calculate_interaction_zscores.R 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. group_by(OrfRep, Gene, num) %>%
  247. summarise(
  248. OrfRep = first(OrfRep),
  249. Gene = first(Gene),
  250. num = first(num),
  251. conc_num = first(conc_num),
  252. conc_num_factor = first(conc_num_factor),
  253. Raw_Shift_L = first(Raw_Shift_L),
  254. Raw_Shift_K = first(Raw_Shift_K),
  255. Raw_Shift_r = first(Raw_Shift_r),
  256. Raw_Shift_AUC = first(Raw_Shift_AUC),
  257. Z_Shift_L = first(Z_Shift_L),
  258. Z_Shift_K = first(Z_Shift_K),
  259. Z_Shift_r = first(Z_Shift_r),
  260. Z_Shift_AUC = first(Z_Shift_AUC),
  261. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  262. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  263. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  264. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  265. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  266. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  267. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  268. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  269. R_Squared_L = summary(lm_L)$r.squared,
  270. R_Squared_K = summary(lm_K)$r.squared,
  271. R_Squared_r = summary(lm_r)$r.squared,
  272. R_Squared_AUC = summary(lm_AUC)$r.squared,
  273. lm_intercept_L = coef(lm_L)[1],
  274. lm_slope_L = coef(lm_L)[2],
  275. lm_intercept_K = coef(lm_K)[1],
  276. lm_slope_K = coef(lm_K)[2],
  277. lm_intercept_r = coef(lm_r)[1],
  278. lm_slope_r = coef(lm_r)[2],
  279. lm_intercept_AUC = coef(lm_AUC)[1],
  280. lm_slope_AUC = coef(lm_AUC)[2],
  281. NG = sum(NG, na.rm = TRUE),
  282. DB = sum(DB, na.rm = TRUE),
  283. SM = sum(SM, na.rm = TRUE)
  284. )
  285. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  286. interactions <- interactions %>%
  287. mutate(
  288. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  289. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  290. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  291. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  292. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  293. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  294. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  295. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  296. ) %>%
  297. arrange(desc(Z_lm_L)) %>%
  298. arrange(desc(NG))
  299. # Declare column order for output
  300. calculations <- stats %>%
  301. select(
  302. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  303. "mean_L", "mean_K", "mean_r", "mean_AUC",
  304. "median_L", "median_K", "median_r", "median_AUC",
  305. "sd_L", "sd_K", "sd_r", "sd_AUC",
  306. "se_L", "se_K", "se_r", "se_AUC",
  307. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  308. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  309. "WT_L", "WT_K", "WT_r", "WT_AUC",
  310. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  311. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  312. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  313. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  314. "NG", "SM", "DB")
  315. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  316. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  317. # # TODO for debug
  318. # df_duplicates <- df %>%
  319. # group_by(OrfRep, Gene, num) %>%
  320. # filter(n() > 1)
  321. # interactions_duplicates <- interactions %>%
  322. # group_by(OrfRep, Gene, num) %>%
  323. # filter(n() > 1)
  324. # print(df_duplicates)
  325. # print(interactions_duplicates)
  326. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  327. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  328. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  329. calculations_joined = calculations_joined))
  330. }
  331. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  332. message("Generating html and pdf plots for: ", file_name)
  333. # Prepare lists to collect plots
  334. static_plots <- list()
  335. plotly_plots <- list()
  336. for (i in seq_along(plot_configs)) {
  337. config <- plot_configs[[i]]
  338. df <- config$df
  339. # Build the aes_mapping based on config
  340. aes_mapping <- if (is.null(config$color_var)) {
  341. if (is.null(config$y_var)) {
  342. aes(x = .data[[config$x_var]])
  343. } else {
  344. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  345. }
  346. } else {
  347. if (is.null(config$y_var)) {
  348. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  349. } else {
  350. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  351. }
  352. }
  353. # Start building the plot with aes_mapping
  354. plot_base <- ggplot(df, aes_mapping)
  355. # Function to generate the plot
  356. generate_plot <- function(interactive) {
  357. # Use appropriate helper function based on plot type
  358. plot <- switch(config$plot_type,
  359. "scatter" = generate_scatter_plot(plot_base, config, interactive = interactive),
  360. "box" = generate_box_plot(plot_base, config),
  361. "density" = plot_base + geom_density(),
  362. "bar" = plot_base + geom_bar(),
