calculate_interaction_zscores.R 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. mutate(
  178. WT_L = df$mean_L,
  179. WT_K = df$mean_K,
  180. WT_r = df$mean_r,
  181. WT_AUC = df$mean_AUC,
  182. WT_sd_L = df$sd_L,
  183. WT_sd_K = df$sd_K,
  184. WT_sd_r = df$sd_r,
  185. WT_sd_AUC = df$sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~max(., na.rm = TRUE),
  197. min = ~min(., na.rm = TRUE),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. stats <- stats %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC
  221. )
  222. stats <- stats %>%
  223. mutate(
  224. Delta_L = mean_L - Exp_L,
  225. Delta_K = mean_K - Exp_K,
  226. Delta_r = mean_r - Exp_r,
  227. Delta_AUC = mean_AUC - Exp_AUC
  228. )
  229. stats <- stats %>%
  230. mutate(
  231. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  232. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  233. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  234. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  235. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  236. )
  237. stats <- stats %>%
  238. mutate(
  239. Zscore_L = Delta_L / WT_sd_L,
  240. Zscore_K = Delta_K / WT_sd_K,
  241. Zscore_r = Delta_r / WT_sd_r,
  242. Zscore_AUC = Delta_AUC / WT_sd_AUC
  243. )
  244. lms <- stats %>%
  245. summarise(
  246. lm_L = list(lm(Delta_L ~ conc_num_factor)),
  247. lm_K = list(lm(Delta_K ~ conc_num_factor)),
  248. lm_r = list(lm(Delta_r ~ conc_num_factor)),
  249. lm_AUC = list(lm(Delta_AUC ~ conc_num_factor))
  250. )
  251. stats <- stats %>%
  252. left_join(lms, by = group_vars) %>%
  253. mutate(
  254. lm_Score_L = sapply(lm_L, function(model) coef(model)[2] * max_conc + coef(model)[1]),
  255. lm_Score_K = sapply(lm_K, function(model) coef(model)[2] * max_conc + coef(model)[1]),
  256. lm_Score_r = sapply(lm_r, function(model) coef(model)[2] * max_conc + coef(model)[1]),
  257. lm_Score_AUC = sapply(lm_AUC, function(model) coef(model)[2] * max_conc + coef(model)[1]),
  258. R_Squared_L = sapply(lm_L, function(model) summary(model)$r.squared),
  259. R_Squared_K = sapply(lm_K, function(model) summary(model)$r.squared),
  260. R_Squared_r = sapply(lm_r, function(model) summary(model)$r.squared),
  261. R_Squared_AUC = sapply(lm_AUC, function(model) summary(model)$r.squared),
  262. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  263. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  264. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  265. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  266. )
  267. stats <- stats %>%
  268. mutate(
  269. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  270. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  271. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  272. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  273. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  274. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  275. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  276. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  277. )
  278. # Declare column order for output
  279. calculations <- stats %>%
  280. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  281. "mean_L", "mean_K", "mean_r", "mean_AUC",
  282. "median_L", "median_K", "median_r", "median_AUC",
  283. "sd_L", "sd_K", "sd_r", "sd_AUC",
  284. "se_L", "se_K", "se_r", "se_AUC",
  285. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  286. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  287. "WT_L", "WT_K", "WT_r", "WT_AUC",
  288. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  289. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  290. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  291. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  292. "NG", "SM", "DB") %>%
  293. ungroup()
  294. # Also arrange results by Z_lm_L and NG
  295. interactions <- stats %>%
  296. select("OrfRep", "Gene", "num",
  297. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  298. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  299. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  300. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  301. "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
  302. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  303. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  304. "NG", "SM", "DB") %>%
  305. arrange(desc(lm_Score_L)) %>%
  306. arrange(desc(NG)) %>%
  307. ungroup()
  308. return(list(calculations = calculations, interactions = interactions))
  309. }
  310. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  311. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  312. plots <- lapply(plot_configs, function(config) {
  313. df <- config$df
  314. print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  315. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 100)
  316. # Define aes mapping based on the presence of y_var
  317. aes_mapping <- if (is.null(config$y_var)) {
  318. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  319. } else {
  320. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  321. }
  322. plot <- ggplot(df, aes_mapping)
  323. # Use appropriate helper function based on plot type
  324. plot <- switch(config$plot_type,
  325. "scatter" = generate_scatter_plot(plot, config),
  326. "rank" = generate_rank_plot(plot, config),
  327. "correlation" = generate_correlation_plot(plot, config),
