calculate_interaction_zscores.R 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  187. group_vars = c("OrfRep", "Gene", "num")) {
  188. # Calculate total concentration variables
  189. total_conc_num <- length(unique(df$conc_num))
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  203. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  204. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  205. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  206. Exp_L = WT_L + Raw_Shift_L,
  207. Exp_K = WT_K + Raw_Shift_K,
  208. Exp_r = WT_r + Raw_Shift_r,
  209. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  210. Delta_L = mean_L - Exp_L,
  211. Delta_K = mean_K - Exp_K,
  212. Delta_r = mean_r - Exp_r,
  213. Delta_AUC = mean_AUC - Exp_AUC,
  214. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  215. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  216. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  217. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  218. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  219. # Calculate Z-scores
  220. Zscore_L = Delta_L / WT_sd_L,
  221. Zscore_K = Delta_K / WT_sd_K,
  222. Zscore_r = Delta_r / WT_sd_r,
  223. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  224. # Fit linear models and store in list-columns
  225. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  226. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  227. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  228. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  229. # Extract coefficients using purrr::map_dbl
  230. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  231. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  232. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  233. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  234. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  235. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  236. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  237. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  238. # Calculate lm_Score_* based on coefficients
  239. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  240. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  241. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  242. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  243. # Calculate R-squared values
  244. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  245. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  246. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  247. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  248. ) %>%
  249. ungroup()
  250. # Calculate overall mean and SD for lm_Score_* variables
  251. lm_means_sds <- calculations %>%
  252. summarise(
  253. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  254. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  255. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  256. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  257. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  258. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  259. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  260. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  261. )
  262. calculations <- calculations %>%
  263. mutate(
  264. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  265. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  266. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  267. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  268. )
  269. # Summarize some of the stats
  270. interactions <- calculations %>%
  271. group_by(across(all_of(group_vars))) %>%
  272. mutate(
  273. # Calculate raw shifts
  274. Raw_Shift_L = first(Raw_Shift_L),
  275. Raw_Shift_K = first(Raw_Shift_K),
  276. Raw_Shift_r = first(Raw_Shift_r),
  277. Raw_Shift_AUC = first(Raw_Shift_AUC),
  278. # Calculate Z-shifts
  279. Z_Shift_L = first(Z_Shift_L),
  280. Z_Shift_K = first(Z_Shift_K),
  281. Z_Shift_r = first(Z_Shift_r),
  282. Z_Shift_AUC = first(Z_Shift_AUC),
  283. # Sum Z-scores
  284. Sum_Z_Score_L = sum(Zscore_L),
  285. Sum_Z_Score_K = sum(Zscore_K),
  286. Sum_Z_Score_r = sum(Zscore_r),
  287. Sum_Z_Score_AUC = sum(Zscore_AUC),
  288. # Calculate Average Z-scores
  289. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  290. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  291. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  292. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  293. ) %>%
  294. arrange(desc(Z_lm_L), desc(NG)) %>%
  295. ungroup()
  296. # Declare column order for output
  297. calculations <- calculations %>%
  298. select(
  299. "OrfRep", "Gene", "num", "N",
  300. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  301. "mean_L", "mean_K", "mean_r", "mean_AUC",
  302. "median_L", "median_K", "median_r", "median_AUC",
  303. "sd_L", "sd_K", "sd_r", "sd_AUC",
  304. "se_L", "se_K", "se_r", "se_AUC",
  305. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  306. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  307. "WT_L", "WT_K", "WT_r", "WT_AUC",
  308. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  309. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  310. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  311. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  312. "NG", "SM", "DB"
  313. )
  314. interactions <- interactions %>%
  315. select(
  316. "OrfRep", "Gene", "num", "NG", "DB", "SM",
  317. "conc_num", "conc_num_factor", "conc_num_factor_factor",
  318. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  319. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  320. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  321. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  322. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  323. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  324. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  325. )
  326. # Clean the original dataframe by removing overlapping columns
  327. cleaned_df <- df %>%
  328. select(-any_of(
  329. setdiff(intersect(names(df), names(calculations)),
  330. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  331. # Join the original dataframe with calculations
  332. df_with_calculations <- left_join(cleaned_df, calculations,
  333. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  334. # Remove overlapping columns between df_with_calculations and interactions
  335. df_with_calculations_clean <- df_with_calculations %>%
  336. select(-any_of(
  337. setdiff(intersect(names(df_with_calculations), names(interactions)),
  338. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
  339. # Join with interactions to create the full dataset
  340. full_data <- left_join(df_with_calculations_clean, interactions,
  341. by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  342. return(list(
  343. calculations = calculations,
  344. interactions = interactions,
  345. full_data = full_data
  346. ))
  347. }
  348. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  349. message("Generating ", filename, ".pdf and ", filename, ".html")
  350. static_plots <- list()
  351. plotly_plots <- list()
  352. for (i in seq_along(plot_configs$plots)) {
  353. config <- plot_configs$plots[[i]]
  354. df <- config$df
  355. message("Processing plot ", i, ": ", config$title)
  356. message("Plot type: ", config$plot_type)
  357. if (is.null(df)) {
  358. message("Dataframe for plot ", i, " is NULL.")
