calculate_interaction_zscores.R 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. calculations <- df %>%
  177. mutate(
  178. WT_L = df$mean_L,
  179. WT_K = df$mean_K,
  180. WT_r = df$mean_r,
  181. WT_AUC = df$mean_AUC,
  182. WT_sd_L = df$sd_L,
  183. WT_sd_K = df$sd_K,
  184. WT_sd_r = df$sd_r,
  185. WT_sd_AUC = df$sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~max(., na.rm = TRUE),
  197. min = ~min(., na.rm = TRUE),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. calculations <- calculations %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. calculations <- calculations %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Delta_L = mean_L - Exp_L,
  219. Exp_K = WT_K + Raw_Shift_K,
  220. Delta_K = mean_K - Exp_K,
  221. Exp_r = WT_r + Raw_Shift_r,
  222. Delta_r = mean_r - Exp_r,
  223. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. calculations <- calculations %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. interactions <- calculations %>%
  235. mutate(
  236. lm_L = lm(Delta_L ~ conc_num_factor),
  237. lm_K = lm(Delta_K ~ conc_num_factor),
  238. lm_r = lm(Delta_r ~ conc_num_factor),
  239. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  240. Zscore_L = Delta_L / WT_sd_L,
  241. Zscore_K = Delta_K / WT_sd_K,
  242. Zscore_r = Delta_r / WT_sd_r,
  243. Zscore_AUC = Delta_AUC / WT_sd_AUC
  244. )
  245. interactions <- interactions %>%
  246. mutate(
  247. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  248. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  249. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  250. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  251. r_squared_L = summary(lm_L)$r.squared,
  252. r_squared_K = summary(lm_K)$r.squared,
  253. r_squared_r = summary(lm_r)$r.squared,
  254. r_squared_AUC = summary(lm_AUC)$r.squared,
  255. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  256. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  257. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  258. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  259. )
  260. interactions <- interactions %>%
  261. mutate(
  262. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  263. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  264. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  265. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  266. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  267. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  268. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  269. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Declare column order for output
  272. calculations <- calculations %>%
  273. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  274. "mean_L", "mean_K", "mean_r", "mean_AUC",
  275. "median_L", "median_K", "median_r", "median_AUC",
  276. "sd_L", "sd_K", "sd_r", "sd_AUC",
  277. "se_L", "se_K", "se_r", "se_AUC",
  278. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  279. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  280. "WT_L", "WT_K", "WT_r", "WT_AUC", "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  281. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC", "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  282. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  283. "NG", "SM", "DB") %>%
  284. ungroup()
  285. # Also arrange results by Z_lm_L and NG
  286. interactions <- interactions %>%
  287. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  288. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  289. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  290. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  291. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  292. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  293. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  294. "NG", "SM", "DB") %>%
  295. arrange(desc(lm_Score_L)) %>%
  296. arrange(desc(NG)) %>%
  297. ungroup()
  298. return(list(calculations = calculations, interactions = interaction))
  299. }
  300. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  301. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  302. plots <- lapply(plot_configs, function(config) {
  303. df <- config$df
  304. print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  305. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 100)
  306. # Define aes mapping based on the presence of y_var
  307. aes_mapping <- if (is.null(config$y_var)) {
  308. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  309. } else {
  310. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  311. }
  312. plot <- ggplot(df, aes_mapping)
  313. # Use appropriate helper function based on plot type
  314. plot <- switch(config$plot_type,
  315. "scatter" = generate_scatter_plot(plot, config),
  316. "rank" = generate_rank_plot(plot, config),
  317. "correlation" = generate_correlation_plot(plot, config),
  318. "box" = generate_box_plot(plot, config),
  319. "density" = plot + geom_density(),
  320. "bar" = plot + geom_bar(),
  321. plot # default case if no type matches
  322. )
  323. return(plot)
  324. })
  325. # Save plots to file (PDF and HTML)
  326. save_plots(plots, output_dir, file_name, grid_layout)
  327. }
