calculate_interaction_zscores.R 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. # Calculate WT statistics from df_bg
  183. wt_stats <- df_bg %>%
  184. filter(conc_num == 0) %>%
  185. summarise(
  186. WT_L = mean(mean_L, na.rm = TRUE),
  187. WT_sd_L = mean(sd_L, na.rm = TRUE),
  188. WT_K = mean(mean_K, na.rm = TRUE),
  189. WT_sd_K = mean(sd_K, na.rm = TRUE),
  190. WT_r = mean(mean_r, na.rm = TRUE),
  191. WT_sd_r = mean(sd_r, na.rm = TRUE),
  192. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  193. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  194. )
  195. # Add WT statistics to df
  196. df <- df %>%
  197. mutate(
  198. WT_L = wt_stats$WT_L,
  199. WT_sd_L = wt_stats$WT_sd_L,
  200. WT_K = wt_stats$WT_K,
  201. WT_sd_K = wt_stats$WT_sd_K,
  202. WT_r = wt_stats$WT_r,
  203. WT_sd_r = wt_stats$WT_sd_r,
  204. WT_AUC = wt_stats$WT_AUC,
  205. WT_sd_AUC = wt_stats$WT_sd_AUC
  206. )
  207. # Compute mean values at zero concentration
  208. mean_L_zero_df <- df %>%
  209. filter(conc_num == 0) %>%
  210. group_by(across(all_of(group_vars))) %>%
  211. summarise(
  212. mean_L_zero = mean(mean_L, na.rm = TRUE),
  213. mean_K_zero = mean(mean_K, na.rm = TRUE),
  214. mean_r_zero = mean(mean_r, na.rm = TRUE),
  215. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  216. .groups = "drop"
  217. )
  218. # Join mean_L_zero_df to df
  219. df <- df %>%
  220. left_join(mean_L_zero_df, by = group_vars)
  221. # Calculate Raw Shifts and Z Shifts
  222. df <- df %>%
  223. mutate(
  224. Raw_Shift_L = mean_L_zero - WT_L,
  225. Raw_Shift_K = mean_K_zero - WT_K,
  226. Raw_Shift_r = mean_r_zero - WT_r,
  227. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  228. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  229. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  230. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  231. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  232. )
  233. calculations <- df %>%
  234. group_by(across(all_of(group_vars))) %>%
  235. mutate(
  236. NG_sum = sum(NG, na.rm = TRUE),
  237. DB_sum = sum(DB, na.rm = TRUE),
  238. SM_sum = sum(SM, na.rm = TRUE),
  239. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  240. # Expected values
  241. Exp_L = WT_L + Raw_Shift_L,
  242. Exp_K = WT_K + Raw_Shift_K,
  243. Exp_r = WT_r + Raw_Shift_r,
  244. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  245. # Deltas
  246. Delta_L = mean_L - Exp_L,
  247. Delta_K = mean_K - Exp_K,
  248. Delta_r = mean_r - Exp_r,
  249. Delta_AUC = mean_AUC - Exp_AUC,
  250. # Adjust deltas for NG and SM
  251. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  252. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  253. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  254. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  255. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  256. # Calculate Z-scores
  257. Zscore_L = Delta_L / WT_sd_L,
  258. Zscore_K = Delta_K / WT_sd_K,
  259. Zscore_r = Delta_r / WT_sd_r,
  260. Zscore_AUC = Delta_AUC / WT_sd_AUC
  261. ) %>%
  262. group_modify(~ {
  263. # Perform linear models only if there are enough unique conc_num_factor levels
  264. if (length(unique(.x$conc_num_factor)) > 1) {
  265. # Filter and calculate each lm() separately with individual checks for NAs
  266. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  267. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  268. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  270. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  271. .x %>%
  272. mutate(
  273. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  274. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  275. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  276. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  277. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  278. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  279. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  280. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  281. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  282. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  283. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  284. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  285. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  286. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  287. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  288. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  289. )
  290. } else {
  291. # If not enough conc_num_factor levels, set lm-related values to NA
  292. .x %>%
  293. mutate(
  294. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  295. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  296. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  297. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  298. )
  299. }
  300. }) %>%
  301. ungroup()
  302. # For interaction plot error bars
  303. delta_means <- calculations %>%
  304. group_by(across(all_of(group_vars))) %>%
  305. summarise(
  306. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  307. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  308. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  309. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  310. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  311. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  312. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  313. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  314. .groups = "drop"
  315. )
  316. calculations <- calculations %>%
  317. left_join(delta_means, by = group_vars)
  318. # Summary statistics for lm scores
  319. lm_means_sds <- calculations %>%
  320. summarise(
  321. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  322. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  323. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  324. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  325. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  326. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  327. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  328. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  329. .groups = "drop"