  359. next
  360. }
  361. # Define aes_mapping, ensuring y_var is only used when it's not NULL
  362. aes_mapping <- switch(config$plot_type,
  363. "bar" = if (!is.null(config$color_var)) {
  364. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  365. } else {
  366. aes(x = .data[[config$x_var]])
  367. },
  368. "density" = if (!is.null(config$color_var)) {
  369. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  370. } else {
  371. aes(x = .data[[config$x_var]])
  372. },
  373. # For other plot types, only include y_var if it's not NULL
  374. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  375. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  376. } else if (!is.null(config$y_var)) {
  377. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  378. } else {
  379. aes(x = .data[[config$x_var]]) # no y_var needed for density and bar plots
  380. }
  381. )
  382. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  383. # Apply appropriate plot function
  384. plot <- switch(config$plot_type,
  385. "scatter" = generate_scatter_plot(plot, config),
  386. "box" = generate_box_plot(plot, config),
  387. "density" = plot + geom_density(),
  388. "bar" = plot + geom_bar(),
  389. plot # default (unused)
  390. )
  391. # Add titles and labels
  392. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  393. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  394. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  395. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  396. # Convert ggplot to plotly, skipping subplot
  397. if (!is.null(config$tooltip_vars)) {
  398. plotly_plot <- suppressWarnings(plotly::ggplotly(plot, tooltip = config$tooltip_vars))
  399. } else {
  400. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  401. }
  402. if (!is.null(plotly_plot[["frames"]])) {
  403. plotly_plot[["frames"]] <- NULL
  404. }
  405. # Adjust legend position in plotly
  406. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  407. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  408. }
  409. static_plots[[i]] <- plot
  410. plotly_plots[[i]] <- plotly_plot
  411. }
  412. # Save static PDF plots
  413. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  414. if (is.null(plot_configs$grid_layout)) {
  415. # Print each plot on a new page if grid_layout is not set
  416. for (plot in static_plots) {
  417. print(plot)
  418. }
  419. } else {
  420. # Use grid.arrange if grid_layout is set
  421. grid_nrow <- ifelse(is.null(plot_configs$grid_layout$nrow), length(plot_configs$plots), plot_configs$grid_layout$nrow)
  422. grid_ncol <- ifelse(is.null(plot_configs$grid_layout$ncol), 1, plot_configs$grid_layout$ncol)
  423. grid.arrange(grobs = static_plots, ncol = grid_ncol, nrow = grid_nrow)
  424. }
  425. dev.off()
  426. # Save individual interactive HTML plots
  427. for (i in seq_along(plotly_plots)) {
  428. html_file <- file.path(out_dir, paste0(filename, "_plot_", i, ".html"))
  429. message("Saving HTML plot ", i, ": ", html_file)
  430. htmlwidgets::saveWidget(plotly_plots[[i]], file = html_file, selfcontained = TRUE)
  431. }
  432. }
  433. generate_scatter_plot <- function(plot, config) {
  434. # Define the points
  435. shape <- if (!is.null(config$shape)) config$shape else 3
  436. size <- if (!is.null(config$size)) config$size else 1.5
  437. position <-
  438. if (!is.null(config$position) && config$position == "jitter") {
  439. position_jitter(width = 0.1, height = 0)
  440. } else {
  441. "identity"
  442. }
  443. plot <- plot + geom_point(
  444. shape = shape,
  445. size = size,
  446. position = position
  447. )
  448. if (!is.null(config$cyan_points) && config$cyan_points) {
  449. plot <- plot + geom_point(
  450. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  451. color = "cyan",
  452. shape = 3,
  453. size = 0.5
  454. )
  455. }
  456. # Add Smooth Line if specified
  457. if (!is.null(config$smooth) && config$smooth) {
  458. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  459. if (!is.null(config$lm_line)) {
  460. plot <- plot +
  461. geom_abline(
  462. intercept = config$lm_line$intercept,
  463. slope = config$lm_line$slope,
  464. color = smooth_color
  465. )
  466. } else {
  467. plot <- plot +
  468. geom_smooth(
  469. method = "lm",