  328. save_plots <- function(plots, output_dir, file_name, grid_layout = NULL) {
  329. # PDF saving logic
  330. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  331. lapply(plots, print)
  332. dev.off()
  333. # HTML saving logic
  334. plotly_plots <- lapply(plots, function(plot) suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h"))))
  335. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  336. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  337. }
  338. generate_scatter_plot <- function(plot, config) {
  339. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  340. plot + geom_point(aes(ORF = OrfRep, Gene = Gene, delta_bg = delta_bg), shape = config$shape %||% 3)
  341. } else if (!is.null(config$gene_point) && config$gene_point) {
  342. plot + geom_point(aes(ORF = OrfRep, Gene = Gene), shape = config$shape %||% 3, position = "jitter")
  343. } else if (!is.null(config$position) && config$position == "jitter") {
  344. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  345. } else {
  346. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  347. }
  348. if (!is.null(config$add_smooth) && config$add_smooth) {
  349. if (!is.null(config$lm_line)) {
  350. plot <- plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  351. } else {
  352. plot <- plot + geom_smooth(method = "lm", se = FALSE)
  353. }
  354. }
  355. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  356. plot <- plot + scale_x_continuous(
  357. name = config$x_label,
  358. breaks = config$x_breaks,
  359. labels = config$x_labels
  360. )
  361. }
  362. if (!is.null(config$ylim_vals)) {
  363. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  364. }
  365. if (!is.null(config$coord_cartesian)) {
  366. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  367. }
  368. return(plot)
  369. }
  370. generate_rank_plot <- function(plot, config) {
  371. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  372. if (!is.null(config$sd_band)) {
  373. for (i in seq_len(config$sd_band)) {
  374. plot <- plot +
  375. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  376. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  377. geom_hline(yintercept = c(-i, i), color = "gray")
  378. }
  379. }
  380. if (!is.null(config$enhancer_label)) {
  381. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  382. }
  383. if (!is.null(config$suppressor_label)) {
  384. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  385. }
  386. return(plot)
  387. }
  388. generate_correlation_plot <- function(plot, config) {
  389. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  390. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  391. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  392. if (!is.null(config$rect)) {
  393. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  394. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  395. }
  396. return(plot)
  397. }
  398. generate_box_plot <- function(plot, config) {
  399. plot <- plot + geom_boxplot()
  400. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  401. plot <- plot + scale_x_discrete(
  402. name = config$x_label,
  403. breaks = config$x_breaks,
  404. labels = config$x_labels
  405. )
  406. }
  407. if (!is.null(config$coord_cartesian)) {
  408. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  409. }
  410. return(plot)
  411. }
  412. generate_interaction_plot_configs <- function(df, variables) {
  413. configs <- list()
  414. # Define common y-limits and other attributes for each variable dynamically
  415. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  416. # Define annotation positions based on the variable being plotted
  417. annotation_positions <- list(
  418. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  419. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  420. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  421. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  422. )
  423. # Define which annotations to include for each plot
  424. annotation_labels <- list(
  425. ZShift = function(df, var) paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  426. lm_ZScore = function(df, var) paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  427. NG = function(df, var) paste("NG =", df$NG),
  428. DB = function(df, var) paste("DB =", df$DB),
  429. SM = function(df, var) paste("SM =", df$SM)
  430. )
  431. for (variable in variables) {
  432. # Dynamically generate the names of the columns
  433. var_info <- list(
  434. ylim = limits_map[[variable]],
  435. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  436. sd_col = paste0("WT_sd_", variable),
  437. delta_var = paste0("Delta_", variable)
  438. )
  439. # Extract the precomputed linear model coefficients
  440. lm_line <- list(
  441. intercept = coef(var_info$lm_model)[1],
  442. slope = coef(var_info$lm_model)[2]
  443. )
  444. # Dynamically create annotations based on variable
  445. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  446. y_pos <- annotation_positions[[variable]][[annotation_name]]
  447. label <- annotation_labels[[annotation_name]](df, variable)
  448. list(x = 1, y = y_pos, label = label)
  449. })
  450. # Add scatter plot configuration for this variable
  451. configs[[length(configs) + 1]] <- list(
  452. df = df,
  453. x_var = "conc_num_factor",