  330. )
  331. # Add lm score means and standard deviations to calculations
  332. calculations <- calculations %>%
  333. mutate(
  334. lm_mean_L = lm_means_sds$lm_mean_L,
  335. lm_sd_L = lm_means_sds$lm_sd_L,
  336. lm_mean_K = lm_means_sds$lm_mean_K,
  337. lm_sd_K = lm_means_sds$lm_sd_K,
  338. lm_mean_r = lm_means_sds$lm_mean_r,
  339. lm_sd_r = lm_means_sds$lm_sd_r,
  340. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  341. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  342. )
  343. # Calculate Z-lm scores
  344. calculations <- calculations %>%
  345. mutate(
  346. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  347. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  348. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  349. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  350. )
  351. # Build summary stats (interactions)
  352. interactions <- calculations %>%
  353. group_by(across(all_of(group_vars))) %>%
  354. summarise(
  355. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  356. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  357. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  358. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  359. # Interaction Z-scores
  360. Z_lm_L = first(Z_lm_L),
  361. Z_lm_K = first(Z_lm_K),
  362. Z_lm_r = first(Z_lm_r),
  363. Z_lm_AUC = first(Z_lm_AUC),
  364. # Raw Shifts
  365. Raw_Shift_L = first(Raw_Shift_L),
  366. Raw_Shift_K = first(Raw_Shift_K),
  367. Raw_Shift_r = first(Raw_Shift_r),
  368. Raw_Shift_AUC = first(Raw_Shift_AUC),
  369. # Z Shifts
  370. Z_Shift_L = first(Z_Shift_L),
  371. Z_Shift_K = first(Z_Shift_K),
  372. Z_Shift_r = first(Z_Shift_r),
  373. Z_Shift_AUC = first(Z_Shift_AUC),
  374. # R Squared values
  375. R_Squared_L = first(R_Squared_L),
  376. R_Squared_K = first(R_Squared_K),
  377. R_Squared_r = first(R_Squared_r),
  378. R_Squared_AUC = first(R_Squared_AUC),
  379. # NG, DB, SM values
  380. NG = first(NG),
  381. DB = first(DB),
  382. SM = first(SM),
  383. .groups = "drop"
  384. )
  385. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  386. interactions <- interactions %>%
  387. filter(!is.na(Z_lm_L)) %>%
  388. mutate(
  389. Overlap = case_when(
  390. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  391. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  392. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  393. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  394. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  395. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  396. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  397. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  398. TRUE ~ "No Effect"
  399. ),
  400. # For correlations
  401. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  402. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  403. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  404. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  405. )
  406. # Creating the final calculations and interactions dataframes with only required columns for csv output
  407. calculations_df <- calculations %>%
  408. select(
  409. all_of(group_vars),
  410. conc_num, conc_num_factor, conc_num_factor_factor, N,
  411. mean_L, median_L, sd_L, se_L,
  412. mean_K, median_K, sd_K, se_K,
  413. mean_r, median_r, sd_r, se_r,
  414. mean_AUC, median_AUC, sd_AUC, se_AUC,
  415. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  416. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  417. WT_L, WT_K, WT_r, WT_AUC,
  418. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  419. Exp_L, Exp_K, Exp_r, Exp_AUC,
  420. Delta_L, Delta_K, Delta_r, Delta_AUC,
  421. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  422. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  423. )
  424. interactions_df <- interactions %>%
  425. select(
  426. all_of(group_vars),
  427. NG, DB, SM,
  428. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  429. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  430. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  431. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  432. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  433. Overlap
  434. )
  435. # Join calculations and interactions to avoid dimension mismatch
  436. calculations_no_overlap <- calculations %>%
  437. select(-any_of(c("DB", "NG", "SM",
  438. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  439. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  440. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  441. full_data <- calculations_no_overlap %>%
  442. left_join(interactions_df, by = group_vars)
  443. # Return final dataframes
  444. return(list(
  445. calculations = calculations_df,
  446. interactions = interactions_df,
  447. full_data = full_data
  448. ))
  449. }
  450. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  451. message("Generating ", filename, ".pdf and ", filename, ".html")
  452. # Check if we're dealing with multiple plot groups
  453. plot_groups <- if ("plots" %in% names(plot_configs)) {
  454. list(plot_configs) # Single group
  455. } else {
  456. plot_configs # Multiple groups
  457. }
  458. # Open the PDF device once for all plots
  459. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  460. # Loop through each plot group
  461. for (group in plot_groups) {
  462. static_plots <- list()
  463. plotly_plots <- list()
  464. # Retrieve grid layout if it exists, otherwise skip
  465. grid_layout <- group$grid_layout
  466. plots <- group$plots
  467. # Only handle grid layout if it exists
  468. if (!is.null(grid_layout)) {
  469. # Set grid_ncol to 1 if not specified
  470. if (is.null(grid_layout$ncol)) {
  471. grid_layout$ncol <- 1
  472. }
  473. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  474. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  475. num_plots <- length(plots)