  363. plot_base # default case if no type matches
  364. )
  365. # Apply additional settings if provided
  366. if (!is.null(config$legend_position)) {
  367. plot <- plot + theme(legend.position = config$legend_position)
  368. }
  369. # Add title and labels if provided
  370. if (!is.null(config$title)) {
  371. plot <- plot + ggtitle(config$title)
  372. }
  373. if (!is.null(config$x_label)) {
  374. plot <- plot + xlab(config$x_label)
  375. }
  376. if (!is.null(config$y_label)) {
  377. plot <- plot + ylab(config$y_label)
  378. }
  379. # Return the plot
  380. plot
  381. }
  382. # Generate the static plot
  383. static_plot <- generate_plot(interactive = FALSE)
  384. # Generate the interactive plot
  385. interactive_plot <- generate_plot(interactive = TRUE)
  386. # Convert to plotly object
  387. plotly_plot <- ggplotly(interactive_plot, tooltip = "text")
  388. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  389. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  390. }
  391. # Add plots to lists
  392. static_plots[[i]] <- static_plot
  393. plotly_plots[[i]] <- plotly_plot
  394. }
  395. # PDF saving logic
  396. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  397. lapply(static_plots, print)
  398. dev.off()
  399. # Combine and save interactive plots
  400. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plotly_plots), margin = 0.05)
  401. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  402. }
  403. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  404. # Check for missing or out-of-range data
  405. missing_data <- config$df %>%
  406. filter(
  407. is.na(!!sym(config$x_var)) | is.na(!!sym(config$y_var)) |
  408. !!sym(config$y_var) < min(config$ylim_vals, na.rm = TRUE) |
  409. !!sym(config$y_var) > max(config$ylim_vals, na.rm = TRUE)
  410. )
  411. # Print the rows with missing or out-of-range data if any
  412. if (nrow(missing_data) > 0) {
  413. message("Missing or out-of-range data for ", config$title, ":")
  414. print(
  415. missing_data %>% select(any_of(
  416. c(
  417. "OrfRep",
  418. "Gene",
  419. "num",
  420. "conc_num",
  421. "conc_num_factor",
  422. config$x_var,
  423. config$y_var
  424. )
  425. )),
  426. n = 100
  427. )
  428. }
  429. # Add the interactive `text` aesthetic if `interactive` is TRUE
  430. if (interactive) {
  431. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  432. plot <- plot + geom_point(
  433. aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  434. shape = config$shape %||% 3,
  435. size = config$size %||% 0.2
  436. )
  437. } else if (!is.null(config$gene_point) && config$gene_point) {
  438. plot <- plot + geom_point(
  439. aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  440. shape = config$shape %||% 3,
  441. size = config$size %||% 0.2,
  442. position = "jitter"
  443. )
  444. } else {
  445. plot <- plot + geom_point(
  446. aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  447. shape = config$shape %||% 3,
  448. size = config$size %||% 0.2
  449. )
  450. }
  451. } else {
  452. # For non-interactive plots, just add `geom_point` without `text` aesthetic
  453. plot <- plot + geom_point(
  454. shape = config$shape %||% 3,
  455. size = config$size %||% 0.2,
  456. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
  457. )
  458. }
  459. # Add smooth line if specified
  460. if (!is.null(config$add_smooth) && config$add_smooth) {
  461. plot <- if (!is.null(config$lm_line)) {
  462. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  463. } else {
  464. plot + geom_smooth(method = "lm", se = FALSE)
  465. }
  466. }
  467. # Add SD bands (iterate over sd_band only here)
  468. if (!is.null(config$sd_band)) {
  469. for (i in config$sd_band) {
  470. plot <- plot +
  471. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  472. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  473. geom_hline(yintercept = c(-i, i), color = "gray")
  474. }
  475. }
  476. # Add error bars if specified
  477. if (!is.null(config$error_bar) && config$error_bar) {
  478. y_mean_col <- paste0("mean_", config$y_var)
  479. y_sd_col <- paste0("sd_", config$y_var)
  480. plot <- plot + geom_errorbar(
  481. aes(
  482. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  483. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  484. ),
  485. alpha = 0.3
  486. )
  487. }
  488. # Add x-axis customization if specified
  489. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  490. plot <- plot + scale_x_continuous(
  491. name = config$x_label,
  492. breaks = config$x_breaks,
  493. labels = config$x_labels
  494. )
  495. }
  496. # Use coord_cartesian for zooming in without removing data outside the range
  497. if (!is.null(config$coord_cartesian)) {
  498. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  499. }
  500. # Use scale_y_continuous for setting the y-axis limits
  501. if (!is.null(config$ylim_vals)) {
  502. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  503. }
  504. # Add annotations if provided
  505. if (!is.null(config$annotations)) {
