calculate_interaction_zscores.R 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_process_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  122. ) %>%
  123. mutate(
  124. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  125. )
  126. return(df)
  127. }
  128. # Update Gene names using the SGD gene list
  129. update_gene_names <- function(df, sgd_gene_list) {
  130. # Load SGD gene list
  131. genes <- read.delim(file = sgd_gene_list,
  132. quote = "", header = FALSE,
  133. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  134. # Create a named vector for mapping ORF to GeneName
  135. gene_map <- setNames(genes$V5, genes$V4)
  136. # Vectorized match to find the GeneName from gene_map
  137. mapped_genes <- gene_map[df$ORF]
  138. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  139. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  140. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  141. df <- df %>%
  142. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  143. return(df)
  144. }
  145. calculate_summary_stats <- function(df, variables, group_vars) {
  146. summary_stats <- df %>%
  147. group_by(across(all_of(group_vars))) %>%
  148. summarise(
  149. N = n(),
  150. across(
  151. all_of(variables),
  152. list(
  153. mean = ~mean(., na.rm = TRUE),
  154. median = ~median(., na.rm = TRUE),
  155. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  156. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  157. sd = ~sd(., na.rm = TRUE),
  158. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  159. ),
  160. .names = "{.fn}_{.col}"
  161. ),
  162. .groups = "drop"
  163. )
  164. # Create a cleaned version of df that doesn't overlap with summary_stats
  165. cleaned_df <- df %>%
  166. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  167. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  168. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  169. }
  170. calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("L", "K", "r", "AUC"),
  171. group_vars = c("OrfRep", "Gene", "num")) {
  172. # Calculate total concentration variables
  173. total_conc_num <- length(unique(df$conc_num))
  174. calculations <- df %>%
  175. group_by(OrfRep, Gene, num) %>%
  176. mutate(
  177. NG = sum(NG, na.rm = TRUE),
  178. DB = sum(DB, na.rm = TRUE),
  179. SM = sum(SM, na.rm = TRUE),
  180. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  181. # Calculate raw data
  182. Raw_Shift_L = first(mean_L) - bg_stats$L,
  183. Raw_Shift_K = first(mean_K) - bg_stats$K,
  184. Raw_Shift_r = first(mean_r) - bg_stats$r,
  185. Raw_Shift_AUC = first(mean_AUC) - bg_stats$AUC,
  186. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  187. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  188. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  189. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  190. Exp_L = WT_L + Raw_Shift_L,
  191. Exp_K = WT_K + Raw_Shift_K,
  192. Exp_r = WT_r + Raw_Shift_r,
  193. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  194. Delta_L = mean_L - Exp_L,
  195. Delta_K = mean_K - Exp_K,
  196. Delta_r = mean_r - Exp_r,
  197. Delta_AUC = mean_AUC - Exp_AUC,
  198. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  199. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  200. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  201. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  202. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  203. # Calculate Z-scores
  204. Zscore_L = Delta_L / WT_sd_L,
  205. Zscore_K = Delta_K / WT_sd_K,
  206. Zscore_r = Delta_r / WT_sd_r,
  207. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  208. # Fit linear models and store in list-columns
  209. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  210. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  211. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  212. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  213. # Extract coefficients using purrr::map_dbl
  214. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  215. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  216. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  217. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  218. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  219. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  220. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  221. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  222. # Calculate lm_Score_* based on coefficients
  223. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  224. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  225. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  226. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  227. # Calculate R-squared values
  228. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  229. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  230. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  231. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared),
  232. # Calculate Z_lm_* Scores
  233. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  234. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  235. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  236. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  237. ) %>%
  238. ungroup()
  239. # Summarize some of the stats
  240. interactions <- calculations %>%
  241. group_by(OrfRep, Gene, num) %>%
  242. mutate(
  243. # Calculate raw shifts
  244. Raw_Shift_L = first(Raw_Shift_L),
  245. Raw_Shift_K = first(Raw_Shift_K),
  246. Raw_Shift_r = first(Raw_Shift_r),
  247. Raw_Shift_AUC = first(Raw_Shift_AUC),
  248. # Calculate Z-shifts