  476. nrow <- ceiling(num_plots / grid_layout$ncol)
  477. message("No nrow provided, automatically using nrow = ", nrow)
  478. grid_layout$nrow <- nrow
  479. }
  480. }
  481. for (i in seq_along(plots)) {
  482. config <- plots[[i]]
  483. df <- config$df
  484. # Filter points outside of y-limits if specified
  485. if (!is.null(config$ylim_vals)) {
  486. out_of_bounds_df <- df %>%
  487. filter(
  488. is.na(.data[[config$y_var]]) |
  489. .data[[config$y_var]] < config$ylim_vals[1] |
  490. .data[[config$y_var]] > config$ylim_vals[2]
  491. )
  492. # Print rows being filtered out
  493. if (nrow(out_of_bounds_df) > 0) {
  494. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  495. # print(out_of_bounds_df)
  496. }
  497. # Filter the valid data for plotting
  498. df <- df %>%
  499. filter(
  500. !is.na(.data[[config$y_var]]) &
  501. .data[[config$y_var]] >= config$ylim_vals[1] &
  502. .data[[config$y_var]] <= config$ylim_vals[2]
  503. )
  504. }
  505. # Set up aes mapping based on plot type
  506. aes_mapping <- if (config$plot_type == "bar") {
  507. if (!is.null(config$color_var)) {
  508. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  509. } else {
  510. aes(x = .data[[config$x_var]])
  511. }
  512. } else if (config$plot_type == "density") {
  513. if (!is.null(config$color_var)) {
  514. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  515. } else {
  516. aes(x = .data[[config$x_var]])
  517. }
  518. } else {
  519. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  520. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  521. } else if (!is.null(config$y_var)) {
  522. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  523. } else {
  524. aes(x = .data[[config$x_var]])
  525. }
  526. }
  527. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  528. # Add appropriate plot layer based on plot type
  529. plot <- switch(config$plot_type,
  530. "scatter" = generate_scatter_plot(plot, config),
  531. "box" = generate_boxplot(plot, config),
  532. "density" = plot + geom_density(),
  533. "bar" = plot + geom_bar(),
  534. plot # default (unused)
  535. )
  536. # Add labels and title
  537. if (!is.null(config$title)) {
  538. plot <- plot + ggtitle(config$title)
  539. if (!is.null(config$title_size)) {
  540. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  541. }
  542. }
  543. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  544. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  545. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  546. # Add annotations if specified
  547. if (!is.null(config$annotations)) {
  548. for (annotation in config$annotations) {
  549. plot <- plot +
  550. annotate(
  551. "text",
  552. x = ifelse(is.null(annotation$x), 0, annotation$x),
  553. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  554. label = annotation$label,
  555. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  556. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  557. size = ifelse(is.null(annotation$size), 3, annotation$size),
  558. color = ifelse(is.null(annotation$color), "black", annotation$color)
  559. )
  560. }
  561. }
  562. # Add error bars if specified
  563. if (!is.null(config$error_bar) && config$error_bar) {
  564. y_mean_col <- paste0("mean_", config$y_var)
  565. y_sd_col <- paste0("sd_", config$y_var)
  566. # If color_var is provided and no fixed error bar color is set, use aes() to map color dynamically
  567. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  568. plot <- plot + geom_errorbar(
  569. aes(
  570. x = .data[[config$x_var]],
  571. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  572. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  573. color = .data[[config$color_var]] # Dynamic color from the data
  574. )
  575. )
  576. } else {
  577. # If a fixed error bar color is set, use it outside aes
  578. plot <- plot + geom_errorbar(
  579. aes(
  580. x = .data[[config$x_var]],
  581. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  582. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  583. ),
  584. color = config$error_bar_params$color # Fixed color
  585. )
  586. }
  587. }
  588. # Convert ggplot to plotly for interactive version
  589. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  590. # Store both static and interactive versions
  591. static_plots[[i]] <- plot
  592. plotly_plots[[i]] <- plotly_plot
  593. }
  594. # Print the plots in the current group to the PDF
  595. if (is.null(grid_layout)) {
  596. # Print each plot individually on separate pages if no grid layout is specified
  597. for (plot in static_plots) {
  598. print(plot)
  599. }
  600. } else {
  601. # Arrange plots in grid layout on a single page
  602. grid.arrange(
  603. grobs = static_plots,
  604. ncol = grid_layout$ncol,
  605. nrow = grid_layout$nrow
  606. )
  607. # grid.newpage()
  608. }
  609. }
  610. # Close the PDF device after all plots are done
  611. dev.off()
  612. # Save HTML file with interactive plots if needed
  613. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  614. message("Saving combined HTML file: ", out_html_file)
  615. htmltools::save_html(
  616. htmltools::tagList(plotly_plots),
  617. file = out_html_file
  618. )
  619. }
  620. generate_scatter_plot <- function(plot, config) {
  621. # Define the points
  622. shape <- if (!is.null(config$shape)) config$shape else 3
  623. size <- if (!is.null(config$size)) config$size else 1.5
  624. position <-
  625. if (!is.null(config$position) && config$position == "jitter") {
  626. position_jitter(width = 0.4, height = 0.1)
  627. } else {
  628. "identity"
  629. }
  630. plot <- plot + geom_point(
  631. shape = shape,
  632. size = size,
  633. position = position
  634. )
  635. if (!is.null(config$cyan_points) && config$cyan_points) {
  636. plot <- plot + geom_point(
  637. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  638. color = "cyan",
  639. shape = 3,
  640. size = 0.5
  641. )