  506. for (annotation in config$annotations) {
  507. plot <- plot + annotate("text", x = annotation$x, y = annotation$y, label = annotation$label)
  508. }
  509. }
  510. # Add titles and themes if specified
  511. if (!is.null(config$title)) {
  512. plot <- plot + ggtitle(config$title)
  513. }
  514. if (!is.null(config$legend_position)) {
  515. plot <- plot + theme(legend.position = config$legend_position)
  516. }
  517. return(plot)
  518. }
  519. generate_box_plot <- function(plot, config) {
  520. plot <- plot + geom_boxplot()
  521. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  522. plot <- plot + scale_x_discrete(
  523. name = config$x_label,
  524. breaks = config$x_breaks,
  525. labels = config$x_labels
  526. )
  527. }
  528. if (!is.null(config$coord_cartesian)) {
  529. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  530. }
  531. return(plot)
  532. }
  533. # Adjust missing values and calculate ranks
  534. adjust_missing_and_rank <- function(df, variables) {
  535. # Loop over each variable
  536. for (var in variables) {
  537. # Construct column names
  538. avg_zscore_col <- paste0("Avg_Zscore_", var)
  539. z_lm_col <- paste0("Z_lm_", var)
  540. rank_col <- paste0("Rank_", var)
  541. rank_lm_col <- paste0("Rank_lm_", var)
  542. # Check if the columns exist in the data frame
  543. if (all(c(avg_zscore_col, z_lm_col) %in% names(df))) {
  544. # Adjust missing values by replacing NA with 0.001
  545. df[[avg_zscore_col]] <- if_else(is.na(df[[avg_zscore_col]]), 0.001, df[[avg_zscore_col]])
  546. df[[z_lm_col]] <- if_else(is.na(df[[z_lm_col]]), 0.001, df[[z_lm_col]])
  547. # Compute ranks and create new columns
  548. df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
  549. df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
  550. } else {
  551. warning(paste("Columns", avg_zscore_col, "or", z_lm_col, "not found in data frame"))
  552. }
  553. }
  554. return(df)
  555. }
  556. generate_interaction_plot_configs <- function(df, variables) {
  557. configs <- list()
  558. # Define common y-limits and other attributes for each variable dynamically
  559. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  560. # Define annotation positions based on the variable being plotted
  561. annotation_positions <- list(
  562. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  563. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  564. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  565. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  566. )
  567. # Define which annotations to include for each plot
  568. annotation_labels <- list(
  569. ZShift = function(df, var) {
  570. val <- df[[paste0("Z_Shift_", var)]]
  571. if (is.numeric(val)) {
  572. paste("ZShift =", round(val, 2))
  573. } else {
  574. paste("ZShift =", val)
  575. }
  576. },
  577. lm_ZScore = function(df, var) {
  578. val <- df[[paste0("Z_lm_", var)]]
  579. if (is.numeric(val)) {
  580. paste("lm ZScore =", round(val, 2))
  581. } else {
  582. paste("lm ZScore =", val)
  583. }
  584. },
  585. NG = function(df, var) paste("NG =", df$NG),
  586. DB = function(df, var) paste("DB =", df$DB),
  587. SM = function(df, var) paste("SM =", df$SM)
  588. )
  589. for (variable in variables) {
  590. # Dynamically generate the names of the columns
  591. var_info <- list(
  592. ylim = limits_map[[variable]],
  593. sd_col = paste0("WT_sd_", variable)
  594. )
  595. # Extract the precomputed linear model coefficients
  596. lm_line <- list(
  597. intercept = df[[paste0("lm_intercept_", variable)]],
  598. slope = df[[paste0("lm_slope_", variable)]]
  599. )
  600. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  601. message("Processing annotation: ", annotation_name, " for variable: ", variable)
  602. y_pos <- annotation_positions[[variable]][[annotation_name]]
  603. # Check if the annotation_name exists in annotation_labels
  604. if (!is.null(annotation_labels[[annotation_name]])) {
  605. label <- annotation_labels[[annotation_name]](df, variable)
  606. list(x = 1, y = y_pos, label = label)
  607. } else {
  608. message(paste("Warning: No annotation function found for", annotation_name))
  609. NULL
  610. }
  611. })
  612. # Filter out any NULL annotations
  613. annotations <- Filter(Negate(is.null), annotations)
  614. # Add scatter plot configuration for this variable
  615. configs[[length(configs) + 1]] <- list(
  616. df = df,
  617. x_var = "conc_num_factor",
  618. y_var = variable,
  619. plot_type = "scatter",
  620. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  621. ylim_vals = var_info$ylim,
  622. annotations = annotations,
  623. lm_line = lm_line, # Precomputed linear model
  624. error_bar = TRUE,
  625. x_breaks = unique(df$conc_num_factor),
  626. x_labels = unique(as.character(df$conc_num)),
  627. x_label = unique(df$Drug[1]),
  628. position = "jitter",
  629. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  630. )
  631. # Add box plot configuration for this variable
  632. configs[[length(configs) + 1]] <- list(
