123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518 |
- suppressMessages({
- library("ggplot2")
- library("plotly")
- library("htmlwidgets")
- library("htmltools")
- library("dplyr")
- library("rlang")
- library("ggthemes")
- library("data.table")
- library("gridExtra")
- library("future")
- library("furrr")
- library("purrr")
- })
- # These parallelization libraries are very noisy
- suppressPackageStartupMessages({
- library("future")
- library("furrr")
- library("purrr")
- })
- options(warn = 2)
- # Constants for configuration
- plot_width <- 14
- plot_height <- 9
- base_size <- 14
- parse_arguments <- function() {
- args <- if (interactive()) {
- c(
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
- "Experiment 1: Doxo versus HLD",
- 3,
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
- "Experiment 2: HLD versus Doxo",
- 3
- )
- } else {
- commandArgs(trailingOnly = TRUE)
- }
- out_dir <- normalizePath(args[1], mustWork = FALSE)
- sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
- easy_results_file <- normalizePath(args[3], mustWork = FALSE)
- # The remaining arguments should be in groups of 3
- exp_args <- args[-(1:3)]
- if (length(exp_args) %% 3 != 0) {
- stop("Experiment arguments should be in groups of 3: path, name, sd.")
- }
- # Extract the experiments into a list
- experiments <- list()
- for (i in seq(1, length(exp_args), by = 3)) {
- exp_name <- exp_args[i + 1]
- experiments[[exp_name]] <- list(
- path = normalizePath(exp_args[i], mustWork = FALSE),
- sd = as.numeric(exp_args[i + 2])
- )
- }
- # Extract the trailing number from each path
- trailing_numbers <- sapply(experiments, function(x) {
- path <- x$path
- nums <- gsub("[^0-9]", "", basename(path))
- as.integer(nums)
- })
- # Sort the experiments based on the trailing numbers
- sorted_experiments <- experiments[order(trailing_numbers)]
- list(
- out_dir = out_dir,
- sgd_gene_list = sgd_gene_list,
- easy_results_file = easy_results_file,
- experiments = sorted_experiments
- )
- }
- args <- parse_arguments()
- # Should we keep output in exp dirs or combine in the study output dir?
- # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
- # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
- theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
- # Ensure that legend_position has a valid value or default to "none"
- legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
-
- theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
-
- theme_foundation %+replace%
- theme(
- plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
- text = element_text(),
- panel.background = element_blank(),
- plot.background = element_blank(),
- panel.border = element_blank(),
- axis.title = element_text(face = "bold", size = rel(1.4)),
- axis.title.y = element_text(angle = 90, vjust = 2),
- axis.text = element_text(size = rel(1.2)),
- axis.line = element_line(colour = "black"),
- panel.grid.major = element_line(colour = "#f0f0f0"),
- panel.grid.minor = element_blank(),
- legend.key = element_rect(colour = NA),
- legend.position = legend_position,
- legend.direction =
- if (legend_position == "right") {
- "vertical"
- } else if (legend_position == "bottom") {
- "horizontal"
- } else {
- NULL # No legend direction if position is "none" or other values
- },
- legend.spacing = unit(0, "cm"),
- legend.title = element_text(face = "italic", size = rel(1.3)),
- legend.text = element_text(size = rel(1.2)),
- plot.margin = unit(c(10, 5, 5, 5), "mm")
- )
- }
- scale_fill_publication <- function(...) {
- discrete_scale("fill", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- scale_colour_publication <- function(...) {
- discrete_scale("colour", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- # Load the initial dataframe from the easy_results_file
- load_and_filter_data <- function(easy_results_file, sd = 3) {
- df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
- df <- df %>%
- filter(!(.[[1]] %in% c("", "Scan"))) %>%
- filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
- # Rename columns
- rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
- mutate(
- across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
- delta_bg = last_bg - first_bg,
- delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
- NG = if_else(L == 0 & !is.na(L), 1, 0),
- DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
- SM = 0,
- OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
- conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
- conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
- conc_num_factor_factor = as.factor(conc_num)
- )
- # Set the max concentration across the whole dataframe
- max_conc <- max(df$conc_num_factor, na.rm = TRUE)
- df <- df %>%
- mutate(max_conc = max_conc)
- return(df)
- }
- # Update Gene names using the SGD gene list
- update_gene_names <- function(df, sgd_gene_list) {
- # Load SGD gene list
- genes <- read.delim(file = sgd_gene_list,
- quote = "", header = FALSE,
- colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
-
- # Create a named vector for mapping ORF to GeneName
- gene_map <- setNames(genes$V5, genes$V4)
- # Vectorized match to find the GeneName from gene_map
- mapped_genes <- gene_map[df$ORF]
- # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
- updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
- # Ensure Gene is not left blank or incorrectly updated to "OCT1"
- df <- df %>%
- mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
-
- return(df)
- }
- calculate_summary_stats <- function(df, variables, group_vars) {
- summary_stats <- df %>%
- group_by(across(all_of(group_vars))) %>%