  454. y_var = var_info$delta_var,
  455. plot_type = "scatter",
  456. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  457. ylim_vals = var_info$ylim,
  458. annotations = annotations,
  459. lm_line = lm_line, # Precomputed linear model
  460. error_bar = list(
  461. ymin = 0 - (2 * df[[var_info$sd_col]][1]),
  462. ymax = 0 + (2 * df[[var_info$sd_col]][1])
  463. ),
  464. x_breaks = unique(df$conc_num_factor),
  465. x_labels = unique(as.character(df$conc_num)),
  466. x_label = unique(df$Drug[1]),
  467. shape = 3,
  468. size = 0.6,
  469. position = "jitter",
  470. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  471. )
  472. # Add box plot configuration for this variable
  473. configs[[length(configs) + 1]] <- list(
  474. df = df,
  475. x_var = "conc_num_factor",
  476. y_var = variable,
  477. plot_type = "box",
  478. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  479. ylim_vals = var_info$ylim,
  480. annotations = annotations,
  481. error_bar = FALSE, # Boxplots typically don't need error bars
  482. x_breaks = unique(df$conc_num_factor),
  483. x_labels = unique(as.character(df$conc_num)),
  484. x_label = unique(df$Drug[1]),
  485. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  486. )
  487. }
  488. return(configs)
  489. }
  490. # Adjust missing values and calculate ranks
  491. adjust_missing_and_rank <- function(df, variables) {
  492. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  493. df <- df %>%
  494. mutate(across(all_of(variables), list(
  495. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  496. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  497. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  498. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  499. ), .names = "{fn}_{col}"))
  500. return(df)
  501. }
  502. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  503. configs <- list()
  504. # Adjust titles for _lm plots if is_lm is TRUE
  505. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  506. # Annotated version (with text)
  507. for (sd_band in c(1, 2, 3)) {
  508. configs[[length(configs) + 1]] <- list(
  509. df = df,
  510. x_var = rank_var,
  511. y_var = zscore_var,
  512. plot_type = "rank",
  513. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  514. sd_band = sd_band,
  515. enhancer_label = list(
  516. x = nrow(df) / 2, y = 10,
  517. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  518. ),
  519. suppressor_label = list(
  520. x = nrow(df) / 2, y = -10,
  521. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  522. ),
  523. shape = 3,
  524. size = 0.1
  525. )
  526. }
  527. # Non-annotated version (_notext)
  528. for (sd_band in c(1, 2, 3)) {
  529. configs[[length(configs) + 1]] <- list(
  530. df = df,
  531. x_var = rank_var,
  532. y_var = zscore_var,
  533. plot_type = "rank",
  534. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  535. sd_band = sd_band,
  536. enhancer_label = NULL, # No annotations for _notext
  537. suppressor_label = NULL, # No annotations for _notext
  538. shape = 3,
  539. size = 0.1,
  540. position = "jitter"
  541. )
  542. }
  543. return(configs)
  544. }
  545. generate_correlation_plot_configs <- function(df, variables) {
  546. configs <- list()
  547. for (variable in variables) {
  548. z_lm_var <- paste0("Z_lm_", variable)
  549. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  550. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  551. configs[[length(configs) + 1]] <- list(
  552. df = df,
  553. x_var = avg_zscore_var,
  554. y_var = z_lm_var,
  555. plot_type = "correlation",
  556. title = paste("Avg Zscore vs lm", variable),
  557. color_var = "Overlap",
  558. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  559. shape = 3,
  560. geom_smooth = TRUE,
  561. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  562. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  563. legend_position = "right"
  564. )
  565. }
  566. return(configs)
  567. }
  568. main <- function() {
  569. lapply(names(args$experiments), function(exp_name) {
  570. exp <- args$experiments[[exp_name]]
  571. exp_path <- exp$path
  572. exp_sd <- exp$sd
  573. out_dir <- file.path(exp_path, "zscores")
  574. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  575. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  576. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  577. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  578. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  579. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  580. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  581. message("Loading and filtering data")
  582. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  583. df <- update_gene_names(df, args$sgd_gene_list)
  584. df <- as_tibble(df)
  585. # Filter rows that are above tolerance for quality control plots
  586. df_above_tolerance <- df %>% filter(DB == 1)
  587. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  588. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  589. # Remove rows with 0 values in L
  590. df_no_zeros <- df_na %>% filter(L > 0)
  591. # Save some constants
  592. max_conc <- max(df$conc_num_factor)