  633. df = df,
  634. x_var = "conc_num_factor",
  635. y_var = variable,
  636. plot_type = "box",
  637. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  638. ylim_vals = var_info$ylim,
  639. annotations = annotations,
  640. error_bar = FALSE,
  641. x_breaks = unique(df$conc_num_factor),
  642. x_labels = unique(as.character(df$conc_num)),
  643. x_label = unique(df$Drug[1]),
  644. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  645. )
  646. }
  647. return(configs)
  648. }
  649. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  650. configs <- list()
  651. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  652. # Single config with all sd bands
  653. configs[[length(configs) + 1]] <- list(
  654. df = df,
  655. x_var = rank_var,
  656. y_var = zscore_var,
  657. plot_type = "scatter",
  658. title = paste(plot_title_prefix, var, "Rank Plot"),
  659. sd_band = c(1, 2, 3), # Pass all sd bands at once
  660. enhancer_label = list(
  661. x = nrow(df) / 2, y = 10,
  662. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= 1, ])) # Example for the first SD band
  663. ),
  664. suppressor_label = list(
  665. x = nrow(df) / 2, y = -10,
  666. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -1, ]))
  667. ),
  668. shape = 3,
  669. size = 0.1
  670. )
  671. # Non-annotated version
  672. configs[[length(configs) + 1]] <- list(
  673. df = df,
  674. x_var = rank_var,
  675. y_var = zscore_var,
  676. plot_type = "scatter",
  677. title = paste(plot_title_prefix, var, "Rank Plot No Annotations"),
  678. sd_band = c(1, 2, 3),
  679. enhancer_label = NULL,
  680. suppressor_label = NULL,
  681. shape = 3,
  682. size = 0.1,
  683. position = "jitter"
  684. )
  685. return(configs)
  686. }
  687. generate_correlation_plot_configs <- function(df, variables) {
  688. configs <- list()
  689. for (variable in variables) {
  690. z_lm_var <- paste0("Z_lm_", variable)
  691. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  692. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  693. configs[[length(configs) + 1]] <- list(
  694. df = df,
  695. x_var = avg_zscore_var,
  696. y_var = z_lm_var,
  697. plot_type = "scatter",
  698. title = paste("Avg Zscore vs lm", variable),
  699. color_var = "Overlap",
  700. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  701. shape = 3,
  702. geom_smooth = TRUE,
  703. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  704. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  705. legend_position = "right"
  706. )
  707. }
  708. return(configs)
  709. }
  710. main <- function() {
  711. lapply(names(args$experiments), function(exp_name) {
  712. exp <- args$experiments[[exp_name]]
  713. exp_path <- exp$path
  714. exp_sd <- exp$sd
  715. out_dir <- file.path(exp_path, "zscores")
  716. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  717. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  718. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  719. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  720. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  721. orf_group_vars <- c("OrfRep", "Gene", "num")
  722. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  723. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  724. message("Loading and filtering data")
  725. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  726. df <- update_gene_names(df, args$sgd_gene_list)
  727. df <- as_tibble(df)
  728. # Filter rows that are above tolerance for quality control plots
  729. df_above_tolerance <- df %>% filter(DB == 1)
  730. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  731. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  732. # Remove rows with 0 values in L
  733. df_no_zeros <- df_na %>% filter(L > 0)
  734. # Save some constants
  735. max_conc <- max(df$conc_num_factor)
  736. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  737. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  738. message("Calculating summary statistics before quality control")
  739. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  740. # df_ss <- ss$summary_stats
  741. df_stats <- ss$df_with_stats
  742. df_filtered_stats <- df_stats %>%
  743. {
  744. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  745. if (nrow(non_finite_rows) > 0) {
  746. message("Filtering out the following non-finite rows:")
  747. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  748. }
  749. filter(., if_all(c(L), is.finite))
  750. }
  751. message("Calculating summary statistics after quality control")
  752. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  753. df_na_ss <- ss$summary_stats
  754. df_na_stats <- ss$df_with_stats
  755. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  756. # Filter out non-finite rows for plotting
  757. df_na_filtered_stats <- df_na_stats %>%
  758. {
  759. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  760. if (nrow(non_finite_rows) > 0) {
  761. message("Removed the following non-finite rows:")
  762. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  763. }