- summarise(
- N = n(),
- across(all_of(variables),
- list(
- mean = ~ mean(.x, na.rm = TRUE),
- median = ~ median(.x, na.rm = TRUE),
- max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
- min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
- sd = ~ sd(.x, na.rm = TRUE),
- se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
- ),
- .names = "{.fn}_{.col}"
- ),
- .groups = "drop"
- )
-
- # Create a cleaned version of df that doesn't overlap with summary_stats
- cleaned_df <- df %>%
- select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
-
- df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
- return(list(summary_stats = summary_stats, df_with_stats = df_joined))
- }
- calculate_interaction_scores <- function(df, bg_df, group_vars, overlap_threshold = 2) {
- bg_df_selected <- bg_df %>%
- select(OrfRep, conc_num, conc_num_factor, conc_num_factor_factor,
- mean_L, mean_K, mean_r, mean_AUC, sd_L, sd_K, sd_r, sd_AUC
- )
- df <- df %>%
- left_join(bg_df_selected, by = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"),
- suffix = c("", "_bg"))
- # Calculate total concentration variables
- total_conc_num <- length(unique(df$conc_num))
-
- # Initial calculations
- calculations <- df %>%
- group_by(across(all_of(group_vars))) %>%
- mutate(
- NG = sum(NG, na.rm = TRUE),
- DB = sum(DB, na.rm = TRUE),
- SM = sum(SM, na.rm = TRUE),
- num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
- # Assign WT values from the background data
- WT_L = mean_L_bg,
- WT_K = mean_K_bg,
- WT_r = mean_r_bg,
- WT_AUC = mean_AUC_bg,
- WT_sd_L = sd_L_bg,
- WT_sd_K = sd_K_bg,
- WT_sd_r = sd_r_bg,
- WT_sd_AUC = sd_AUC_bg,
-
- # Calculate raw data
- Raw_Shift_L = first(mean_L) - first(mean_L_bg),
- Raw_Shift_K = first(mean_K) - first(mean_K_bg),
- Raw_Shift_r = first(mean_r) - first(mean_r_bg),
- Raw_Shift_AUC = first(mean_AUC) - first(mean_AUC_bg),
- Z_Shift_L = Raw_Shift_L / first(sd_L_bg),
- Z_Shift_K = Raw_Shift_K / first(sd_K_bg),
- Z_Shift_r = Raw_Shift_r / first(sd_r_bg),
- Z_Shift_AUC = Raw_Shift_AUC / first(sd_AUC_bg),
-
- # Expected values
- Exp_L = WT_L + Raw_Shift_L,
- Exp_K = WT_K + Raw_Shift_K,
- Exp_r = WT_r + Raw_Shift_r,
- Exp_AUC = WT_AUC + Raw_Shift_AUC,
-
- # Deltas
- Delta_L = mean_L - Exp_L,
- Delta_K = mean_K - Exp_K,
- Delta_r = mean_r - Exp_r,
- Delta_AUC = mean_AUC - Exp_AUC,
- Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
- Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
- Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
- Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
- Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
-
- # Calculate Z-scores
- Zscore_L = Delta_L / WT_sd_L,
- Zscore_K = Delta_K / WT_sd_K,
- Zscore_r = Delta_r / WT_sd_r,
- Zscore_AUC = Delta_AUC / WT_sd_AUC
- ) %>%
- group_modify(~ {
- # Perform linear models
- lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
- lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
- lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
- lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
-
- .x %>%
- mutate(
- lm_intercept_L = coef(lm_L)[1],
- lm_slope_L = coef(lm_L)[2],
- R_Squared_L = summary(lm_L)$r.squared,
- lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
-
- lm_intercept_K = coef(lm_K)[1],
- lm_slope_K = coef(lm_K)[2],
- R_Squared_K = summary(lm_K)$r.squared,
- lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
-
- lm_intercept_r = coef(lm_r)[1],
- lm_slope_r = coef(lm_r)[2],
- R_Squared_r = summary(lm_r)$r.squared,
- lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
-
- lm_intercept_AUC = coef(lm_AUC)[1],
- lm_slope_AUC = coef(lm_AUC)[2],
- R_Squared_AUC = summary(lm_AUC)$r.squared,
- lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
- )
- }) %>%
- ungroup()
- # Summary statistics for lm scores
- lm_means_sds <- calculations %>%
- group_by(across(all_of(group_vars))) %>%
- summarise(
- mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
- sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
- mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
- sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
- mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
- sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
- mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
- sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
- )
-
- # Continue with gene Z-scores and interactions
- calculations <- calculations %>%
- left_join(lm_means_sds, by = group_vars) %>%
- group_by(across(all_of(group_vars))) %>%
- mutate(
- Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
- Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
- Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
- Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
- )
- # Build summary stats (interactions)
- interactions <- calculations %>%
- group_by(across(all_of(group_vars))) %>%
- summarise(
- Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
- Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
- Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
- Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
-
- # Interaction Z-scores
- Z_lm_L = first(Z_lm_L),
- Z_lm_K = first(Z_lm_K),
- Z_lm_r = first(Z_lm_r),
- Z_lm_AUC = first(Z_lm_AUC),
-
- # Raw Shifts
- Raw_Shift_L = first(Raw_Shift_L),
- Raw_Shift_K = first(Raw_Shift_K),
- Raw_Shift_r = first(Raw_Shift_r),
- Raw_Shift_AUC = first(Raw_Shift_AUC),
-
- # Z Shifts
- Z_Shift_L = first(Z_Shift_L),
- Z_Shift_K = first(Z_Shift_K),
- Z_Shift_r = first(Z_Shift_r),
- Z_Shift_AUC = first(Z_Shift_AUC),
-
- # NG, DB, SM values
- NG = first(NG),
- DB = first(DB),
- SM = first(SM)