  470. se = FALSE,
  471. color = smooth_color
  472. )
  473. }
  474. }
  475. # Add SD Bands if specified
  476. if (!is.null(config$sd_band)) {
  477. plot <- plot +
  478. annotate(
  479. "rect",
  480. xmin = -Inf, xmax = Inf,
  481. ymin = config$sd_band, ymax = Inf,
  482. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  483. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  484. ) +
  485. annotate(
  486. "rect",
  487. xmin = -Inf, xmax = Inf,
  488. ymin = -config$sd_band, ymax = -Inf,
  489. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  490. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  491. ) +
  492. geom_hline(
  493. yintercept = c(-config$sd_band, config$sd_band),
  494. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  495. )
  496. }
  497. # Add Rectangles if specified
  498. if (!is.null(config$rectangles)) {
  499. for (rect in config$rectangles) {
  500. plot <- plot + annotate(
  501. "rect",
  502. xmin = rect$xmin,
  503. xmax = rect$xmax,
  504. ymin = rect$ymin,
  505. ymax = rect$ymax,
  506. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  507. color = ifelse(is.null(rect$color), "black", rect$color),
  508. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  509. )
  510. }
  511. }
  512. # Add error bars if specified
  513. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  514. if (!is.null(config$error_bar_params)) {
  515. plot <- plot +
  516. geom_errorbar(
  517. aes(
  518. ymin = config$error_bar_params$ymin,
  519. ymax = config$error_bar_params$ymax
  520. ),
  521. alpha = 0.3,
  522. linewidth = 0.5
  523. )
  524. } else {
  525. y_mean_col <- paste0("mean_", config$y_var)
  526. y_sd_col <- paste0("sd_", config$y_var)
  527. plot <- plot +
  528. geom_errorbar(
  529. aes(
  530. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  531. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  532. ),
  533. alpha = 0.3,
  534. linewidth = 0.5
  535. )
  536. }
  537. }
  538. # Customize X-axis if specified
  539. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  540. plot <- plot +
  541. scale_x_discrete(
  542. name = config$x_label,
  543. breaks = config$x_breaks,
  544. labels = config$x_labels
  545. )
  546. }
  547. # Set Y-axis limits if specified
  548. if (!is.null(config$ylim_vals)) {
  549. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  550. }
  551. # Add annotations if specified
  552. if (!is.null(config$annotations)) {
  553. for (annotation in config$annotations) {
  554. plot <- plot +
  555. annotate(
  556. "text",
  557. x = annotation$x,
  558. y = annotation$y,
  559. label = annotation$label,
  560. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  561. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  562. size = ifelse(is.null(annotation$size), 6, annotation$size),
  563. color = ifelse(is.null(annotation$color), "black", annotation$color)
  564. )
  565. }
  566. }
  567. return(plot)
  568. }
  569. generate_box_plot <- function(plot, config) {
  570. # Convert x_var to a factor within aes mapping
  571. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  572. # Apply scale_x_discrete for breaks, labels, and axis label if provided
  573. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  574. plot <- plot + scale_x_discrete(
  575. name = config$x_label,
  576. breaks = config$x_breaks,
  577. labels = config$x_labels
  578. )
  579. }
  580. return(plot)
  581. }
  582. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  583. plot_type = "scatter", stages = c("before", "after")) {
  584. plots <- list()
  585. for (var in variables) {
  586. for (stage in stages) {
  587. df_plot <- if (stage == "before") df_before else df_after
  588. # Check for non-finite values in the y-variable
  589. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  590. # Adjust settings based on plot_type
  591. config <- list(
  592. df = df_plot_filtered,
  593. x_var = "scan",
  594. y_var = var,
  595. plot_type = plot_type,
  596. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  597. color_var = "conc_num_factor_factor",
  598. position = if (plot_type == "scatter") "jitter" else NULL,
  599. size = 0.2,
  600. error_bar = (plot_type == "scatter")
  601. )
  602. # Add config to plots list
  603. plots <- append(plots, list(config))