  642. }
  643. # Add Smooth Line if specified
  644. if (!is.null(config$smooth) && config$smooth) {
  645. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  646. if (!is.null(config$lm_line)) {
  647. plot <- plot +
  648. geom_abline(
  649. intercept = config$lm_line$intercept,
  650. slope = config$lm_line$slope,
  651. color = smooth_color
  652. )
  653. } else {
  654. plot <- plot +
  655. geom_smooth(
  656. method = "lm",
  657. se = FALSE,
  658. color = smooth_color
  659. )
  660. }
  661. }
  662. # Add SD Bands if specified
  663. if (!is.null(config$sd_band)) {
  664. plot <- plot +
  665. annotate(
  666. "rect",
  667. xmin = -Inf, xmax = Inf,
  668. ymin = config$sd_band, ymax = Inf,
  669. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  670. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  671. ) +
  672. annotate(
  673. "rect",
  674. xmin = -Inf, xmax = Inf,
  675. ymin = -config$sd_band, ymax = -Inf,
  676. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  677. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  678. ) +
  679. geom_hline(
  680. yintercept = c(-config$sd_band, config$sd_band),
  681. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  682. )
  683. }
  684. # Add Rectangles if specified
  685. if (!is.null(config$rectangles)) {
  686. for (rect in config$rectangles) {
  687. plot <- plot + annotate(
  688. "rect",
  689. xmin = rect$xmin,
  690. xmax = rect$xmax,
  691. ymin = rect$ymin,
  692. ymax = rect$ymax,
  693. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  694. color = ifelse(is.null(rect$color), "black", rect$color),
  695. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  696. )
  697. }
  698. }
  699. # Customize X-axis if specified
  700. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  701. # Check if x_var is factor or character (for discrete x-axis)
  702. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  703. plot <- plot +
  704. scale_x_discrete(
  705. name = config$x_label,
  706. breaks = config$x_breaks,
  707. labels = config$x_labels
  708. )
  709. } else {
  710. plot <- plot +
  711. scale_x_continuous(
  712. name = config$x_label,
  713. breaks = config$x_breaks,
  714. labels = config$x_labels
  715. )
  716. }
  717. }
  718. # Set Y-axis limits if specified
  719. if (!is.null(config$ylim_vals)) {
  720. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  721. }
  722. return(plot)
  723. }
  724. generate_boxplot <- function(plot, config) {
  725. # Convert x_var to a factor within aes mapping
  726. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  727. # Customize X-axis if specified
  728. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  729. # Check if x_var is factor or character (for discrete x-axis)
  730. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  731. plot <- plot +
  732. scale_x_discrete(
  733. name = config$x_label,
  734. breaks = config$x_breaks,
  735. labels = config$x_labels
  736. )
  737. } else {
  738. plot <- plot +
  739. scale_x_continuous(
  740. name = config$x_label,
  741. breaks = config$x_breaks,
  742. labels = config$x_labels
  743. )
  744. }
  745. }
  746. return(plot)
  747. }
  748. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  749. plot_type = "scatter", stages = c("before", "after")) {
  750. plot_configs <- list()
  751. for (var in variables) {
  752. for (stage in stages) {
  753. df_plot <- if (stage == "before") df_before else df_after
  754. # Check for non-finite values in the y-variable
  755. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  756. # Adjust settings based on plot_type
  757. plot_config <- list(
  758. df = df_plot_filtered,
  759. x_var = "scan",
  760. y_var = var,
  761. plot_type = plot_type,
  762. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  763. color_var = "conc_num_factor_factor",
  764. size = 0.2,
  765. error_bar = (plot_type == "scatter"),
  766. legend_position = "bottom"
  767. )
  768. # Add config to plots list
  769. plot_configs <- append(plot_configs, list(plot_config))
  770. }
  771. }
  772. return(list(plots = plot_configs))
  773. }
  774. generate_interaction_plot_configs <- function(df, type) {
  775. # Define the y-limits for the plots
  776. limits_map <- list(
  777. L = c(0, 130),
  778. K = c(-20, 160),
  779. r = c(0, 1),
  780. AUC = c(0, 12500)
  781. )
  782. stats_plot_configs <- list()
  783. stats_boxplot_configs <- list()
  784. delta_plot_configs <- list()
  785. # Overall statistics plots
  786. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  787. for (plot_type in c("scatter", "box")) {
  788. for (var in names(limits_map)) {
  789. y_limits <- limits_map[[var]]
  790. y_span <- y_limits[2] - y_limits[1]
  791. # Common plot configuration
  792. plot_config <- list(
  793. df = df,
  794. plot_type = plot_type,
  795. x_var = "conc_num_factor_factor",
  796. y_var = var,
  797. shape = 16,
  798. x_label = unique(df$Drug)[1],
  799. coord_cartesian = y_limits,
  800. x_breaks = unique(df$conc_num_factor_factor),
  801. x_labels = as.character(unique(df$conc_num))
  802. )
  803. # Add specific configurations for scatter and box plots
  804. if (plot_type == "scatter") {
  805. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  806. plot_config$error_bar <- TRUE
  807. plot_config$error_bar_params <- list(
  808. color = "red",
  809. center_point = TRUE
  810. )
  811. plot_config$position <- "jitter"
  812. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  813. annotations <- list(
  814. list(x = 0.25, y = y_limits[1] + 0.1 * y_span, label = " NG:"),
  815. list(x = 0.25, y = y_limits[1] + 0.05 * y_span, label = " DB:"),
  816. list(x = 0.25, y = y_limits[1], label = " SM:")
  817. )
  818. for (x_val in unique(df$conc_num_factor_factor)) {
  819. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  820. annotations <- append(annotations, list(
  821. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
  822. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
  823. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