  764. filter(., if_all(c(L), is.finite))
  765. }
  766. message("Calculating summary statistics after quality control excluding zero values")
  767. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  768. df_no_zeros_stats <- ss$df_with_stats
  769. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  770. {
  771. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  772. if (nrow(non_finite_rows) > 0) {
  773. message("Removed the following non-finite rows:")
  774. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  775. }
  776. filter(., if_all(c(L), is.finite))
  777. }
  778. message("Filtering by 2SD of K")
  779. df_na_within_2sd_k <- df_na_stats %>%
  780. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  781. df_na_outside_2sd_k <- df_na_stats %>%
  782. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  783. message("Calculating summary statistics for L within 2SD of K")
  784. # TODO We're omitting the original z_max calculation, not sure if needed?
  785. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  786. l_within_2sd_k_ss <- ss$summary_stats
  787. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  788. write.csv(l_within_2sd_k_ss,
  789. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  790. message("Calculating summary statistics for L outside 2SD of K")
  791. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  792. l_outside_2sd_k_ss <- ss$summary_stats
  793. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  794. write.csv(l_outside_2sd_k_ss,
  795. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  796. # Each plots list corresponds to a file
  797. message("Generating quality control plot configurations")
  798. l_vs_k_plots <- list(
  799. list(
  800. df = df,
  801. x_var = "L",
  802. y_var = "K",
  803. plot_type = "scatter",
  804. delta_bg_point = TRUE,
  805. title = "Raw L vs K before quality control",
  806. color_var = "conc_num",
  807. error_bar = FALSE,
  808. legend_position = "right"
  809. )
  810. )
  811. frequency_delta_bg_plots <- list(
  812. list(
  813. df = df_filtered_stats,
  814. x_var = "delta_bg",
  815. y_var = NULL,
  816. plot_type = "density",
  817. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  818. color_var = "conc_num",
  819. x_label = "Delta Background",
  820. y_label = "Density",
  821. error_bar = FALSE,
  822. legend_position = "right"),
  823. list(
  824. df = df_filtered_stats,
  825. x_var = "delta_bg",
  826. y_var = NULL,
  827. plot_type = "bar",
  828. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  829. color_var = "conc_num",
  830. x_label = "Delta Background",
  831. y_label = "Count",
  832. error_bar = FALSE,
  833. legend_position = "right")
  834. )
  835. above_threshold_plots <- list(
  836. list(
  837. df = df_above_tolerance,
  838. x_var = "L",
  839. y_var = "K",
  840. plot_type = "scatter",
  841. delta_bg_point = TRUE,
  842. title = paste("Raw L vs K for strains above Delta Background threshold of",
  843. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  844. color_var = "conc_num",
  845. position = "jitter",
  846. annotations = list(
  847. x = l_half_median,
  848. y = k_half_median,
  849. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  850. ),
  851. error_bar = FALSE,
  852. legend_position = "right"
  853. )
  854. )
  855. plate_analysis_plots <- list()
  856. for (var in summary_vars) {
  857. for (stage in c("before", "after")) {
  858. if (stage == "before") {
  859. df_plot <- df_filtered_stats
  860. } else {
  861. df_plot <- df_na_filtered_stats
  862. }
  863. config <- list(
  864. df = df_plot,
  865. x_var = "scan",
  866. y_var = var,
  867. plot_type = "scatter",
  868. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  869. error_bar = TRUE,
  870. color_var = "conc_num",
  871. position = "jitter")
  872. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  873. }
  874. }
  875. plate_analysis_boxplots <- list()
  876. for (var in summary_vars) {
  877. for (stage in c("before", "after")) {
  878. if (stage == "before") {
  879. df_plot <- df_filtered_stats
  880. } else {
  881. df_plot <- df_na_filtered_stats
  882. }
  883. config <- list(
  884. df = df_plot,
  885. x_var = "scan",
  886. y_var = var,
  887. plot_type = "box",
  888. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  889. error_bar = FALSE,
  890. color_var = "conc_num")
  891. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  892. }
  893. }
  894. plate_analysis_no_zeros_plots <- list()
  895. for (var in summary_vars) {
  896. config <- list(
  897. df = df_no_zeros_filtered_stats,
  898. x_var = "scan",
  899. y_var = var,
  900. plot_type = "scatter",
  901. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  902. error_bar = TRUE,
  903. color_var = "conc_num",
  904. position = "jitter")
  905. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  906. }
  907. plate_analysis_no_zeros_boxplots <- list()
  908. for (var in summary_vars) {
  909. config <- list(
  910. df = df_no_zeros_filtered_stats,