  328. "box" = generate_box_plot(plot, config),
  329. "density" = plot + geom_density(),
  330. "bar" = plot + geom_bar(),
  331. plot # default case if no type matches
  332. )
  333. return(plot)
  334. })
  335. # PDF saving logic
  336. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  337. lapply(plots, print)
  338. dev.off()
  339. # HTML saving logic
  340. plotly_plots <- lapply(plots, function(plot) {
  341. config <- plot$labels$config
  342. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  343. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  344. } else {
  345. ggplotly(plot, tooltip = "text")
  346. }
  347. })
  348. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  349. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  350. }
  351. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  352. # Determine the base aesthetics
  353. aes_params <- aes(
  354. x = !!sym(config$x_var),
  355. y = !!sym(config$y_var),
  356. color = as.factor(!!sym(config$color_var)))
  357. # Add the interactive `text` aesthetic if `interactive` is TRUE
  358. if (interactive) {
  359. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  360. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)
  361. } else if (!is.null(config$gene_point) && config$gene_point) {
  362. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene)
  363. }
  364. }
  365. # Add the base geom_point layer
  366. plot <- plot + geom_point(
  367. aes_params, shape = config$shape %||% 3,
  368. size = config$size %||% 0.2,
  369. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  370. # Add smooth line if specified
  371. if (!is.null(config$add_smooth) && config$add_smooth) {
  372. plot <- if (!is.null(config$lm_line)) {
  373. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  374. } else {
  375. plot + geom_smooth(method = "lm", se = FALSE)
  376. }
  377. }
  378. # Add x-axis customization if specified
  379. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  380. plot <- plot + scale_x_continuous(
  381. name = config$x_label,
  382. breaks = config$x_breaks,
  383. labels = config$x_labels)
  384. }
  385. # Add y-axis limits if specified
  386. if (!is.null(config$ylim_vals)) {
  387. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  388. }
  389. # Add Cartesian coordinates customization if specified
  390. if (!is.null(config$coord_cartesian)) {
  391. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  392. }
  393. return(plot)
  394. }
  395. generate_rank_plot <- function(plot, config) {
  396. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  397. if (!is.null(config$sd_band)) {
  398. for (i in seq_len(config$sd_band)) {
  399. plot <- plot +
  400. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  401. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  402. geom_hline(yintercept = c(-i, i), color = "gray")
  403. }
  404. }
  405. if (!is.null(config$enhancer_label)) {
  406. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  407. }
  408. if (!is.null(config$suppressor_label)) {
  409. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  410. }
  411. return(plot)
  412. }
  413. generate_correlation_plot <- function(plot, config) {
  414. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  415. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  416. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  417. if (!is.null(config$rect)) {
  418. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  419. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  420. }
  421. return(plot)
  422. }
  423. generate_box_plot <- function(plot, config) {
  424. plot <- plot + geom_boxplot()
  425. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  426. plot <- plot + scale_x_discrete(
  427. name = config$x_label,
  428. breaks = config$x_breaks,
  429. labels = config$x_labels
  430. )
  431. }
  432. if (!is.null(config$coord_cartesian)) {
  433. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  434. }
  435. return(plot)
  436. }
  437. generate_interaction_plot_configs <- function(df, variables) {
  438. configs <- list()
  439. # Define common y-limits and other attributes for each variable dynamically
  440. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  441. # Define annotation positions based on the variable being plotted
  442. annotation_positions <- list(
  443. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  444. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  445. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  446. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  447. )
  448. # Define which annotations to include for each plot
  449. annotation_labels <- list(
  450. ZShift = function(df, var) paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  451. lm_ZScore = function(df, var) paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  452. NG = function(df, var) paste("NG =", df$NG),
  453. DB = function(df, var) paste("DB =", df$DB),
  454. SM = function(df, var) paste("SM =", df$SM)
  455. )
  456. for (variable in variables) {
  457. # Dynamically generate the names of the columns
  458. var_info <- list(
  459. ylim = limits_map[[variable]],
  460. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  461. sd_col = paste0("WT_sd_", variable),
  462. delta_var = paste0("Delta_", variable)
  463. )
  464. # Extract the precomputed linear model coefficients