  824. ))
  825. }
  826. plot_config$annotations <- annotations
  827. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  828. } else if (plot_type == "box") {
  829. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  830. plot_config$position <- "dodge"
  831. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  832. }
  833. }
  834. }
  835. # Delta interaction plots
  836. if (type == "reference") {
  837. group_vars <- c("OrfRep", "Gene", "num")
  838. } else if (type == "deletion") {
  839. group_vars <- c("OrfRep", "Gene")
  840. }
  841. delta_limits_map <- list(
  842. L = c(-60, 60),
  843. K = c(-60, 60),
  844. r = c(-0.6, 0.6),
  845. AUC = c(-6000, 6000)
  846. )
  847. grouped_data <- df %>%
  848. group_by(across(all_of(group_vars))) %>%
  849. group_split()
  850. for (group_data in grouped_data) {
  851. OrfRep <- first(group_data$OrfRep)
  852. Gene <- first(group_data$Gene)
  853. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  854. if (type == "reference") {
  855. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  856. } else if (type == "deletion") {
  857. OrfRepTitle <- OrfRep
  858. }
  859. for (var in names(delta_limits_map)) {
  860. y_limits <- delta_limits_map[[var]]
  861. y_span <- y_limits[2] - y_limits[1]
  862. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  863. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  864. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  865. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  866. NG_value <- first(group_data$NG, default = 0)
  867. DB_value <- first(group_data$DB, default = 0)
  868. SM_value <- first(group_data$SM, default = 0)
  869. lm_intercept_col <- paste0("lm_intercept_", var)
  870. lm_slope_col <- paste0("lm_slope_", var)
  871. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  872. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  873. plot_config <- list(
  874. df = group_data,
  875. plot_type = "scatter",
  876. x_var = "conc_num_factor_factor",
  877. y_var = paste0("Delta_", var),
  878. x_label = unique(group_data$Drug)[1],
  879. title = paste(OrfRepTitle, Gene, sep = " "),
  880. title_size = rel(1.2),
  881. coord_cartesian = y_limits,
  882. annotations = list(
  883. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  884. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  885. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  886. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  887. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  888. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  889. ),
  890. error_bar = TRUE,
  891. error_bar_params = list(
  892. ymin = 0 - (2 * WT_sd_value),
  893. ymax = 0 + (2 * WT_sd_value),
  894. color = "black"
  895. ),
  896. smooth = TRUE,
  897. x_breaks = unique(group_data$conc_num_factor_factor),
  898. x_labels = as.character(unique(group_data$conc_num)),
  899. ylim_vals = y_limits,
  900. y_filter = FALSE,
  901. lm_line = list(
  902. intercept = lm_intercept_value,
  903. slope = lm_slope_value
  904. )
  905. )
  906. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  907. }
  908. }
  909. # Group delta plots in chunks of 12
  910. chunk_size <- 12
  911. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  912. return(c(
  913. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  914. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  915. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  916. ))
  917. }
  918. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  919. sd_bands <- c(1, 2, 3)
  920. plot_configs <- list()
  921. variables <- c("L", "K")
  922. # Adjust (if necessary) and rank columns
  923. for (variable in variables) {
  924. if (adjust) {
  925. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  926. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  927. }
  928. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  929. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  930. }
  931. # Helper function to create a plot configuration
  932. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  933. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  934. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  935. # Default plot config
  936. plot_config <- list(
  937. df = df,
  938. x_var = rank_var,
  939. y_var = zscore_var,
  940. x_label = "Rank",
  941. plot_type = "scatter",
  942. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  943. sd_band = sd_band,
  944. fill_positive = "#542788",
  945. fill_negative = "orange",
  946. alpha_positive = 0.3,
  947. alpha_negative = 0.3,
  948. annotations = NULL,
  949. shape = 3,
  950. size = 0.1,
  951. y_label = y_label,
  952. x_label = "Rank",
  953. legend_position = "none"
  954. )
  955. if (with_annotations) {
  956. # Add specific annotations for plots with annotations
  957. plot_config$annotations <- list(
  958. list(
  959. x = nrow(df) / 2,
  960. y = 10,
  961. label = paste("Deletion Enhancers =", num_enhancers)
  962. ),
  963. list(
  964. x = nrow(df) / 2,
  965. y = -10,
  966. label = paste("Deletion Suppressors =", num_suppressors)
  967. )
  968. )
  969. }
  970. return(plot_config)
  971. }
  972. # Generate plots for each variable
  973. for (variable in variables) {
  974. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  975. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  976. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  977. # Loop through SD bands
  978. for (sd_band in sd_bands) {
  979. # Create plot with annotations
  980. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  981. # Create plot without annotations
  982. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  983. }
  984. }
  985. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  986. }
  987. generate_correlation_plot_configs <- function(df) {
  988. # Define relationships for different-variable correlations
  989. relationships <- list(
  990. list(x = "L", y = "K"),
  991. list(x = "L", y = "r"),
  992. list(x = "L", y = "AUC"),