  604. }
  605. }
  606. return(list(grid_layout = list(ncol = 1, nrow = length(plots)), plots = plots))
  607. }
  608. generate_interaction_plot_configs <- function(df, limits_map = NULL, plot_type = "reference") {
  609. if (is.null(limits_map)) {
  610. limits_map <- list(
  611. L = c(0, 130),
  612. K = c(-20, 160),
  613. r = c(0, 1),
  614. AUC = c(0, 12500),
  615. Delta_L = c(-60, 60),
  616. Delta_K = c(-60, 60),
  617. Delta_r = c(-0.6, 0.6),
  618. Delta_AUC = c(-6000, 6000)
  619. )
  620. }
  621. group_vars <- if (plot_type == "reference") c("OrfRep", "Gene", "num") else c("OrfRep", "Gene")
  622. df_filtered <- df %>%
  623. mutate(OrfRepCombined = if (plot_type == "reference") paste(OrfRep, Gene, num, sep = "_") else paste(OrfRep, Gene, sep = "_"))
  624. # Separate the plots into two groups: overall variables and delta comparisons
  625. overall_plots <- list()
  626. delta_plots <- list()
  627. for (var in c("L", "K", "r", "AUC")) {
  628. y_limits <- limits_map[[var]]
  629. config <- list(
  630. df = df_filtered,
  631. plot_type = "scatter",
  632. x_var = "conc_num_factor_factor",
  633. y_var = var,
  634. x_label = unique(df_filtered$Drug)[1],
  635. title = sprintf("Scatter RF for %s with SD", var),
  636. coord_cartesian = y_limits,
  637. error_bar = TRUE,
  638. x_breaks = unique(df_filtered$conc_num_factor_factor),
  639. x_labels = as.character(unique(df_filtered$conc_num)),
  640. position = "jitter",
  641. smooth = TRUE
  642. )
  643. overall_plots <- append(overall_plots, list(config))
  644. }
  645. unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
  646. for (i in seq_len(nrow(unique_groups))) {
  647. group <- unique_groups[i, ]
  648. group_data <- df_filtered %>% semi_join(group, by = group_vars)
  649. OrfRep <- as.character(group$OrfRep)
  650. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  651. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  652. for (var in c("Delta_L", "Delta_K", "Delta_r", "Delta_AUC")) {
  653. y_limits <- limits_map[[var]]
  654. y_span <- y_limits[2] - y_limits[1]
  655. # Error bars
  656. WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
  657. WT_sd_value <- group_data[[WT_sd_var]][1]
  658. error_bar_ymin <- 0 - (2 * WT_sd_value)
  659. error_bar_ymax <- 0 + (2 * WT_sd_value)
  660. # Annotations
  661. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", sub("Delta_", "", var))]][1], 2)
  662. Z_lm_value <- round(group_data[[paste0("Z_lm_", sub("Delta_", "", var))]][1], 2)
  663. NG_value <- group_data$NG[1]
  664. DB_value <- group_data$DB[1]
  665. SM_value <- group_data$SM[1]
  666. annotations <- list(
  667. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  668. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  669. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  670. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  671. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  672. )
  673. config <- list(
  674. df = group_data,
  675. plot_type = "scatter",
  676. x_var = "conc_num_factor_factor",
  677. y_var = var,
  678. x_label = unique(group_data$Drug)[1],
  679. title = paste(OrfRep, Gene, sep = " "),
  680. coord_cartesian = y_limits,
  681. annotations = annotations,
  682. error_bar = TRUE,
  683. error_bar_params = list(
  684. ymin = error_bar_ymin,
  685. ymax = error_bar_ymax
  686. ),
  687. smooth = TRUE,
  688. x_breaks = unique(group_data$conc_num_factor_factor),
  689. x_labels = as.character(unique(group_data$conc_num)),
  690. ylim_vals = y_limits
  691. )
  692. delta_plots <- append(delta_plots, list(config))
  693. }
  694. }
  695. return(list(
  696. overall_plots = list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plots),
  697. delta_plots = list(grid_layout = list(ncol = 4, nrow = 3), plots = delta_plots)
  698. ))
  699. }
  700. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  701. sd_bands <- c(1, 2, 3)
  702. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  703. z_lm_cols <- paste0("Z_lm_", variables)
  704. configs <- list()
  705. # Adjust values if necessary
  706. if (adjust) {
  707. df <- df %>%
  708. mutate(across(all_of(avg_zscore_cols), ~ ifelse(is.na(.), 0.001, .))) %>%
  709. mutate(across(all_of(z_lm_cols), ~ ifelse(is.na(.), 0.001, .)))