- )
- # Creating the final calculations and interactions dataframes with only required columns for csv output
- calculations_df <- calculations %>%
- select(
- all_of(group_vars),
- conc_num, conc_num_factor, conc_num_factor_factor,
- N, NG, DB, SM,
- mean_L, median_L, sd_L, se_L,
- mean_K, median_K, sd_K, se_K,
- mean_r, median_r, sd_r, se_r,
- mean_AUC, median_AUC, sd_AUC, se_AUC,
- Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
- Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
- WT_L, WT_K, WT_r, WT_AUC,
- WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
- Exp_L, Exp_K, Exp_r, Exp_AUC,
- Delta_L, Delta_K, Delta_r, Delta_AUC,
- Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
- )
- interactions_df <- interactions %>%
- select(
- all_of(group_vars),
- NG, DB, SM,
- Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
- Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
- Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
- Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
- )
- calculations_no_overlap <- calculations %>%
- # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
- select(-any_of(c(
- "DB", "NG", "SM",
- "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
- "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
- "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
- )))
- # Use left_join to avoid dimension mismatch issues
- full_data <- calculations_no_overlap %>%
- left_join(interactions, by = group_vars)
- # Return full_data and the two required dataframes (calculations and interactions)
- return(list(
- calculations = calculations_df,
- interactions = interactions_df,
- full_data = full_data
- ))
- }
- generate_and_save_plots <- function(out_dir, filename, plot_configs) {
- message("Generating ", filename, ".pdf and ", filename, ".html")
- # Check if we're dealing with multiple plot groups
- plot_groups <- if ("plots" %in% names(plot_configs)) {
- list(plot_configs) # Single group
- } else {
- plot_configs # Multiple groups
- }
- # Open the PDF device once for all plots
- pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
- # Loop through each plot group
- for (group in plot_groups) {
- static_plots <- list()
- plotly_plots <- list()
- grid_layout <- group$grid_layout
- plots <- group$plots
- for (i in seq_along(plots)) {
- config <- plots[[i]]
- df <- config$df
- # Set up aes mapping based on plot type
- aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
- if (!is.null(config$color_var)) {
- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
- } else {
- aes(x = .data[[config$x_var]])
- }
- } else {
- if (!is.null(config$y_var) && !is.null(config$color_var)) {
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
- } else if (!is.null(config$y_var)) {
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
- } else {
- aes(x = .data[[config$x_var]])
- }
- }
- plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
- # Add appropriate plot layer based on plot type
- plot <- switch(config$plot_type,
- "scatter" = generate_scatter_plot(plot, config),
- "box" = generate_boxplot(plot, config),
- "density" = plot + geom_density(),
- "bar" = plot + geom_bar(),
- plot # default (unused)
- )
- # Add labels and title
- if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
- if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
- if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
- if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
- # Add error bars if specified
- if (!is.null(config$error_bar) && config$error_bar) {
- error_bar_color <- if (!is.null(config$error_bar_params$color)) {
- config$error_bar_params$color
- } else {
- "red"
- }
- y_mean_prefix <- if (!is.null(config$error_bar_params$y_mean_prefix)) {
- config$error_bar_params$y_mean_prefix
- } else {
- "mean_"
- }
- y_mean_col <- paste0(y_mean_prefix, config$y_var)
- # Dynamically set y_sd_col based on the provided prefix in error_bar_params
- y_sd_prefix <- if (!is.null(config$error_bar_params$y_sd_prefix)) {
- config$error_bar_params$y_sd_prefix
- } else {
- "sd_"
- }
- y_sd_col <- paste0(y_sd_prefix, config$y_var)
- if (!is.null(config$error_bar_params$center_point)) {
- plot <- plot + geom_point(aes(
- x = .data[[config$x_var]],
- y = first(.data[[y_mean_col]])),
- color = error_bar_color,
- shape = 16)
- }
- # Use error_bar_params if provided, otherwise calculate from mean and sd
- if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
- plot <- plot + geom_errorbar(aes(
- ymin = config$error_bar_params$ymin,
- ymax = config$error_bar_params$ymax),
- color = error_bar_color)
- } else {
- plot <- plot + geom_errorbar(aes(
- ymin = first(.data[[y_mean_col]]) - first(.data[[y_sd_col]]),
- ymax = first(.data[[y_mean_col]]) + first(.data[[y_sd_col]])),
- color = error_bar_color)
- }
- }
- # Convert ggplot to plotly for interactive version
- plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
- # Store both static and interactive versions
- static_plots[[i]] <- plot
- plotly_plots[[i]] <- plotly_plot
- }
- # Print the plots in the current group to the PDF
- if (is.null(grid_layout)) {
- # Print each plot individually on separate pages if no grid layout is specified
- for (plot in static_plots) {
- print(plot)
- }
- } else {
- # Arrange plots in grid layout on a single page
- grid.arrange(
- grobs = static_plots,
- ncol = grid_layout$ncol,
- nrow = grid_layout$nrow
- )
- }
- }
- # Close the PDF device after all plots are done
- dev.off()
- # Save HTML file with interactive plots if needed
- out_html_file <- file.path(out_dir, paste0(filename, ".html"))
- message("Saving combined HTML file: ", out_html_file)