  593. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  594. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  595. message("Calculating summary statistics before quality control")
  596. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  597. # df_ss <- ss$summary_stats
  598. df_stats <- ss$df_with_stats
  599. df_filtered_stats <- df_stats %>%
  600. {
  601. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  602. if (nrow(non_finite_rows) > 0) {
  603. message("Removed the following non-finite rows:")
  604. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  605. }
  606. filter(., if_all(c(L), is.finite))
  607. }
  608. message("Calculating summary statistics after quality control")
  609. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  610. df_na_ss <- ss$summary_stats
  611. df_na_stats <- ss$df_with_stats
  612. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  613. # Filter out non-finite rows for plotting
  614. df_na_filtered_stats <- df_na_stats %>%
  615. {
  616. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  617. if (nrow(non_finite_rows) > 0) {
  618. message("Removed the following non-finite rows:")
  619. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  620. }
  621. filter(., if_all(c(L), is.finite))
  622. }
  623. message("Calculating summary statistics after quality control excluding zero values")
  624. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  625. df_no_zeros_stats <- ss$df_with_stats
  626. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  627. {
  628. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  629. if (nrow(non_finite_rows) > 0) {
  630. message("Removed the following non-finite rows:")
  631. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  632. }
  633. filter(., if_all(c(L), is.finite))
  634. }
  635. message("Filtering by 2SD of K")
  636. df_na_within_2sd_k <- df_na_stats %>%
  637. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  638. df_na_outside_2sd_k <- df_na_stats %>%
  639. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  640. message("Calculating summary statistics for L within 2SD of K")
  641. # TODO We're omitting the original z_max calculation, not sure if needed?
  642. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  643. l_within_2sd_k_ss <- ss$summary_stats
  644. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  645. write.csv(l_within_2sd_k_ss,
  646. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  647. message("Calculating summary statistics for L outside 2SD of K")
  648. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  649. l_outside_2sd_k_ss <- ss$summary_stats
  650. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  651. write.csv(l_outside_2sd_k_ss,
  652. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  653. # Each plots list corresponds to a file
  654. message("Generating QC plot configurations")
  655. l_vs_k_plots <- list(
  656. list(
  657. df = df,
  658. x_var = "L",
  659. y_var = "K",
  660. plot_type = "scatter",
  661. delta_bg_point = TRUE,
  662. title = "Raw L vs K before quality control",
  663. color_var = "conc_num",
  664. error_bar = FALSE,
  665. legend_position = "right"
  666. )
  667. )
  668. frequency_delta_bg_plots <- list(
  669. list(
  670. df = df_filtered_stats,
  671. x_var = "delta_bg",
  672. y_var = NULL,
  673. plot_type = "density",
  674. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  675. color_var = "conc_num",
  676. x_label = "Delta Background",
  677. y_label = "Density",
  678. error_bar = FALSE,
  679. legend_position = "right"),
  680. list(
  681. df = df_filtered_stats,
  682. x_var = "delta_bg",
  683. y_var = NULL,
  684. plot_type = "bar",
  685. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  686. color_var = "conc_num",
  687. x_label = "Delta Background",
  688. y_label = "Count",
  689. error_bar = FALSE,
  690. legend_position = "right")
  691. )
  692. above_threshold_plots <- list(
  693. list(
  694. df = df_above_tolerance,
  695. x_var = "L",
  696. y_var = "K",
  697. plot_type = "scatter",
  698. delta_bg_point = TRUE,
  699. title = paste("Raw L vs K for strains above Delta Background threshold of",
  700. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  701. color_var = "conc_num",
  702. position = "jitter",
  703. annotations = list(
  704. x = l_half_median,
  705. y = k_half_median,
  706. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  707. ),
  708. error_bar = FALSE,
  709. legend_position = "right"
  710. )
  711. )
  712. plate_analysis_plots <- list()
  713. for (var in summary_vars) {
  714. for (stage in c("before", "after")) {
  715. if (stage == "before") {
  716. df_plot <- df_filtered_stats
  717. } else {
  718. df_plot <- df_na_filtered_stats
  719. }
  720. config <- list(
  721. df = df_plot,
  722. x_var = "scan",
  723. y_var = var,
  724. plot_type = "scatter",
  725. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  726. error_bar = TRUE,
  727. color_var = "conc_num",
  728. position = "jitter")
  729. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  730. }
  731. }
  732. plate_analysis_boxplots <- list()
  733. for (var in summary_vars) {
  734. for (stage in c("before", "after")) {
  735. if (stage == "before") {
  736. df_plot <- df_filtered_stats
  737. } else {