  911. x_var = "scan",
  912. y_var = var,
  913. plot_type = "box",
  914. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  915. error_bar = FALSE,
  916. color_var = "conc_num"
  917. )
  918. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  919. }
  920. l_outside_2sd_k_plots <- list(
  921. list(
  922. df = df_na_l_outside_2sd_k_stats,
  923. x_var = "L",
  924. y_var = "K",
  925. plot_type = "scatter",
  926. delta_bg_point = TRUE,
  927. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  928. color_var = "conc_num",
  929. position = "jitter",
  930. legend_position = "right"
  931. )
  932. )
  933. delta_bg_outside_2sd_k_plots <- list(
  934. list(
  935. df = df_na_l_outside_2sd_k_stats,
  936. x_var = "delta_bg",
  937. y_var = "K",
  938. plot_type = "scatter",
  939. gene_point = TRUE,
  940. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  941. color_var = "conc_num",
  942. position = "jitter",
  943. legend_position = "right"
  944. )
  945. )
  946. # message("Generating quality control plots")
  947. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  948. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  949. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  950. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  951. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  952. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  953. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  954. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  955. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  956. # Clean up
  957. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  958. gc()
  959. # TODO: Originally this filtered L NA's
  960. # Let's try to avoid for now since stats have already been calculated
  961. # Process background strains
  962. bg_strains <- c("YDL227C")
  963. lapply(bg_strains, function(strain) {
  964. message("Processing background strain: ", strain)
  965. # Handle missing data by setting zero values to NA
  966. # and then removing any rows with NA in L col
  967. df_bg <- df_na %>%
  968. filter(OrfRep == strain) %>%
  969. mutate(
  970. L = if_else(L == 0, NA, L),
  971. K = if_else(K == 0, NA, K),
  972. r = if_else(r == 0, NA, r),
  973. AUC = if_else(AUC == 0, NA, AUC)
  974. ) %>%
  975. filter(!is.na(L))
  976. # Recalculate summary statistics for the background strain
  977. message("Calculating summary statistics for background strain")
  978. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  979. summary_stats_bg <- ss_bg$summary_stats
  980. # df_bg_stats <- ss_bg$df_with_stats
  981. write.csv(summary_stats_bg,
  982. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  983. row.names = FALSE)
  984. # Filter reference and deletion strains
  985. # Formerly X2_RF (reference strains)
  986. df_reference <- df_na_stats %>%
  987. filter(OrfRep == strain) %>%
  988. mutate(SM = 0)
  989. # Formerly X2 (deletion strains)
  990. df_deletion <- df_na_stats %>%
  991. filter(OrfRep != strain) %>%
  992. mutate(SM = 0)
  993. # Set the missing values to the highest theoretical value at each drug conc for L
  994. # Leave other values as 0 for the max/min
  995. reference_strain <- df_reference %>%
  996. group_by(conc_num) %>%
  997. mutate(
  998. max_l_theoretical = max(max_L, na.rm = TRUE),
  999. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1000. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1001. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1002. ungroup()
  1003. # Ditto for deletion strains
  1004. deletion_strains <- df_deletion %>%
  1005. group_by(conc_num) %>%
  1006. mutate(
  1007. max_l_theoretical = max(max_L, na.rm = TRUE),
  1008. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1009. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1010. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1011. ungroup()
  1012. message("Calculating interaction scores")
  1013. interaction_vars <- c("L", "K", "r", "AUC")
  1014. message("Calculating reference strain(s)")
  1015. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  1016. zscores_calculations_reference <- reference_results$calculations
  1017. zscores_interactions_reference <- reference_results$interactions
  1018. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1019. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1020. message("Calculating deletion strain(s)")
  1021. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  1022. zscores_calculations <- deletion_results$calculations
  1023. zscores_interactions <- deletion_results$interactions
  1024. zscores_calculations_joined <- deletion_results$calculations_joined
  1025. zscores_interactions_joined <- deletion_results$interactions_joined
  1026. # Writing Z-Scores to file
  1027. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1028. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1029. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1030. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1031. # Create interaction plots