- htmltools::save_html(
- htmltools::tagList(plotly_plots),
- file = out_html_file
- )
- }
- generate_scatter_plot <- function(plot, config) {
- # Define the points
- shape <- if (!is.null(config$shape)) config$shape else 3
- size <- if (!is.null(config$size)) config$size else 1.5
- position <-
- if (!is.null(config$position) && config$position == "jitter") {
- position_jitter(width = 0.4, height = 0.1)
- } else {
- "identity"
- }
- plot <- plot + geom_point(
- shape = shape,
- size = size,
- position = position
- )
- if (!is.null(config$cyan_points) && config$cyan_points) {
- plot <- plot + geom_point(
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
- color = "cyan",
- shape = 3,
- size = 0.5
- )
- }
-
- # Add Smooth Line if specified
- if (!is.null(config$smooth) && config$smooth) {
- smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
-
- if (!is.null(config$lm_line)) {
- plot <- plot +
- geom_abline(
- intercept = config$lm_line$intercept,
- slope = config$lm_line$slope,
- color = smooth_color
- )
- } else {
- plot <- plot +
- geom_smooth(
- method = "lm",
- se = FALSE,
- color = smooth_color
- )
- }
- }
-
- # Add SD Bands if specified
- if (!is.null(config$sd_band)) {
- plot <- plot +
- annotate(
- "rect",
- xmin = -Inf, xmax = Inf,
- ymin = config$sd_band, ymax = Inf,
- fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
- alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
- ) +
- annotate(
- "rect",
- xmin = -Inf, xmax = Inf,
- ymin = -config$sd_band, ymax = -Inf,
- fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
- alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
- ) +
- geom_hline(
- yintercept = c(-config$sd_band, config$sd_band),
- color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
- )
- }
- # Add Rectangles if specified
- if (!is.null(config$rectangles)) {
- for (rect in config$rectangles) {
- plot <- plot + annotate(
- "rect",
- xmin = rect$xmin,
- xmax = rect$xmax,
- ymin = rect$ymin,
- ymax = rect$ymax,
- fill = ifelse(is.null(rect$fill), NA, rect$fill),
- color = ifelse(is.null(rect$color), "black", rect$color),
- alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
- )
- }
- }
- # Customize X-axis if specified
- if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
- # Check if x_var is factor or character (for discrete x-axis)
- if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
- plot <- plot +
- scale_x_discrete(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- } else {
- plot <- plot +
- scale_x_continuous(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- }
- }
-
- # Set Y-axis limits if specified
- if (!is.null(config$ylim_vals)) {
- plot <- plot + scale_y_continuous(limits = config$ylim_vals)
- }
-
- # Add annotations if specified
- if (!is.null(config$annotations)) {
- for (annotation in config$annotations) {
- plot <- plot +
- annotate(
- "text",
- x = annotation$x,
- y = annotation$y,
- label = annotation$label,
- hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
- vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
- size = ifelse(is.null(annotation$size), 3, annotation$size),
- color = ifelse(is.null(annotation$color), "black", annotation$color)
- )
- }
- }
-
- return(plot)
- }
- generate_boxplot <- function(plot, config) {
- # Convert x_var to a factor within aes mapping
- plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
- # Customize X-axis if specified
- if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
- # Check if x_var is factor or character (for discrete x-axis)
- if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
- plot <- plot +
- scale_x_discrete(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- } else {
- plot <- plot +
- scale_x_continuous(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- }
- }
- return(plot)
- }
- generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
- plot_type = "scatter", stages = c("before", "after")) {
- plot_configs <- list()
-
- for (var in variables) {
- for (stage in stages) {
- df_plot <- if (stage == "before") df_before else df_after
- # Check for non-finite values in the y-variable
- df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
- # Adjust settings based on plot_type
- plot_config <- list(
- df = df_plot_filtered,
- x_var = "scan",
- y_var = var,
- plot_type = plot_type,
- title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
- color_var = "conc_num_factor_factor",
- position = if (plot_type == "scatter") "jitter" else NULL,
- size = 0.2,
- error_bar = (plot_type == "scatter")
- )
- # Add config to plots list
- plot_configs <- append(plot_configs, list(plot_config))
- }
- }
- return(list(plots = plot_configs))
- }
- generate_interaction_plot_configs <- function(df, type) {
- # Define the y-limits for the plots
- limits_map <- list(
- L = c(0, 130),
- K = c(-20, 160),
- r = c(0, 1),
- AUC = c(0, 12500)
- )
-
- stats_plot_configs <- list()
- stats_boxplot_configs <- list()
- delta_plot_configs <- list()
- # Overall statistics plots
- OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
- for (plot_type in c("scatter", "box")) {
- for (var in names(limits_map)) {
- y_limits <- limits_map[[var]]
- y_span <- y_limits[2] - y_limits[1]
- # Common plot configuration
- plot_config <- list(
- df = df,
- x_var = "conc_num_factor_factor",
- y_var = var,
- shape = 16,
- x_label = unique(df$Drug)[1],
- coord_cartesian = y_limits,
- x_breaks = unique(df$conc_num_factor_factor),
- x_labels = as.character(unique(df$conc_num))
- )
- # Add specific configurations for scatter and box plots
- if (plot_type == "scatter") {
- plot_config$plot_type <- "scatter"
- plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
- plot_config$error_bar <- TRUE
- plot_config$error_bar_params <- list(
- y_sd_prefix = "WT_sd_",
- y_mean_prefix = "mean_",
- color = "red",
- center_point = TRUE
- )
- plot_config$position <- "jitter"
- annotations <- list(
- list(x = 0.25, y = y_limits[1] + 0.1 * y_span, label = "NG ="), # Slightly above y-min
- list(x = 0.25, y = y_limits[1] + 0.05 * y_span, label = "DB ="),
- list(x = 0.25, y = y_limits[1], label = "SM =")
- )
- # Loop over unique x values and add NG, DB, SM values at calculated y positions
- for (x_val in unique(df$conc_num_factor_factor)) {
- current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
- annotations <- append(annotations, list(
- list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
- list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
- list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
- ))
- }
- plot_config$annotations <- annotations
-
- # Append to scatter plot configurations
- stats_plot_configs <- append(stats_plot_configs, list(plot_config))
- } else if (plot_type == "box") {
- plot_config$plot_type <- "box"
- plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
- plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
- # Append to boxplot configurations
- stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
- }
- }
- }
- # Delta interaction plots
- if (type == "reference") {
- group_vars <- c("OrfRep", "Gene", "num")
- } else if (type == "deletion") {
- group_vars <- c("OrfRep", "Gene")
- }
- delta_limits_map <- list(
- L = c(-60, 60),
- K = c(-60, 60),
- r = c(-0.6, 0.6),
- AUC = c(-6000, 6000)
- )
- grouped_data <- df %>%
- group_by(across(all_of(group_vars))) %>%
- group_split()
- for (group_data in grouped_data) {
- OrfRep <- first(group_data$OrfRep)
- Gene <- first(group_data$Gene)
- num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
- if (type == "reference") {
- OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
- } else if (type == "deletion") {
- OrfRepTitle <- OrfRep
- }
- for (var in names(delta_limits_map)) {
- y_limits <- delta_limits_map[[var]]
- y_span <- y_limits[2] - y_limits[1]
- # Error bars
- WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
- # Z_Shift and lm values
- Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
- Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
- R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
- # NG, DB, SM values
- NG_value <- first(group_data$NG, default = 0)
- DB_value <- first(group_data$DB, default = 0)
- SM_value <- first(group_data$SM, default = 0)
- # Use the pre-calculated lm intercept and slope from the dataframe
- lm_intercept_col <- paste0("lm_intercept_", var)
- lm_slope_col <- paste0("lm_slope_", var)
- lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
- lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
- plot_config <- list(
- df = group_data,
- plot_type = "scatter",
- x_var = "conc_num_factor_factor",
- y_var = var,
- x_label = unique(group_data$Drug)[1],
- title = paste(OrfRepTitle, Gene, num, sep = " "),
- coord_cartesian = y_limits,
- annotations = list(
- list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
- list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
- list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
- list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
- list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
- list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
- ),
- error_bar = TRUE,
- error_bar_params = list(
- ymin = 0 - (2 * WT_sd_value),
- ymax = 0 + (2 * WT_sd_value),
- color = "black"
- ),
- smooth = TRUE,
- x_breaks = unique(group_data$conc_num_factor_factor),
- x_labels = as.character(unique(group_data$conc_num)),
- ylim_vals = y_limits,
- lm_line = list(
- intercept = lm_intercept_value,
- slope = lm_slope_value
- )
- )
- delta_plot_configs <- append(delta_plot_configs, list(plot_config))
- }
- }
- # Calculate dynamic grid layout
- grid_ncol <- 4
- num_plots <- length(delta_plot_configs)
- grid_nrow <- ceiling(num_plots / grid_ncol)
- return(list(
- list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
- list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
- list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
- ))
- }
- generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
- sd_bands <- c(1, 2, 3)
- plot_configs <- list()
-
- variables <- c("L", "K")
- # Adjust (if necessary) and rank columns
- for (variable in variables) {
- if (adjust) {
- df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
- df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
- }
- df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
- df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
- }
- # Helper function to create a plot configuration
- create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
- num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
- num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
-
- # Default plot config
- plot_config <- list(
- df = df,
- x_var = rank_var,
- y_var = zscore_var,
- plot_type = "scatter",
- title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
- sd_band = sd_band,
- fill_positive = "#542788",
- fill_negative = "orange",
- alpha_positive = 0.3,
- alpha_negative = 0.3,
- annotations = NULL,
- shape = 3,
- size = 0.1,
- y_label = y_label,
- x_label = "Rank",
- legend_position = "none"
- )
-
- if (with_annotations) {
- # Add specific annotations for plots with annotations
- plot_config$annotations <- list(
- list(
- x = median(df[[rank_var]], na.rm = TRUE),