  465. lm_line <- list(
  466. intercept = coef(var_info$lm_model)[1],
  467. slope = coef(var_info$lm_model)[2]
  468. )
  469. # Dynamically create annotations based on variable
  470. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  471. y_pos <- annotation_positions[[variable]][[annotation_name]]
  472. label <- annotation_labels[[annotation_name]](df, variable)
  473. list(x = 1, y = y_pos, label = label)
  474. })
  475. # Add scatter plot configuration for this variable
  476. configs[[length(configs) + 1]] <- list(
  477. df = df,
  478. x_var = "conc_num_factor",
  479. y_var = var_info$delta_var,
  480. plot_type = "scatter",
  481. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  482. ylim_vals = var_info$ylim,
  483. annotations = annotations,
  484. lm_line = lm_line, # Precomputed linear model
  485. error_bar = list(
  486. ymin = 0 - (2 * df[[var_info$sd_col]][1]),
  487. ymax = 0 + (2 * df[[var_info$sd_col]][1])
  488. ),
  489. x_breaks = unique(df$conc_num_factor),
  490. x_labels = unique(as.character(df$conc_num)),
  491. x_label = unique(df$Drug[1]),
  492. shape = 3,
  493. size = 0.6,
  494. position = "jitter",
  495. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  496. )
  497. # Add box plot configuration for this variable
  498. configs[[length(configs) + 1]] <- list(
  499. df = df,
  500. x_var = "conc_num_factor",
  501. y_var = variable,
  502. plot_type = "box",
  503. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  504. ylim_vals = var_info$ylim,
  505. annotations = annotations,
  506. error_bar = FALSE, # Boxplots typically don't need error bars
  507. x_breaks = unique(df$conc_num_factor),
  508. x_labels = unique(as.character(df$conc_num)),
  509. x_label = unique(df$Drug[1]),
  510. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  511. )
  512. }
  513. return(configs)
  514. }
  515. # Adjust missing values and calculate ranks
  516. adjust_missing_and_rank <- function(df, variables) {
  517. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  518. df <- df %>%
  519. mutate(across(all_of(variables), list(
  520. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  521. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  522. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  523. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  524. ), .names = "{fn}_{col}"))
  525. return(df)
  526. }
  527. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  528. configs <- list()
  529. # Adjust titles for _lm plots if is_lm is TRUE
  530. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  531. # Annotated version (with text)
  532. for (sd_band in c(1, 2, 3)) {
  533. configs[[length(configs) + 1]] <- list(
  534. df = df,
  535. x_var = rank_var,
  536. y_var = zscore_var,
  537. plot_type = "rank",
  538. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  539. sd_band = sd_band,
  540. enhancer_label = list(
  541. x = nrow(df) / 2, y = 10,
  542. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  543. ),
  544. suppressor_label = list(
  545. x = nrow(df) / 2, y = -10,
  546. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  547. ),
  548. shape = 3,
  549. size = 0.1
  550. )
  551. }
  552. # Non-annotated version (_notext)
  553. for (sd_band in c(1, 2, 3)) {
  554. configs[[length(configs) + 1]] <- list(
  555. df = df,
  556. x_var = rank_var,
  557. y_var = zscore_var,
  558. plot_type = "rank",
  559. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  560. sd_band = sd_band,
  561. enhancer_label = NULL, # No annotations for _notext
  562. suppressor_label = NULL, # No annotations for _notext
  563. shape = 3,
  564. size = 0.1,
  565. position = "jitter"
  566. )
  567. }
  568. return(configs)
  569. }
  570. generate_correlation_plot_configs <- function(df, variables) {
  571. configs <- list()
  572. for (variable in variables) {
  573. z_lm_var <- paste0("Z_lm_", variable)
  574. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  575. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  576. configs[[length(configs) + 1]] <- list(
  577. df = df,
  578. x_var = avg_zscore_var,
  579. y_var = z_lm_var,
  580. plot_type = "correlation",
  581. title = paste("Avg Zscore vs lm", variable),
  582. color_var = "Overlap",
  583. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  584. shape = 3,
  585. geom_smooth = TRUE,
  586. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  587. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  588. legend_position = "right"
  589. )
  590. }
  591. return(configs)
  592. }
  593. main <- function() {
  594. lapply(names(args$experiments), function(exp_name) {
  595. exp <- args$experiments[[exp_name]]
  596. exp_path <- exp$path
  597. exp_sd <- exp$sd
  598. out_dir <- file.path(exp_path, "zscores")
  599. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  600. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  601. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  602. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  603. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  604. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  605. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  606. message("Loading and filtering data")
  607. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  608. df <- update_gene_names(df, args$sgd_gene_list)
  609. df <- as_tibble(df)