  710. }
  711. # Calculate rank columns for Avg_Zscore and Z_lm columns
  712. df_ranked <- df %>%
  713. mutate(across(all_of(avg_zscore_cols), rank, .names = "Rank_{col}")) %>%
  714. mutate(across(all_of(z_lm_cols), rank, .names = "Rank_lm_{col}"))
  715. # Generate plots for SD-based L and K variables
  716. for (variable in c("L", "K")) {
  717. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  718. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  719. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  720. for (sd_band in sd_bands) {
  721. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  722. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  723. # Plot with annotations
  724. configs[[length(configs) + 1]] <- list(
  725. df = df_ranked,
  726. x_var = rank_var,
  727. y_var = zscore_var,
  728. plot_type = "scatter",
  729. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  730. sd_band = sd_band,
  731. fill_positive = "#542788",
  732. fill_negative = "orange",
  733. alpha_positive = 0.3,
  734. alpha_negative = 0.3,
  735. annotations = list(
  736. list(
  737. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  738. y = max(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  739. label = paste("Deletion Enhancers =", num_enhancers)
  740. ),
  741. list(
  742. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  743. y = min(df_ranked[[zscore_var]], na.rm = TRUE) * 0.9,
  744. label = paste("Deletion Suppressors =", num_suppressors)
  745. )
  746. ),
  747. shape = 3,
  748. size = 0.1,
  749. y_label = y_label,
  750. x_label = "Rank",
  751. legend_position = "none"
  752. )
  753. # Plot without annotations
  754. configs[[length(configs) + 1]] <- list(
  755. df = df_ranked,
  756. x_var = rank_var,
  757. y_var = zscore_var,
  758. plot_type = "scatter",
  759. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  760. sd_band = sd_band,
  761. fill_positive = "#542788",
  762. fill_negative = "orange",
  763. alpha_positive = 0.3,
  764. alpha_negative = 0.3,
  765. annotations = NULL,
  766. shape = 3,
  767. size = 0.1,
  768. y_label = y_label,
  769. x_label = "Rank",
  770. legend_position = "none"
  771. )
  772. }
  773. }
  774. # Generate Avg ZScore and Rank Avg ZScore plots for each variable
  775. for (variable in variables) {
  776. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  777. title <- paste(plot_type, variable)
  778. # Define specific variables based on plot type
  779. x_var <- if (plot_type == "Avg Zscore vs lm") paste0("Avg_Zscore_", variable) else paste0("Rank_", variable)
  780. y_var <- if (plot_type == "Avg Zscore vs lm") paste0("Z_lm_", variable) else paste0("Rank_lm_", variable)
  781. # Fit the linear model
  782. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  783. intercept <- coef(lm_model)[1]
  784. slope <- coef(lm_model)[2]
  785. r_squared <- summary(lm_model)$r.squared
  786. annotations <- list(
  787. list(
  788. x = mean(range(df_ranked[[x_var]], na.rm = TRUE)),
  789. y = mean(range(df_ranked[[y_var]], na.rm = TRUE)),
  790. label = paste("R-squared =", round(r_squared, 2)),
  791. hjust = 0.5,
  792. vjust = 1,
  793. size = 5
  794. )
  795. )
  796. rectangles <- if (plot_type == "Avg Zscore vs lm") {
  797. list(list(xmin = -2, xmax = 2, ymin = -2, ymax = 2, fill = NA, color = "grey20", alpha = 0.1))
  798. } else {
  799. NULL
  800. }
  801. configs[[length(configs) + 1]] <- list(
  802. df = df_ranked,
  803. x_var = x_var,
  804. y_var = y_var,
  805. plot_type = "scatter",
  806. title = title,
  807. annotations = annotations,
  808. shape = 3,
  809. size = 0.25,
  810. smooth = TRUE,
  811. smooth_color = "black",
  812. lm_line = list(intercept = intercept, slope = slope),
  813. legend_position = "right",
  814. color_var = if (overlap_color) "Overlap" else NULL,
  815. x_label = x_var,
  816. y_label = y_var,
  817. rectangles = rectangles
  818. )
  819. }
  820. }
  821. return(list(grid_layout = list(ncol = 3, nrow = 2), plots = configs))
  822. }
  823. generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
  824. relationships <- list(
  825. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  826. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  827. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  828. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  829. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  830. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  831. )
  832. plots <- list()
  833. for (rel in relationships) {
  834. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  835. r_squared <- summary(lm_model)$r.squared
  836. config <- list(
  837. df = df,
  838. x_var = rel$x,
  839. y_var = rel$y,
  840. plot_type = "scatter",
  841. title = rel$label,
  842. annotations = list(
  843. list(x = mean(df[[rel$x]], na.rm = TRUE),
  844. y = mean(df[[rel$y]], na.rm = TRUE),
  845. label = paste("R-squared =", round(r_squared, 3)))
  846. ),
  847. smooth = TRUE,
  848. smooth_color = "tomato3",
  849. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  850. shape = 3,
  851. size = 0.5,
  852. color_var = "Overlap",
  853. cyan_points = highlight_cyan
  854. )
  855. plots <- append(plots, list(config))
  856. }
  857. return(list(grid_layout = list(ncol = 3, nrow = 2), plots = plots))
  858. }
  859. main <- function() {
  860. lapply(names(args$experiments), function(exp_name) {
  861. exp <- args$experiments[[exp_name]]
  862. exp_path <- exp$path
  863. exp_sd <- exp$sd
  864. out_dir <- file.path(exp_path, "zscores")
  865. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  866. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  867. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  868. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  869. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  870. message("Loading and filtering data for experiment: ", exp_name)
  871. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  872. update_gene_names(args$sgd_gene_list) %>%
  873. as_tibble()
  874. # Filter rows above delta background tolerance
  875. df_above_tolerance <- df %>% filter(DB == 1)