  1032. message("Generating interaction plot configurations")
  1033. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1034. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1035. message("Generating interaction plots")
  1036. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1037. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1038. # Define conditions for enhancers and suppressors
  1039. # TODO Add to study config file?
  1040. threshold <- 2
  1041. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1042. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1043. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1044. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1045. # Subset data
  1046. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1047. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1048. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1049. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1050. # Save enhancers and suppressors
  1051. message("Writing enhancer/suppressor csv files")
  1052. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1053. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1054. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1055. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1056. # Combine conditions for enhancers and suppressors
  1057. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1058. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1059. # Save combined enhancers and suppressors
  1060. write.csv(enhancers_and_suppressors_L,
  1061. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1062. write.csv(enhancers_and_suppressors_K,
  1063. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1064. # Handle linear model based enhancers and suppressors
  1065. lm_threshold <- 2
  1066. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1067. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1068. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1069. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1070. # Save linear model based enhancers and suppressors
  1071. message("Writing linear model enhancer/suppressor csv files")
  1072. write.csv(enhancers_lm_L,
  1073. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1074. write.csv(suppressors_lm_L,
  1075. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1076. write.csv(enhancers_lm_K,
  1077. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1078. write.csv(suppressors_lm_K,
  1079. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1080. # TODO needs explanation
  1081. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1082. rank_plot_configs <- c(
  1083. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1084. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1085. )
  1086. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1087. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1088. rank_lm_plot_config <- c(
  1089. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1090. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1091. )
  1092. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1093. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1094. # Formerly X_NArm
  1095. zscores_interactions_filtered <- zscores_interactions %>%
  1096. group_by(across(all_of(orf_group_vars))) %>%
  1097. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1098. # Final filtered correlation calculations and plots
  1099. lm_results <- zscores_interactions_filtered %>%
  1100. summarise(
  1101. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1102. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1103. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1104. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1105. )
  1106. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1107. left_join(lm_results, by = orf_group_vars) %>%
  1108. mutate(
  1109. Overlap = case_when(
  1110. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1111. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1112. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1113. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1114. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1115. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1116. TRUE ~ "No Effect"
  1117. )
  1118. ) %>%
  1119. ungroup()
  1120. rank_plot_configs <- c(
  1121. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1122. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1123. )
  1124. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1125. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1126. rank_lm_plot_configs <- c(
  1127. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1128. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1129. )
  1130. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1131. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1132. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1133. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1134. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1135. })
  1136. })
  1137. }
  1138. main()