  610. # Filter rows that are above tolerance for quality control plots
  611. df_above_tolerance <- df %>% filter(DB == 1)
  612. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  613. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  614. # Remove rows with 0 values in L
  615. df_no_zeros <- df_na %>% filter(L > 0)
  616. # Save some constants
  617. max_conc <- max(df$conc_num_factor)
  618. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  619. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  620. message("Calculating summary statistics before quality control")
  621. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  622. # df_ss <- ss$summary_stats
  623. df_stats <- ss$df_with_stats
  624. df_filtered_stats <- df_stats %>%
  625. {
  626. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  627. if (nrow(non_finite_rows) > 0) {
  628. message("Removed the following non-finite rows:")
  629. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  630. }
  631. filter(., if_all(c(L), is.finite))
  632. }
  633. message("Calculating summary statistics after quality control")
  634. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  635. df_na_ss <- ss$summary_stats
  636. df_na_stats <- ss$df_with_stats
  637. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  638. # Filter out non-finite rows for plotting
  639. df_na_filtered_stats <- df_na_stats %>%
  640. {
  641. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  642. if (nrow(non_finite_rows) > 0) {
  643. message("Removed the following non-finite rows:")
  644. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  645. }
  646. filter(., if_all(c(L), is.finite))
  647. }
  648. message("Calculating summary statistics after quality control excluding zero values")
  649. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  650. df_no_zeros_stats <- ss$df_with_stats
  651. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  652. {
  653. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  654. if (nrow(non_finite_rows) > 0) {
  655. message("Removed the following non-finite rows:")
  656. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  657. }
  658. filter(., if_all(c(L), is.finite))
  659. }
  660. message("Filtering by 2SD of K")
  661. df_na_within_2sd_k <- df_na_stats %>%
  662. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  663. df_na_outside_2sd_k <- df_na_stats %>%
  664. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  665. message("Calculating summary statistics for L within 2SD of K")
  666. # TODO We're omitting the original z_max calculation, not sure if needed?
  667. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  668. l_within_2sd_k_ss <- ss$summary_stats
  669. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  670. write.csv(l_within_2sd_k_ss,
  671. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  672. message("Calculating summary statistics for L outside 2SD of K")
  673. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  674. l_outside_2sd_k_ss <- ss$summary_stats
  675. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  676. write.csv(l_outside_2sd_k_ss,
  677. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  678. # Each plots list corresponds to a file
  679. message("Generating QC plot configurations")
  680. l_vs_k_plots <- list(
  681. list(
  682. df = df,
  683. x_var = "L",
  684. y_var = "K",
  685. plot_type = "scatter",
  686. delta_bg_point = TRUE,
  687. title = "Raw L vs K before quality control",
  688. color_var = "conc_num",
  689. error_bar = FALSE,
  690. legend_position = "right"
  691. )
  692. )
  693. frequency_delta_bg_plots <- list(
  694. list(
  695. df = df_filtered_stats,
  696. x_var = "delta_bg",
  697. y_var = NULL,
  698. plot_type = "density",
  699. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  700. color_var = "conc_num",
  701. x_label = "Delta Background",
  702. y_label = "Density",
  703. error_bar = FALSE,
  704. legend_position = "right"),
  705. list(
  706. df = df_filtered_stats,
  707. x_var = "delta_bg",
  708. y_var = NULL,
  709. plot_type = "bar",
  710. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  711. color_var = "conc_num",
  712. x_label = "Delta Background",
  713. y_label = "Count",
  714. error_bar = FALSE,
  715. legend_position = "right")
  716. )
  717. above_threshold_plots <- list(
  718. list(
  719. df = df_above_tolerance,
  720. x_var = "L",
  721. y_var = "K",
  722. plot_type = "scatter",
  723. delta_bg_point = TRUE,
  724. title = paste("Raw L vs K for strains above Delta Background threshold of",
  725. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  726. color_var = "conc_num",
  727. position = "jitter",
  728. annotations = list(
  729. x = l_half_median,
  730. y = k_half_median,
  731. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  732. ),
  733. error_bar = FALSE,
  734. legend_position = "right"
  735. )
  736. )
  737. plate_analysis_plots <- list()
  738. for (var in summary_vars) {
  739. for (stage in c("before", "after")) {
  740. if (stage == "before") {
  741. df_plot <- df_filtered_stats
  742. } else {
  743. df_plot <- df_na_filtered_stats
  744. }
  745. config <- list(
  746. df = df_plot,
  747. x_var = "scan",
  748. y_var = var,
  749. plot_type = "scatter",
  750. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  751. error_bar = TRUE,
  752. color_var = "conc_num",
  753. position = "jitter")