- y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
- label = paste("Deletion Enhancers =", num_enhancers)
- ),
- list(
- x = median(df[[rank_var]], na.rm = TRUE),
- y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
- label = paste("Deletion Suppressors =", num_suppressors)
- )
- )
- }
- return(plot_config)
- }
- # Generate plots for each variable
- for (variable in variables) {
- rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
- zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
- y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
-
- # Loop through SD bands
- for (sd_band in sd_bands) {
- # Create plot with annotations
- plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
-
- # Create plot without annotations
- plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
- }
- }
- # Calculate dynamic grid layout based on the number of plots
- grid_ncol <- 3
- num_plots <- length(plot_configs)
- grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
- return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
- }
- generate_correlation_plot_configs <- function(df, correlation_stats) {
- # Define relationships for different-variable correlations
- relationships <- list(
- list(x = "L", y = "K"),
- list(x = "L", y = "r"),
- list(x = "L", y = "AUC"),
- list(x = "K", y = "r"),
- list(x = "K", y = "AUC"),
- list(x = "r", y = "AUC")
- )
- plot_configs <- list()
- # Iterate over the option to highlight cyan points (TRUE/FALSE)
- highlight_cyan_options <- c(FALSE, TRUE)
- for (highlight_cyan in highlight_cyan_options) {
- for (rel in relationships) {
- # Extract relevant variable names for Z_lm values
- x_var <- paste0("Z_lm_", rel$x)
- y_var <- paste0("Z_lm_", rel$y)
- # Access the correlation statistics from the correlation_stats list
- relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
- stats <- correlation_stats[[relationship_name]]
- intercept <- stats$intercept
- slope <- stats$slope
- r_squared <- stats$r_squared
- # Generate the label for the plot
- plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
- # Construct plot config
- plot_config <- list(
- df = df,
- x_var = x_var,
- y_var = y_var,
- plot_type = "scatter",
- title = plot_label,
- annotations = list(
- list(
- x = mean(df[[x_var]], na.rm = TRUE),
- y = mean(df[[y_var]], na.rm = TRUE),
- label = paste("R-squared =", round(r_squared, 3))
- )
- ),
- smooth = TRUE,
- smooth_color = "tomato3",
- lm_line = list(
- intercept = intercept,
- slope = slope
- ),
- shape = 3,
- size = 0.5,
- color_var = "Overlap",
- cyan_points = highlight_cyan # Include cyan points or not based on the loop
- )
- plot_configs <- append(plot_configs, list(plot_config))
- }
- }
- return(list(plots = plot_configs))
- }
- main <- function() {
- lapply(names(args$experiments), function(exp_name) {
- exp <- args$experiments[[exp_name]]
- exp_path <- exp$path
- exp_sd <- exp$sd
- out_dir <- file.path(exp_path, "zscores")
- out_dir_qc <- file.path(exp_path, "zscores", "qc")
- dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
- dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
-
- # Each list of plots corresponds to a separate file
- message("Loading and filtering data for experiment: ", exp_name)
- df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
- update_gene_names(args$sgd_gene_list) %>%
- as_tibble()
- l_vs_k_plot_configs <- list(
- plots = list(
- list(
- df = df,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
- title = "Raw L vs K before quality control",
- color_var = "conc_num_factor_factor",
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- )
- message("Calculating summary statistics before quality control")
- df_stats <- calculate_summary_stats(
- df = df,
- variables = c("L", "K", "r", "AUC", "delta_bg"),
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
- frequency_delta_bg_plot_configs <- list(
- plots = list(
- list(
- df = df_stats,
- x_var = "delta_bg",
- y_var = NULL,
- plot_type = "density",
- title = "Density plot for Delta Background by [Drug] (All Data)",
- color_var = "conc_num_factor_factor",
- x_label = "Delta Background",
- y_label = "Density",
- error_bar = FALSE,
- legend_position = "right"
- ),
- list(
- df = df_stats,
- x_var = "delta_bg",
- y_var = NULL,
- plot_type = "bar",
- title = "Bar plot for Delta Background by [Drug] (All Data)",
- color_var = "conc_num_factor_factor",
- x_label = "Delta Background",
- y_label = "Count",
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- )
- message("Filtering rows above delta background tolerance for plotting")
- df_above_tolerance <- df %>% filter(DB == 1)
- above_threshold_plot_configs <- list(
- plots = list(
- list(
- df = df_above_tolerance,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
- title = paste("Raw L vs K for strains above Delta Background threshold of",
- round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
- color_var = "conc_num_factor_factor",
- position = "jitter",
- annotations = list(
- list(
- x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
- y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
- label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
- )
- ),
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- )
-
- message("Setting rows above delta background tolerance to NA")
- df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
-
- message("Calculating summary statistics across all strains")
- ss <- calculate_summary_stats(
- df = df_na,
- variables = c("L", "K", "r", "AUC", "delta_bg"),
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
- df_na_ss <- ss$summary_stats
- df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