  993. list(x = "K", y = "r"),
  994. list(x = "K", y = "AUC"),
  995. list(x = "r", y = "AUC")
  996. )
  997. plot_configs <- list()
  998. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  999. highlight_cyan_options <- c(FALSE, TRUE)
  1000. for (highlight_cyan in highlight_cyan_options) {
  1001. for (rel in relationships) {
  1002. # Extract relevant variable names for Z_lm values
  1003. x_var <- paste0("Z_lm_", rel$x)
  1004. y_var <- paste0("Z_lm_", rel$y)
  1005. # Access the correlation statistics from the correlation_stats list
  1006. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1007. stats <- correlation_stats[[relationship_name]]
  1008. intercept <- stats$intercept
  1009. slope <- stats$slope
  1010. r_squared <- stats$r_squared
  1011. # Generate the label for the plot
  1012. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1013. # Construct plot config
  1014. plot_config <- list(
  1015. df = df,
  1016. x_var = x_var,
  1017. y_var = y_var,
  1018. plot_type = "scatter",
  1019. title = plot_label,
  1020. annotations = list(
  1021. list(
  1022. x = mean(df[[x_var]], na.rm = TRUE),
  1023. y = mean(df[[y_var]], na.rm = TRUE),
  1024. label = paste("R-squared =", round(r_squared, 3))
  1025. )
  1026. ),
  1027. smooth = TRUE,
  1028. smooth_color = "tomato3",
  1029. lm_line = list(
  1030. intercept = intercept,
  1031. slope = slope
  1032. ),
  1033. shape = 3,
  1034. size = 0.5,
  1035. color_var = "Overlap",
  1036. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  1037. )
  1038. plot_configs <- append(plot_configs, list(plot_config))
  1039. }
  1040. }
  1041. return(list(plots = plot_configs))
  1042. }
  1043. main <- function() {
  1044. lapply(names(args$experiments), function(exp_name) {
  1045. exp <- args$experiments[[exp_name]]
  1046. exp_path <- exp$path
  1047. exp_sd <- exp$sd
  1048. out_dir <- file.path(exp_path, "zscores")
  1049. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1050. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1051. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1052. # Each list of plots corresponds to a separate file
  1053. message("Loading and filtering data for experiment: ", exp_name)
  1054. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1055. update_gene_names(args$sgd_gene_list) %>%
  1056. as_tibble()
  1057. l_vs_k_plot_configs <- list(
  1058. plots = list(
  1059. list(
  1060. df = df,
  1061. x_var = "L",
  1062. y_var = "K",
  1063. plot_type = "scatter",
  1064. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1065. title = "Raw L vs K before quality control",
  1066. color_var = "conc_num_factor_factor",
  1067. error_bar = FALSE,
  1068. legend_position = "right"
  1069. )
  1070. )
  1071. )
  1072. message("Calculating summary statistics before quality control")
  1073. df_stats <- calculate_summary_stats(
  1074. df = df,
  1075. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1076. group_vars = c("conc_num"))$df_with_stats
  1077. frequency_delta_bg_plot_configs <- list(
  1078. plots = list(
  1079. list(
  1080. df = df_stats,
  1081. x_var = "delta_bg",
  1082. y_var = NULL,
  1083. plot_type = "density",
  1084. title = "Density plot for Delta Background by [Drug] (All Data)",
  1085. color_var = "conc_num_factor_factor",
  1086. x_label = "Delta Background",
  1087. y_label = "Density",
  1088. error_bar = FALSE,
  1089. legend_position = "right"
  1090. ),
  1091. list(
  1092. df = df_stats,
  1093. x_var = "delta_bg",
  1094. y_var = NULL,
  1095. plot_type = "bar",
  1096. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1097. color_var = "conc_num_factor_factor",
  1098. x_label = "Delta Background",
  1099. y_label = "Count",
  1100. error_bar = FALSE,
  1101. legend_position = "right"
  1102. )
  1103. )
  1104. )
  1105. message("Filtering rows above delta background tolerance for plotting")
  1106. df_above_tolerance <- df %>% filter(DB == 1)
  1107. above_threshold_plot_configs <- list(
  1108. plots = list(
  1109. list(
  1110. df = df_above_tolerance,
  1111. x_var = "L",
  1112. y_var = "K",
  1113. plot_type = "scatter",
  1114. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1115. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1116. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1117. color_var = "conc_num_factor_factor",
  1118. position = "jitter",
  1119. annotations = list(
  1120. list(
  1121. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1122. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1123. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1124. )
  1125. ),
  1126. error_bar = FALSE,
  1127. legend_position = "right"
  1128. )
  1129. )
  1130. )
  1131. message("Setting rows above delta background tolerance to NA")
  1132. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1133. message("Calculating summary statistics across all strains")
  1134. ss <- calculate_summary_stats(
  1135. df = df_na,
  1136. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1137. group_vars = c("conc_num"))
  1138. df_na_ss <- ss$summary_stats
  1139. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1140. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1141. # This can help bypass missing values ggplot warnings during testing
  1142. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1143. message("Calculating summary statistics excluding zero values")
  1144. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1145. df_no_zeros_stats <- calculate_summary_stats(
  1146. df = df_no_zeros,
  1147. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1148. group_vars = c("conc_num")
  1149. )$df_with_stats
  1150. message("Filtering by 2SD of K")
  1151. df_na_within_2sd_k <- df_na_stats %>%
  1152. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1153. df_na_outside_2sd_k <- df_na_stats %>%
  1154. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1155. message("Calculating summary statistics for L within 2SD of K")
  1156. # TODO We're omitting the original z_max calculation, not sure if needed?