  876. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  877. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  878. # Save some constants
  879. max_conc <- max(df$conc_num_factor)
  880. message("Calculating summary statistics before quality control")
  881. df_stats <- calculate_summary_stats(
  882. df = df,
  883. variables = summary_vars,
  884. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  885. message("Calculating summary statistics after quality control")
  886. ss <- calculate_summary_stats(
  887. df = df_na,
  888. variables = summary_vars,
  889. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  890. df_na_ss <- ss$summary_stats
  891. df_na_stats <- ss$df_with_stats
  892. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  893. # For plotting (ggplot warns on NAs)
  894. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  895. df_na_stats <- df_na_stats %>%
  896. mutate(
  897. WT_L = mean_L,
  898. WT_K = mean_K,
  899. WT_r = mean_r,
  900. WT_AUC = mean_AUC,
  901. WT_sd_L = sd_L,
  902. WT_sd_K = sd_K,
  903. WT_sd_r = sd_r,
  904. WT_sd_AUC = sd_AUC
  905. )
  906. # Pull the background means and standard deviations from zero concentration for interactions
  907. bg_stats <- df_na_stats %>%
  908. filter(conc_num == 0) %>%
  909. summarise(
  910. mean_L = first(mean_L),
  911. mean_K = first(mean_K),
  912. mean_r = first(mean_r),
  913. mean_AUC = first(mean_AUC),
  914. sd_L = first(sd_L),
  915. sd_K = first(sd_K),
  916. sd_r = first(sd_r),
  917. sd_AUC = first(sd_AUC)
  918. )
  919. message("Calculating summary statistics after quality control excluding zero values")
  920. df_no_zeros_stats <- calculate_summary_stats(
  921. df = df_no_zeros,
  922. variables = summary_vars,
  923. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  924. )$df_with_stats
  925. message("Filtering by 2SD of K")
  926. df_na_within_2sd_k <- df_na_stats %>%
  927. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  928. df_na_outside_2sd_k <- df_na_stats %>%
  929. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  930. message("Calculating summary statistics for L within 2SD of K")
  931. # TODO We're omitting the original z_max calculation, not sure if needed?
  932. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  933. write.csv(ss,
  934. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  935. row.names = FALSE)
  936. message("Calculating summary statistics for L outside 2SD of K")
  937. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  938. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  939. write.csv(ss$summary_stats,
  940. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  941. row.names = FALSE)
  942. # Each plots list corresponds to a file
  943. l_vs_k_plot_configs <- list(
  944. plots = list(
  945. list(
  946. df = df,
  947. x_var = "L",
  948. y_var = "K",
  949. plot_type = "scatter",
  950. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  951. title = "Raw L vs K before quality control",
  952. color_var = "conc_num_factor_factor",
  953. error_bar = FALSE,
  954. legend_position = "right"
  955. )
  956. )
  957. )
  958. frequency_delta_bg_plot_configs <- list(
  959. plots = list(
  960. list(
  961. df = df_stats,
  962. x_var = "delta_bg",
  963. y_var = NULL,
  964. plot_type = "density",
  965. title = "Density plot for Delta Background by [Drug] (All Data)",
  966. color_var = "conc_num_factor_factor",
  967. x_label = "Delta Background",
  968. y_label = "Density",
  969. error_bar = FALSE,
  970. legend_position = "right"
  971. ),
  972. list(
  973. df = df_stats,
  974. x_var = "delta_bg",
  975. y_var = NULL,
  976. plot_type = "bar",
  977. title = "Bar plot for Delta Background by [Drug] (All Data)",
  978. color_var = "conc_num_factor_factor",
  979. x_label = "Delta Background",
  980. y_label = "Count",
  981. error_bar = FALSE,
  982. legend_position = "right"
  983. )
  984. )
  985. )
  986. above_threshold_plot_configs <- list(
  987. plots = list(
  988. list(
  989. df = df_above_tolerance,
  990. x_var = "L",
  991. y_var = "K",
  992. plot_type = "scatter",
  993. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  994. title = paste("Raw L vs K for strains above Delta Background threshold of",
  995. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  996. color_var = "conc_num_factor_factor",
  997. position = "jitter",
  998. annotations = list(
  999. list(
  1000. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1001. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1002. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1003. )
  1004. ),
  1005. error_bar = FALSE,
  1006. legend_position = "right"
  1007. )
  1008. )
  1009. )
  1010. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1011. variables = summary_vars,
  1012. df_before = df_stats,
  1013. df_after = df_na_stats_filtered
  1014. )
  1015. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1016. variables = summary_vars,
  1017. df_before = df_stats,
  1018. df_after = df_na_stats_filtered,
  1019. plot_type = "box"
  1020. )
  1021. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1022. variables = summary_vars,
  1023. stages = c("after"), # Only after QC
  1024. df_after = df_no_zeros_stats
  1025. )
  1026. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1027. variables = summary_vars,
  1028. stages = c("after"), # Only after QC
  1029. df_after = df_no_zeros_stats,
  1030. plot_type = "box"
  1031. )
  1032. l_outside_2sd_k_plot_configs <- list(
  1033. plots = list(
  1034. list(
  1035. df = df_na_l_outside_2sd_k_stats,
  1036. x_var = "L",
  1037. y_var = "K",
  1038. plot_type = "scatter",
  1039. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1040. color_var = "conc_num_factor_factor",
  1041. position = "jitter", # Apply jitter for better visibility
  1042. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1043. annotations = list(
  1044. list(
  1045. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1046. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1047. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1048. )