- write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
- # This can help bypass missing values ggplot warnings during testing
- df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
- message("Calculating summary statistics excluding zero values")
- df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
- df_no_zeros_stats <- calculate_summary_stats(
- df = df_no_zeros,
- variables = c("L", "K", "r", "AUC", "delta_bg"),
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
- )$df_with_stats
- message("Filtering by 2SD of K")
- df_na_within_2sd_k <- df_na_stats %>%
- filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
- df_na_outside_2sd_k <- df_na_stats %>%
- filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
- message("Calculating summary statistics for L within 2SD of K")
- # TODO We're omitting the original z_max calculation, not sure if needed?
- ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
- write.csv(ss,
- file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
- row.names = FALSE)
-
- message("Calculating summary statistics for L outside 2SD of K")
- ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
- df_na_l_outside_2sd_k_stats <- ss$df_with_stats
- write.csv(ss$summary_stats,
- file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
- row.names = FALSE)
- plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
- variables = c("L", "K", "r", "AUC", "delta_bg"),
- df_before = df_stats,
- df_after = df_na_stats_filtered
- )
- plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
- variables = c("L", "K", "r", "AUC", "delta_bg"),
- df_before = df_stats,
- df_after = df_na_stats_filtered,
- plot_type = "box"
- )
- plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
- variables = c("L", "K", "r", "AUC", "delta_bg"),
- stages = c("after"), # Only after QC
- df_after = df_no_zeros_stats
- )
- plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
- variables = c("L", "K", "r", "AUC", "delta_bg"),
- stages = c("after"), # Only after QC
- df_after = df_no_zeros_stats,
- plot_type = "box"
- )
- l_outside_2sd_k_plot_configs <- list(
- plots = list(
- list(
- df = df_na_l_outside_2sd_k_stats,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num_factor_factor",
- position = "jitter",
- tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
- annotations = list(
- list(
- x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
- y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
- label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
- )
- ),
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- )
- delta_bg_outside_2sd_k_plot_configs <- list(
- plots = list(
- list(
- df = df_na_l_outside_2sd_k_stats,
- x_var = "delta_bg",
- y_var = "K",
- plot_type = "scatter",
- title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num_factor_factor",
- position = "jitter",
- tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
- annotations = list(
- list(
- x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
- y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
- label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
- )
- ),
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- )
- message("Generating quality control plots in parallel")
- # future::plan(future::multicore, workers = parallel::detectCores())
- future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
- plot_configs <- list(
- list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
- plot_configs = l_vs_k_plot_configs),
- list(out_dir = out_dir_qc, filename = "frequency_delta_background",
- plot_configs = frequency_delta_bg_plot_configs),
- list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
- plot_configs = above_threshold_plot_configs),
- list(out_dir = out_dir_qc, filename = "plate_analysis",
- plot_configs = plate_analysis_plot_configs),
- list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
- plot_configs = plate_analysis_boxplot_configs),
- list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
- plot_configs = plate_analysis_no_zeros_plot_configs),
- list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
- plot_configs = plate_analysis_no_zeros_boxplot_configs),
- list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
- plot_configs = l_outside_2sd_k_plot_configs),
- list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
- plot_configs = delta_bg_outside_2sd_k_plot_configs)
- )
- # Generating quality control plots in parallel
- # furrr::future_map(plot_configs, function(config) {
- # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
- # }, .options = furrr_options(seed = TRUE))
- bg_strains <- c("YDL227C")
- lapply(bg_strains, function(strain) {
- message("Processing background strain: ", strain)
-
- # Handle missing data by setting zero values to NA
- # and then removing any rows with NA in L col
- df_bg <- df_na %>%
- filter(OrfRep == strain) %>%
- mutate(
- L = if_else(L == 0, NA, L),
- K = if_else(K == 0, NA, K),
- r = if_else(r == 0, NA, r),
- AUC = if_else(AUC == 0, NA, AUC)
- ) %>%
- filter(!is.na(L))
-
- message("Calculating summary statistics for background strain")
- ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
- group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
- summary_stats_bg <- ss_bg$summary_stats
- df_bg_stats <- ss_bg$df_with_stats
- write.csv(
- summary_stats_bg,
- file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
- row.names = FALSE)
-
- message("Setting missing reference values to the highest theoretical value at each drug conc for L")
- df_reference <- df_na_stats %>% # formerly X2_RF
- filter(OrfRep == strain) %>%