  754. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  755. }
  756. }
  757. plate_analysis_boxplots <- list()
  758. for (var in summary_vars) {
  759. for (stage in c("before", "after")) {
  760. if (stage == "before") {
  761. df_plot <- df_filtered_stats
  762. } else {
  763. df_plot <- df_na_filtered_stats
  764. }
  765. config <- list(
  766. df = df_plot,
  767. x_var = "scan",
  768. y_var = var,
  769. plot_type = "box",
  770. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  771. error_bar = FALSE, color_var = "conc_num")
  772. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  773. }
  774. }
  775. plate_analysis_no_zeros_plots <- list()
  776. for (var in summary_vars) {
  777. config <- list(
  778. df = df_no_zeros_filtered_stats,
  779. x_var = "scan",
  780. y_var = var,
  781. plot_type = "scatter",
  782. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  783. error_bar = TRUE,
  784. color_var = "conc_num",
  785. position = "jitter")
  786. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  787. }
  788. plate_analysis_no_zeros_boxplots <- list()
  789. for (var in summary_vars) {
  790. config <- list(
  791. df = df_no_zeros_filtered_stats,
  792. x_var = "scan",
  793. y_var = var,
  794. plot_type = "box",
  795. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  796. error_bar = FALSE,
  797. color_var = "conc_num"
  798. )
  799. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  800. }
  801. l_outside_2sd_k_plots <- list(
  802. list(
  803. df = df_na_l_outside_2sd_k_stats,
  804. x_var = "L",
  805. y_var = "K",
  806. plot_type = "scatter",
  807. delta_bg_point = TRUE,
  808. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  809. color_var = "conc_num",
  810. position = "jitter",
  811. legend_position = "right"
  812. )
  813. )
  814. delta_bg_outside_2sd_k_plots <- list(
  815. list(
  816. df = df_na_l_outside_2sd_k_stats,
  817. x_var = "delta_bg",
  818. y_var = "K",
  819. plot_type = "scatter",
  820. gene_point = TRUE,
  821. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  822. color_var = "conc_num",
  823. position = "jitter",
  824. legend_position = "right"
  825. )
  826. )
  827. message("Generating QC plots")
  828. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  829. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  830. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  831. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  832. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  833. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  834. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  835. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  836. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  837. # Clean up
  838. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  839. gc()
  840. # TODO: Originally this filtered L NA's
  841. # Let's try to avoid for now since stats have already been calculated
  842. # Process background strains
  843. bg_strains <- c("YDL227C")
  844. lapply(bg_strains, function(strain) {
  845. message("Processing background strain: ", strain)
  846. # Handle missing data by setting zero values to NA
  847. # and then removing any rows with NA in L col
  848. df_bg <- df_na %>%
  849. filter(OrfRep == strain) %>%
  850. mutate(
  851. L = if_else(L == 0, NA, L),
  852. K = if_else(K == 0, NA, K),
  853. r = if_else(r == 0, NA, r),
  854. AUC = if_else(AUC == 0, NA, AUC)
  855. ) %>%
  856. filter(!is.na(L))
  857. # Recalculate summary statistics for the background strain
  858. message("Calculating summary statistics for background strain")
  859. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  860. summary_stats_bg <- ss_bg$summary_stats
  861. # df_bg_stats <- ss_bg$df_with_stats
  862. write.csv(summary_stats_bg,
  863. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  864. row.names = FALSE)
  865. # Filter reference and deletion strains
  866. # Formerly X2_RF (reference strains)
  867. df_reference <- df_na_stats %>%
  868. filter(OrfRep == strain) %>%
  869. mutate(SM = 0)
  870. # Formerly X2 (deletion strains)
  871. df_deletion <- df_na_stats %>%
  872. filter(OrfRep != strain) %>%
  873. mutate(SM = 0)
  874. # Set the missing values to the highest theoretical value at each drug conc for L
  875. # Leave other values as 0 for the max/min
  876. reference_strain <- df_reference %>%
  877. group_by(conc_num) %>%
  878. mutate(
  879. max_l_theoretical = max(max_L, na.rm = TRUE),
  880. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  881. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  882. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  883. ungroup()
  884. # Ditto for deletion strains
  885. deletion_strains <- df_deletion %>%
  886. group_by(conc_num) %>%
  887. mutate(
  888. max_l_theoretical = max(max_L, na.rm = TRUE),
  889. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  890. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  891. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  892. ungroup()
  893. # Calculate interactions
  894. interaction_vars <- c("L", "K", "r", "AUC")
  895. message("Calculating interaction scores")
  896. # print("Reference strain:")
  897. # print(head(reference_strain))
  898. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  899. # print("Deletion strains:")
  900. # print(head(deletion_strains))