  1157. ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
  1158. group_vars = c("conc_num"))$summary_stats
  1159. write.csv(ss,
  1160. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1161. row.names = FALSE)
  1162. message("Calculating summary statistics for L outside 2SD of K")
  1163. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
  1164. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1165. write.csv(ss$summary_stats,
  1166. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1167. row.names = FALSE)
  1168. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1169. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1170. df_before = df_stats,
  1171. df_after = df_na_stats_filtered
  1172. )
  1173. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1174. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1175. df_before = df_stats,
  1176. df_after = df_na_stats_filtered,
  1177. plot_type = "box"
  1178. )
  1179. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1180. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1181. stages = c("after"), # Only after QC
  1182. df_after = df_no_zeros_stats
  1183. )
  1184. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1185. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1186. stages = c("after"), # Only after QC
  1187. df_after = df_no_zeros_stats,
  1188. plot_type = "box"
  1189. )
  1190. l_outside_2sd_k_plot_configs <- list(
  1191. plots = list(
  1192. list(
  1193. df = df_na_l_outside_2sd_k_stats,
  1194. x_var = "L",
  1195. y_var = "K",
  1196. plot_type = "scatter",
  1197. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1198. color_var = "conc_num_factor_factor",
  1199. position = "jitter",
  1200. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1201. annotations = list(
  1202. list(
  1203. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1204. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1205. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1206. )
  1207. ),
  1208. error_bar = FALSE,
  1209. legend_position = "right"
  1210. )
  1211. )
  1212. )
  1213. delta_bg_outside_2sd_k_plot_configs <- list(
  1214. plots = list(
  1215. list(
  1216. df = df_na_l_outside_2sd_k_stats,
  1217. x_var = "delta_bg",
  1218. x_label = "Delta Background",
  1219. y_var = "K",
  1220. plot_type = "scatter",
  1221. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1222. color_var = "conc_num_factor_factor",
  1223. position = "jitter",
  1224. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1225. annotations = list(
  1226. list(
  1227. x = 0.05,
  1228. y = 0.95,
  1229. hjust = 0,
  1230. vjust = 1,
  1231. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1232. size = 5
  1233. )
  1234. ),
  1235. error_bar = FALSE,
  1236. legend_position = "right"
  1237. )
  1238. )
  1239. )
  1240. message("Generating quality control plots in parallel")
  1241. # future::plan(future::multicore, workers = parallel::detectCores())
  1242. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1243. plot_configs <- list(
  1244. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1245. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1246. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1247. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1248. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1249. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1250. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1251. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1252. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1253. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1254. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1255. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1256. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1257. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1258. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1259. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1260. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1261. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1262. )
  1263. # Parallelize background and quality control plot generation
  1264. furrr::future_map(plot_configs, function(config) {
  1265. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1266. page_width = config$page_width, page_height = config$page_height)
  1267. }, .options = furrr_options(seed = TRUE))
  1268. # Loop over background strains
  1269. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1270. # have to rename or group the output files by dir or something so they don't get clobbered
  1271. bg_strains <- c("YDL227C")
  1272. lapply(bg_strains, function(strain) {
  1273. message("Processing background strain: ", strain)
  1274. # Handle missing data by setting zero values to NA
  1275. # and then removing any rows with NA in L col
  1276. df_bg <- df_na %>%
  1277. filter(OrfRep == strain) %>%
  1278. mutate(
  1279. L = if_else(L == 0, NA, L),
  1280. K = if_else(K == 0, NA, K),
  1281. r = if_else(r == 0, NA, r),
  1282. AUC = if_else(AUC == 0, NA, AUC)
  1283. ) %>%
  1284. filter(!is.na(L))
  1285. message("Calculating background strain summary statistics")
  1286. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
  1287. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1288. summary_stats_bg <- ss_bg$summary_stats
  1289. df_bg_stats <- ss_bg$df_with_stats
  1290. write.csv(
  1291. summary_stats_bg,
  1292. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1293. row.names = FALSE)
  1294. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1295. df_reference <- df_na_stats %>% # formerly X2_RF
  1296. filter(OrfRep == strain) %>%
  1297. filter(!is.na(L)) %>%
  1298. group_by(OrfRep, Drug, conc_num) %>%
  1299. mutate(
  1300. max_l_theoretical = max(max_L, na.rm = TRUE),
  1301. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1302. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1303. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1304. ungroup()