  1049. ),
  1050. error_bar = FALSE,
  1051. legend_position = "right"
  1052. )
  1053. )
  1054. )
  1055. delta_bg_outside_2sd_k_plot_configs <- list(
  1056. plots = list(
  1057. list(
  1058. df = df_na_l_outside_2sd_k_stats,
  1059. x_var = "delta_bg",
  1060. y_var = "K",
  1061. plot_type = "scatter",
  1062. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1063. color_var = "conc_num_factor_factor",
  1064. position = "jitter", # Apply jitter for better visibility
  1065. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1066. annotations = list(
  1067. list(
  1068. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1069. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1070. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1071. )
  1072. ),
  1073. error_bar = FALSE,
  1074. legend_position = "right"
  1075. )
  1076. )
  1077. )
  1078. message("Generating quality control plots in parallel")
  1079. # # future::plan(future::multicore, workers = parallel::detectCores())
  1080. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1081. plot_configs <- list(
  1082. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1083. plot_configs = l_vs_k_plot_configs),
  1084. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1085. plot_configs = frequency_delta_bg_plot_configs),
  1086. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1087. plot_configs = above_threshold_plot_configs),
  1088. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1089. plot_configs = plate_analysis_plot_configs),
  1090. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1091. plot_configs = plate_analysis_boxplot_configs),
  1092. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1093. plot_configs = plate_analysis_no_zeros_plot_configs),
  1094. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1095. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1096. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1097. plot_configs = l_outside_2sd_k_plot_configs),
  1098. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1099. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1100. )
  1101. # Generating quality control plots in parallel
  1102. furrr::future_map(plot_configs, function(config) {
  1103. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1104. }, .options = furrr_options(seed = TRUE))
  1105. # Process background strains
  1106. bg_strains <- c("YDL227C")
  1107. lapply(bg_strains, function(strain) {
  1108. message("Processing background strain: ", strain)
  1109. # Handle missing data by setting zero values to NA
  1110. # and then removing any rows with NA in L col
  1111. df_bg <- df_na %>%
  1112. filter(OrfRep == strain) %>%
  1113. mutate(
  1114. L = if_else(L == 0, NA, L),
  1115. K = if_else(K == 0, NA, K),
  1116. r = if_else(r == 0, NA, r),
  1117. AUC = if_else(AUC == 0, NA, AUC)
  1118. ) %>%
  1119. filter(!is.na(L))
  1120. # Recalculate summary statistics for the background strain
  1121. message("Calculating summary statistics for background strain")
  1122. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1123. summary_stats_bg <- ss_bg$summary_stats
  1124. write.csv(summary_stats_bg,
  1125. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1126. row.names = FALSE)
  1127. # Set the missing values to the highest theoretical value at each drug conc for L
  1128. # Leave other values as 0 for the max/min
  1129. df_reference <- df_na_stats %>% # formerly X2_RF
  1130. filter(OrfRep == strain) %>%
  1131. filter(!is.na(L)) %>%
  1132. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1133. mutate(
  1134. max_l_theoretical = max(max_L, na.rm = TRUE),
  1135. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1136. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1137. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1138. ungroup()
  1139. # Ditto for deletion strains
  1140. df_deletion <- df_na_stats %>% # formerly X2
  1141. filter(OrfRep != strain) %>%
  1142. filter(!is.na(L)) %>%
  1143. mutate(SM = 0) %>%
  1144. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1145. mutate(
  1146. max_l_theoretical = max(max_L, na.rm = TRUE),
  1147. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1148. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1149. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1150. ungroup()
  1151. message("Calculating reference strain interaction scores")
  1152. df_reference_stats <- calculate_summary_stats(
  1153. df = df_reference,
  1154. variables = interaction_vars,
  1155. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1156. )$df_with_stats
  1157. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1158. zscore_calculations_reference <- reference_results$calculations
  1159. zscore_interactions_reference <- reference_results$interactions
  1160. zscore_interactions_reference_joined <- reference_results$full_data
  1161. message("Calculating deletion strain(s) interactions scores")
  1162. df_deletion_stats <- calculate_summary_stats(
  1163. df = df_deletion,
  1164. variables = interaction_vars,
  1165. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1166. )$df_with_stats
  1167. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1168. zscore_calculations <- deletion_results$calculations
  1169. zscore_interactions <- deletion_results$interactions
  1170. zscore_interactions_joined <- deletion_results$full_data
  1171. # Writing Z-Scores to file
  1172. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1173. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1174. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1175. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1176. # Create interaction plots
  1177. message("Generating reference interaction plots")
  1178. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
  1179. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1180. message("Generating deletion interaction plots")
  1181. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
  1182. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1183. # Define conditions for enhancers and suppressors
  1184. # TODO Add to study config?