- filter(!is.na(L)) %>%
- group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- message("Calculating reference strain interaction scores")
- df_reference_stats <- calculate_summary_stats(
- df = df_reference,
- variables = c("L", "K", "r", "AUC"),
- group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
- )$df_with_stats
- reference_results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "num"))
- zscore_calculations_reference <- reference_results$calculations
- zscore_interactions_reference <- reference_results$interactions
- zscore_interactions_reference_joined <- reference_results$full_data
- message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
- df_deletion <- df_na_stats %>% # formerly X2
- filter(OrfRep != strain) %>%
- filter(!is.na(L)) %>%
- group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- message("Calculating deletion strain(s) interactions scores")
- df_deletion_stats <- calculate_summary_stats(
- df = df_deletion,
- variables = c("L", "K", "r", "AUC"),
- group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
- )$df_with_stats
- deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene"))
- zscore_calculations <- deletion_results$calculations
- zscore_interactions <- deletion_results$interactions
- zscore_interactions_joined <- deletion_results$full_data
- # Writing Z-Scores to file
- write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
- write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
- write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
- write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
- # Create interaction plots
- message("Generating reference interaction plots")
- reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
- generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
- message("Generating deletion interaction plots")
- deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
- generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
- # Define conditions for enhancers and suppressors
- # TODO Add to study config?
- threshold <- 2
- enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
- suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
- enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
- suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
-
- # Subset data
- enhancers_L <- zscore_interactions[enhancer_condition_L, ]
- suppressors_L <- zscore_interactions[suppressor_condition_L, ]
- enhancers_K <- zscore_interactions[enhancer_condition_K, ]
- suppressors_K <- zscore_interactions[suppressor_condition_K, ]
-
- # Save enhancers and suppressors
- message("Writing enhancer/suppressor csv files")
- write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
- write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
- write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
-
- # Combine conditions for enhancers and suppressors
- enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
- enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
-
- # Save combined enhancers and suppressors
- write.csv(enhancers_and_suppressors_L,
- file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_and_suppressors_K,
- file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
-
- # Handle linear model based enhancers and suppressors
- lm_threshold <- 2 # TODO add to study config?
- enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
- suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
- enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
- suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
-
- # Save linear model based enhancers and suppressors
- message("Writing linear model enhancer/suppressor csv files")
- write.csv(enhancers_lm_L,
- file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
- write.csv(suppressors_lm_L,
- file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
- write.csv(enhancers_lm_K,
- file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
- write.csv(suppressors_lm_K,
- file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
- message("Generating rank plots")
- rank_plot_configs <- generate_rank_plot_configs(
- df = zscore_interactions_joined,
- is_lm = FALSE,
- adjust = TRUE
- )
- generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
- plot_configs = rank_plot_configs)
- message("Generating ranked linear model plots")
- rank_lm_plot_configs <- generate_rank_plot_configs(
- df = zscore_interactions_joined,
- is_lm = TRUE,
- adjust = TRUE
- )
- generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
- plot_configs = rank_lm_plot_configs)
- message("Generating filtered ranked plots")
- rank_plot_filtered_configs <- generate_rank_plot_configs(
- df = zscore_interactions_filtered,
- is_lm = FALSE,
- adjust = FALSE,
- overlap_color = TRUE
- )
- generate_and_save_plots(
- out_dir = out_dir,
- filename = "RankPlots_na_rm",
- plot_configs = rank_plot_filtered_configs)
- message("Generating filtered ranked linear model plots")
- rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
- df = zscore_interactions_filtered,
- is_lm = TRUE,
- adjust = FALSE,
- overlap_color = TRUE
- )
- generate_and_save_plots(
- out_dir = out_dir,
- filename = "rank_plots_lm_na_rm",
- plot_configs = rank_plot_lm_filtered_configs)
- message("Generating correlation curve parameter pair plots")
- correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
- generate_and_save_plots(
- out_dir = out_dir,
- filename = "correlation_cpps",
- plot_configs = correlation_plot_configs,
- )
- })
- })
- }
- main()
- # For future simplification of joined dataframes
- # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))
|