  1305. message("Calculating reference strain summary statistics")
  1306. df_reference_stats <- calculate_summary_stats(
  1307. df = df_reference,
  1308. variables = c("L", "K", "r", "AUC"),
  1309. group_vars = c("OrfRep", "Gene", "Drug", "num", "conc_num", "conc_num_factor_factor")
  1310. )$df_with_stats
  1311. message("Calculating reference strain interaction scores")
  1312. results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug", "num"))
  1313. df_calculations_reference <- results$calculations
  1314. df_interactions_reference <- results$interactions
  1315. df_interactions_reference_joined <- results$full_data
  1316. write.csv(df_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1317. write.csv(df_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1318. message("Generating reference interaction plots")
  1319. reference_plot_configs <- generate_interaction_plot_configs(df_interactions_reference_joined, "reference")
  1320. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1321. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1322. df_deletion <- df_na_stats %>% # formerly X2
  1323. filter(OrfRep != strain) %>%
  1324. filter(!is.na(L)) %>%
  1325. group_by(OrfRep, Gene, conc_num) %>%
  1326. mutate(
  1327. max_l_theoretical = max(max_L, na.rm = TRUE),
  1328. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1329. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1330. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1331. ungroup()
  1332. message("Calculating deletion strain(s) summary statistics")
  1333. df_deletion_stats <- calculate_summary_stats(
  1334. df = df_deletion,
  1335. variables = c("L", "K", "r", "AUC"),
  1336. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1337. )$df_with_stats
  1338. message("Calculating deletion strain(s) interactions scores")
  1339. results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1340. df_calculations <- results$calculations
  1341. df_interactions <- results$interactions
  1342. df_interactions_joined <- results$full_data
  1343. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1344. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1345. message("Generating deletion interaction plots")
  1346. deletion_plot_configs <- generate_interaction_plot_configs(df_interactions_joined, "deletion")
  1347. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1348. message("Writing enhancer/suppressor csv files")
  1349. interaction_threshold <- 2 # TODO add to study config?
  1350. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1351. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1352. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1353. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1354. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1355. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1356. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1357. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1358. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1359. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1360. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1361. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1362. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1363. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1364. write.csv(enhancers_and_suppressors_L,
  1365. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1366. write.csv(enhancers_and_suppressors_K,
  1367. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1368. message("Writing linear model enhancer/suppressor csv files")
  1369. lm_interaction_threshold <- 2 # TODO add to study config?
  1370. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1371. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1372. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1373. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1374. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1375. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1376. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1377. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1378. message("Generating rank plots")
  1379. rank_plot_configs <- generate_rank_plot_configs(
  1380. df_interactions_joined,
  1381. is_lm = FALSE,
  1382. adjust = TRUE
  1383. )
  1384. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1385. page_width = 18, page_height = 12)
  1386. message("Generating ranked linear model plots")
  1387. rank_lm_plot_configs <- generate_rank_plot_configs(
  1388. df_interactions_joined,
  1389. is_lm = TRUE,
  1390. adjust = TRUE
  1391. )
  1392. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1393. page_width = 18, page_height = 12)
  1394. message("Generating filtered ranked plots")
  1395. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1396. df_interactions_joined,
  1397. is_lm = FALSE,
  1398. adjust = FALSE,
  1399. overlap_color = TRUE
  1400. )
  1401. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1402. page_width = 18, page_height = 12)
  1403. message("Generating filtered ranked linear model plots")
  1404. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1405. df_interactions_joined,
  1406. is_lm = TRUE,
  1407. adjust = FALSE,
  1408. overlap_color = TRUE
  1409. )
  1410. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1411. page_width = 18, page_height = 12)
  1412. message("Generating correlation curve parameter pair plots")
  1413. correlation_plot_configs <- generate_correlation_plot_configs(
  1414. df_interactions_joined
  1415. )
  1416. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1417. page_width = 10, page_height = 7)
  1418. })
  1419. })
  1420. }
  1421. main()
  1422. # For future simplification of joined dataframes
  1423. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))
  1424. # # Add a custom horizontal line (for rank plots)
  1425. # if (!is.null(config$hline) && config$hline) {
  1426. # plot <- plot + geom_hline(yintercept = config$hline, linetype = "dashed", color = "black")
  1427. # }