  901. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  902. zscores_calculations_reference <- reference_results$calculations
  903. zscores_interactions_reference <- reference_results$interactions
  904. zscores_calculations <- deletion_results$calculations
  905. zscores_interactions <- deletion_results$interactions
  906. # Writing Z-Scores to file
  907. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  908. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  909. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  910. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  911. # Create interaction plots
  912. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  913. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  914. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  915. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  916. # Define conditions for enhancers and suppressors
  917. # TODO Add to study config file?
  918. threshold <- 2
  919. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  920. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  921. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  922. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  923. # Subset data
  924. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  925. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  926. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  927. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  928. # Save enhancers and suppressors
  929. message("Writing enhancer/suppressor csv files")
  930. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  931. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  932. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  933. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  934. # Combine conditions for enhancers and suppressors
  935. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  936. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  937. # Save combined enhancers and suppressors
  938. write.csv(enhancers_and_suppressors_L,
  939. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  940. write.csv(enhancers_and_suppressors_K,
  941. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  942. # Handle linear model based enhancers and suppressors
  943. lm_threshold <- 2
  944. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  945. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  946. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  947. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  948. # Save linear model based enhancers and suppressors
  949. message("Writing linear model enhancer/suppressor csv files")
  950. write.csv(enhancers_lm_L,
  951. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  952. write.csv(suppressors_lm_L,
  953. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  954. write.csv(enhancers_lm_K,
  955. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  956. write.csv(suppressors_lm_K,
  957. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  958. # TODO needs explanation
  959. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  960. rank_plot_configs <- c(
  961. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  962. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  963. )
  964. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  965. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  966. rank_lm_plot_config <- c(
  967. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  968. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  969. )
  970. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  971. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  972. # Formerly X_NArm
  973. zscores_interactions_filtered <- zscores_interactions %>%
  974. group_by(across(all_of(group_vars))) %>%
  975. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  976. # Final filtered correlation calculations and plots
  977. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  978. mutate(
  979. Overlap = case_when(
  980. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  981. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  982. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  983. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  984. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  985. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  986. TRUE ~ "No Effect"
  987. ),
  988. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  989. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  990. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  991. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  992. ) %>%
  993. ungroup()
  994. rank_plot_configs <- c(
  995. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  996. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  997. )
  998. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  999. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1000. rank_lm_plot_configs <- c(
  1001. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1002. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1003. )
  1004. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1005. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1006. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1007. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1008. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1009. })
  1010. })
  1011. }
  1012. main()