  738. df_plot <- df_na_filtered_stats
  739. }
  740. config <- list(
  741. df = df_plot,
  742. x_var = "scan",
  743. y_var = var,
  744. plot_type = "box",
  745. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  746. error_bar = FALSE, color_var = "conc_num")
  747. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  748. }
  749. }
  750. plate_analysis_no_zeros_plots <- list()
  751. for (var in summary_vars) {
  752. config <- list(
  753. df = df_no_zeros_filtered_stats,
  754. x_var = "scan",
  755. y_var = var,
  756. plot_type = "scatter",
  757. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  758. error_bar = TRUE,
  759. color_var = "conc_num",
  760. position = "jitter")
  761. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  762. }
  763. plate_analysis_no_zeros_boxplots <- list()
  764. for (var in summary_vars) {
  765. config <- list(
  766. df = df_no_zeros_filtered_stats,
  767. x_var = "scan",
  768. y_var = var,
  769. plot_type = "box",
  770. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  771. error_bar = FALSE,
  772. color_var = "conc_num"
  773. )
  774. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  775. }
  776. l_outside_2sd_k_plots <- list(
  777. list(
  778. df = df_na_l_outside_2sd_k_stats,
  779. x_var = "L",
  780. y_var = "K",
  781. plot_type = "scatter",
  782. delta_bg_point = TRUE,
  783. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  784. color_var = "conc_num",
  785. position = "jitter",
  786. legend_position = "right"
  787. )
  788. )
  789. delta_bg_outside_2sd_k_plots <- list(
  790. list(
  791. df = df_na_l_outside_2sd_k_stats,
  792. x_var = "delta_bg",
  793. y_var = "K",
  794. plot_type = "scatter",
  795. gene_point = TRUE,
  796. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  797. color_var = "conc_num",
  798. position = "jitter",
  799. legend_position = "right"
  800. )
  801. )
  802. message("Generating QC plots")
  803. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  804. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  805. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  806. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  807. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  808. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  809. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  810. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  811. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  812. # Clean up
  813. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  814. gc()
  815. # TODO: Originally this filtered L NA's
  816. # Let's try to avoid for now since stats have already been calculated
  817. # Process background strains
  818. bg_strains <- c("YDL227C")
  819. lapply(bg_strains, function(strain) {
  820. message("Processing background strain: ", strain)
  821. # Handle missing data by setting zero values to NA
  822. # and then removing any rows with NA in L col
  823. df_bg <- df_na %>%
  824. filter(OrfRep == strain) %>%
  825. mutate(
  826. L = if_else(L == 0, NA, L),
  827. K = if_else(K == 0, NA, K),
  828. r = if_else(r == 0, NA, r),
  829. AUC = if_else(AUC == 0, NA, AUC)
  830. ) %>%
  831. filter(!is.na(L))
  832. # Recalculate summary statistics for the background strain
  833. message("Calculating summary statistics for background strain")
  834. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  835. summary_stats_bg <- ss_bg$summary_stats
  836. # df_bg_stats <- ss_bg$df_with_stats
  837. write.csv(summary_stats_bg,
  838. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  839. row.names = FALSE)
  840. # Filter reference and deletion strains
  841. # Formerly X2_RF (reference strains)
  842. df_reference <- df_na_stats %>%
  843. filter(OrfRep == strain) %>%
  844. mutate(SM = 0)
  845. # Formerly X2 (deletion strains)
  846. df_deletion <- df_na_stats %>%
  847. filter(OrfRep != strain) %>%
  848. mutate(SM = 0)
  849. # Set the missing values to the highest theoretical value at each drug conc for L
  850. # Leave other values as 0 for the max/min
  851. reference_strain <- df_reference %>%
  852. group_by(conc_num) %>%
  853. mutate(
  854. max_l_theoretical = max(max_L, na.rm = TRUE),
  855. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  856. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  857. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  858. ungroup()
  859. # Ditto for deletion strains
  860. deletion_strains <- df_deletion %>%
  861. group_by(conc_num) %>%
  862. mutate(
  863. max_l_theoretical = max(max_L, na.rm = TRUE),
  864. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  865. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  866. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  867. ungroup()
  868. # Calculate interactions
  869. interaction_vars <- c("L", "K", "r", "AUC")
  870. message("Calculating interaction scores")
  871. # print("Reference strain:")
  872. # print(head(reference_strain))
  873. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  874. # print("Deletion strains:")
  875. # print(head(deletion_strains))
  876. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  877. zscores_calculations_reference <- reference_results$calculations
  878. zscores_interactions_reference <- reference_results$interactions
