = "scatter",
  1110. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1111. color_var = "conc_num_factor_factor",
  1112. position = "jitter",
  1113. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1114. annotations = list(
  1115. list(
  1116. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1117. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1118. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1119. )
  1120. ),
  1121. error_bar = FALSE,
  1122. legend_position = "right"
  1123. )
  1124. )
  1125. )
  1126. message("Generating quality control plots in parallel")
  1127. # future::plan(future::multicore, workers = parallel::detectCores())
  1128. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1129. plot_configs <- list(
  1130. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1131. plot_configs = l_vs_k_plot_configs),
  1132. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1133. plot_configs = frequency_delta_bg_plot_configs),
  1134. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1135. plot_configs = above_threshold_plot_configs),
  1136. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1137. plot_configs = plate_analysis_plot_configs),
  1138. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1139. plot_configs = plate_analysis_boxplot_configs),
  1140. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1141. plot_configs = plate_analysis_no_zeros_plot_configs),
  1142. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1143. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1144. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1145. plot_configs = l_outside_2sd_k_plot_configs),
  1146. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1147. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1148. )
  1149. # Generating quality control plots in parallel
  1150. # furrr::future_map(plot_configs, function(config) {
  1151. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1152. # }, .options = furrr_options(seed = TRUE))
  1153. # Process background strains
  1154. bg_strains <- c("YDL227C")
  1155. lapply(bg_strains, function(strain) {
  1156. message("Processing background strain: ", strain)
  1157. # Handle missing data by setting zero values to NA
  1158. # and then removing any rows with NA in L col
  1159. df_bg <- df_na %>%
  1160. filter(OrfRep == strain) %>%
  1161. mutate(
  1162. L = if_else(L == 0, NA, L),
  1163. K = if_else(K == 0, NA, K),
  1164. r = if_else(r == 0, NA, r),
  1165. AUC = if_else(AUC == 0, NA, AUC)
  1166. ) %>%
  1167. filter(!is.na(L))
  1168. # Recalculate summary statistics for the background strain
  1169. message("Calculating summary statistics for background strain")
  1170. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1171. summary_stats_bg <- ss_bg$summary_stats
  1172. write.csv(summary_stats_bg,
  1173. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1174. row.names = FALSE)
  1175. # Set the missing values to the highest theoretical value at each drug conc for L
  1176. # Leave other values as 0 for the max/min
  1177. df_reference <- df_na_stats %>% # formerly X2_RF
  1178. filter(OrfRep == strain) %>%
  1179. filter(!is.na(L)) %>%
  1180. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1181. mutate(
  1182. max_l_theoretical = max(max_L, na.rm = TRUE),
  1183. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1184. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1185. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1186. ungroup()
  1187. # Ditto for deletion strains
  1188. df_deletion <- df_na_stats %>% # formerly X2
  1189. filter(OrfRep != strain) %>%
  1190. filter(!is.na(L)) %>%
  1191. mutate(SM = 0) %>%
  1192. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1193. mutate(
  1194. max_l_theoretical = max(max_L, na.rm = TRUE),
  1195. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1196. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1197. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1198. ungroup()
  1199. message("Calculating reference strain interaction scores")
  1200. df_reference_stats <- calculate_summary_stats(
  1201. df = df_reference,
  1202. variables = interaction_vars,
  1203. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1204. )$df_with_stats
  1205. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1206. zscore_calculations_reference <- reference_results$calculations
  1207. zscore_interactions_reference <- reference_results$interactions
  1208. zscore_interactions_reference_joined <- reference_results$full_data
  1209. message("Calculating deletion strain(s) interactions scores")
  1210. df_deletion_stats <- calculate_summary_stats(
  1211. df = df_deletion,
  1212. variables = interaction_vars,
  1213. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1214. )$df_with_stats
  1215. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1216. zscore_calculations <- deletion_results$calculations
  1217. zscore_interactions <- deletion_results$interactions
  1218. zscore_interactions_joined <- deletion_results$full_data
  1219. # Writing Z-Scores to file
  1220. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1221. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1222. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1223. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1224. # Create interaction plots
  1225. message("Generating reference interaction plots")
  1226. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1227. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1228. message("Generating deletion interaction plots")
  1229. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1230. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1231. # Define conditions for enhancers and suppressors
  1232. # TODO Add to study config?
  1233. threshold <- 2
  1234. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1235. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1236. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1237. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1238. # Subset data
  1239. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1240. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1241. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1242. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1243. # Save enhancers and suppressors
  1244. message("Writing enhancer/suppressor csv files")
  1245. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1246. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1247. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1248. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1249. # Combine conditions for enhancers and suppressors
  1250. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1251. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1252. # Save combined enhancers and suppressors
  1253. write.csv(enhancers_and_suppressors_L,
  1254. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1255. write.csv(enhancers_and_suppressors_K,
  1256. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1257. # Handle linear model based enhancers and suppressors
  1258. lm_threshold <- 2 # TODO add to study config?
  1259. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1260. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1261. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1262. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1263. # Save linear model based enhancers and suppressors
  1264. message("Writing linear model enhancer/suppressor csv files")
  1265. write.csv(enhancers_lm_L,
  1266. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1267. write.csv(suppressors_lm_L,
  1268. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1269. write.csv(enhancers_lm_K,
  1270. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1271. write.csv(suppressors_lm_K,
  1272. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1273. message("Generating rank plots")
  1274. rank_plot_configs <- generate_rank_plot_configs(
  1275. df = zscore_interactions_joined,
  1276. is_lm = FALSE,
  1277. adjust = TRUE
  1278. )
  1279. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1280. plot_configs = rank_plot_configs)
  1281. message("Generating ranked linear model plots")
  1282. rank_lm_plot_configs <- generate_rank_plot_configs(
  1283. df = zscore_interactions_joined,
  1284. is_lm = TRUE,
  1285. adjust = TRUE
  1286. )
  1287. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1288. plot_configs = rank_lm_plot_configs)
  1289. message("Generating filtered ranked plots")
  1290. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1291. df = zscore_interactions_filtered,
  1292. is_lm = FALSE,
  1293. adjust = FALSE,
  1294. overlap_color = TRUE
  1295. )
  1296. generate_and_save_plots(
  1297. out_dir = out_dir,
  1298. filename = "RankPlots_na_rm",
  1299. plot_configs = rank_plot_filtered_configs)
  1300. message("Generating filtered ranked linear model plots")
  1301. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1302. df = zscore_interactions_filtered,
  1303. is_lm = TRUE,
  1304. adjust = FALSE,
  1305. overlap_color = TRUE
  1306. )
  1307. generate_and_save_plots(
  1308. out_dir = out_dir,
  1309. filename = "rank_plots_lm_na_rm",
  1310. plot_configs = rank_plot_lm_filtered_configs)
  1311. message("Generating correlation curve parameter pair plots")
  1312. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1313. generate_and_save_plots(
  1314. out_dir = out_dir,
  1315. filename = "correlation_cpps",
  1316. plot_configs = correlation_plot_configs,
  1317. )
  1318. })
  1319. })
  1320. }
  1321. main()
  1322. # For future simplification of joined dataframes
  1323. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))