  1185. threshold <- 2
  1186. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1187. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1188. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1189. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1190. # Subset data
  1191. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1192. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1193. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1194. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1195. # Save enhancers and suppressors
  1196. message("Writing enhancer/suppressor csv files")
  1197. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1198. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1199. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1200. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1201. # Combine conditions for enhancers and suppressors
  1202. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1203. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1204. # Save combined enhancers and suppressors
  1205. write.csv(enhancers_and_suppressors_L,
  1206. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1207. write.csv(enhancers_and_suppressors_K,
  1208. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1209. # Handle linear model based enhancers and suppressors
  1210. lm_threshold <- 2 # TODO add to study config?
  1211. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1212. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1213. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1214. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1215. # Save linear model based enhancers and suppressors
  1216. message("Writing linear model enhancer/suppressor csv files")
  1217. write.csv(enhancers_lm_L,
  1218. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1219. write.csv(suppressors_lm_L,
  1220. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1221. write.csv(enhancers_lm_K,
  1222. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1223. write.csv(suppressors_lm_K,
  1224. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1225. message("Generating rank plots")
  1226. rank_plot_configs <- generate_rank_plot_configs(
  1227. df = zscore_interactions_joined,
  1228. variables = interaction_vars,
  1229. is_lm = FALSE,
  1230. adjust = TRUE
  1231. )
  1232. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1233. plot_configs = rank_plot_configs)
  1234. message("Generating ranked linear model plots")
  1235. rank_lm_plot_configs <- generate_rank_plot_configs(
  1236. df = zscore_interactions_joined,
  1237. variables = interaction_vars,
  1238. is_lm = TRUE,
  1239. adjust = TRUE
  1240. )
  1241. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1242. plot_configs = rank_lm_plot_configs)
  1243. message("Filtering and reranking plots")
  1244. interaction_threshold <- 2 # TODO add to study config?
  1245. # Formerly X_NArm
  1246. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1247. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1248. mutate(
  1249. Overlap = case_when(
  1250. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1251. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1252. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1253. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1254. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1255. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1256. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1257. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1258. TRUE ~ "No Effect"
  1259. ),
  1260. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1261. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1262. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1263. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1264. )
  1265. message("Generating filtered ranked plots")
  1266. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1267. df = zscore_interactions_filtered,
  1268. variables = interaction_vars,
  1269. is_lm = FALSE,
  1270. adjust = FALSE,
  1271. overlap_color = TRUE
  1272. )
  1273. generate_and_save_plots(
  1274. out_dir = out_dir,
  1275. filename = "RankPlots_na_rm",
  1276. plot_configs = rank_plot_filtered_configs)
  1277. message("Generating filtered ranked linear model plots")
  1278. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1279. df = zscore_interactions_filtered,
  1280. variables = interaction_vars,
  1281. is_lm = TRUE,
  1282. adjust = FALSE,
  1283. overlap_color = TRUE
  1284. )
  1285. generate_and_save_plots(
  1286. out_dir = out_dir,
  1287. filename = "rank_plots_lm_na_rm",
  1288. plot_configs = rank_plot_lm_filtered_configs)
  1289. message("Generating correlation curve parameter pair plots")
  1290. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1291. generate_and_save_plots(
  1292. out_dir = out_dir,
  1293. filename = "correlation_cpps",
  1294. plot_configs = correlation_plot_configs,
  1295. )
  1296. })
  1297. })
  1298. }
  1299. main()