  879. zscores_calculations <- deletion_results$calculations
  880. zscores_interactions <- deletion_results$interactions
  881. # Writing Z-Scores to file
  882. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  883. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  884. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  885. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  886. # Create interaction plots
  887. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  888. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  889. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  890. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  891. # Define conditions for enhancers and suppressors
  892. # TODO Add to study config file?
  893. threshold <- 2
  894. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  895. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  896. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  897. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  898. # Subset data
  899. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  900. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  901. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  902. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  903. # Save enhancers and suppressors
  904. message("Writing enhancer/suppressor csv files")
  905. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  906. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  907. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  908. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  909. # Combine conditions for enhancers and suppressors
  910. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  911. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  912. # Save combined enhancers and suppressors
  913. write.csv(enhancers_and_suppressors_L,
  914. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  915. write.csv(enhancers_and_suppressors_K,
  916. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  917. # Handle linear model based enhancers and suppressors
  918. lm_threshold <- 2
  919. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  920. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  921. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  922. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  923. # Save linear model based enhancers and suppressors
  924. message("Writing linear model enhancer/suppressor csv files")
  925. write.csv(enhancers_lm_L,
  926. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  927. write.csv(suppressors_lm_L,
  928. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  929. write.csv(enhancers_lm_K,
  930. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  931. write.csv(suppressors_lm_K,
  932. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  933. # TODO needs explanation
  934. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  935. rank_plot_configs <- c(
  936. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  937. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  938. )
  939. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  940. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  941. rank_lm_plot_config <- c(
  942. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  943. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  944. )
  945. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  946. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  947. # Formerly X_NArm
  948. zscores_interactions_filtered <- zscores_interactions %>%
  949. group_by(across(all_of(group_vars))) %>%
  950. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  951. # Final filtered correlation calculations and plots
  952. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  953. mutate(
  954. Overlap = case_when(
  955. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  956. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  957. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  958. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  959. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  960. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  961. TRUE ~ "No Effect"
  962. ),
  963. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  964. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  965. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  966. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  967. ) %>%
  968. ungroup()
  969. rank_plot_configs <- c(
  970. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  971. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  972. )
  973. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  974. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  975. rank_lm_plot_configs <- c(
  976. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  977. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  978. )
  979. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  980. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  981. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  982. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  983. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  984. })
  985. })
  986. }
  987. main()