  249. Z_Shift_L = first(Z_Shift_L),
  250. Z_Shift_K = first(Z_Shift_K),
  251. Z_Shift_r = first(Z_Shift_r),
  252. Z_Shift_AUC = first(Z_Shift_AUC),
  253. # Sum Z-scores
  254. Sum_Z_Score_L = sum(Zscore_L),
  255. Sum_Z_Score_K = sum(Zscore_K),
  256. Sum_Z_Score_r = sum(Zscore_r),
  257. Sum_Z_Score_AUC = sum(Zscore_AUC),
  258. # Calculate Average Z-scores
  259. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  260. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  261. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  262. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  263. ) %>%
  264. arrange(desc(Z_lm_L), desc(NG)) %>%
  265. ungroup()
  266. # Declare column order for output
  267. calculations <- calculations %>%
  268. select(
  269. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  270. "mean_L", "mean_K", "mean_r", "mean_AUC",
  271. "median_L", "median_K", "median_r", "median_AUC",
  272. "sd_L", "sd_K", "sd_r", "sd_AUC",
  273. "se_L", "se_K", "se_r", "se_AUC",
  274. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  275. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  276. "WT_L", "WT_K", "WT_r", "WT_AUC",
  277. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  278. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  279. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  280. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  281. "NG", "SM", "DB")
  282. interactions <- interactions %>%
  283. select(
  284. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  285. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  286. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  287. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  288. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  289. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  290. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  291. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  292. cleaned_df <- df %>%
  293. select(-any_of(
  294. setdiff(intersect(names(df), names(interactions)),
  295. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  296. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  297. return(list(
  298. calculations = calculations,
  299. interactions = interactions,
  300. interactions_joined = interactions_joined))
  301. }
  302. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  303. message("Generating ", filename, ".pdf and ", filename, ".html")
  304. # Prepare lists to collect plots
  305. static_plots <- list()
  306. plotly_plots <- list()
  307. for (i in seq_along(plot_configs)) {
  308. config <- plot_configs[[i]]
  309. df <- config$df
  310. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  311. if (is.null(config$color_var)) {
  312. aes(x = .data[[config$x_var]])
  313. } else {
  314. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  315. }
  316. } else if (is.null(config$color_var)) {
  317. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  318. } else {
  319. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  320. }
  321. # Start building the plot with aes_mapping
  322. plot_base <- ggplot(df, aes_mapping)
  323. # Use appropriate helper function based on plot type
  324. plot <- switch(config$plot_type,
  325. "scatter" = generate_scatter_plot(plot_base, config),
  326. "box" = generate_box_plot(plot_base, config),
  327. "density" = plot_base + geom_density(),
  328. "bar" = plot_base + geom_bar(),
  329. plot_base # default case if no type matches
  330. )
  331. # Apply additional settings
  332. if (!is.null(config$legend_position)) {
  333. plot <- plot + theme(legend.position = config$legend_position)
  334. }
  335. # Add title and labels
  336. if (!is.null(config$title)) {
  337. plot <- plot + ggtitle(config$title)
  338. }
  339. if (!is.null(config$x_label)) {
  340. plot <- plot + xlab(config$x_label)
  341. }
  342. if (!is.null(config$y_label)) {
  343. plot <- plot + ylab(config$y_label)
  344. }
  345. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  346. if (is.null(config$color_var)) {
  347. plot <- plot + scale_color_discrete(guide = "none")
  348. }
  349. # Add interactive tooltips for plotly
  350. tooltip_vars <- c()
  351. if (config$plot_type == "scatter") {
  352. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  353. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  354. } else if (!is.null(config$gene_point) && config$gene_point) {
  355. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  356. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  357. tooltip_vars <- c(config$x_var, config$y_var)
  358. }
  359. }
  360. # Convert to plotly object
  361. if (length(tooltip_vars) > 0) {
  362. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  363. } else {
  364. plotly_plot <- ggplotly(plot, tooltip = "none")
  365. }
  366. # Adjust legend position if specified
  367. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  368. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  369. }
  370. # Add plots to lists
  371. static_plots[[i]] <- plot
  372. plotly_plots[[i]] <- plotly_plot
  373. }
  374. # Save static PDF plots
  375. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  376. lapply(static_plots, print)
  377. dev.off()
  378. # Combine and save interactive HTML plots
  379. combined_plot <- subplot(
  380. plotly_plots,
  381. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  382. grid_layout$nrow
  383. } else {
  384. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  385. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  386. },
  387. margin = 0.05
  388. )
  389. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  390. }
  391. generate_scatter_plot <- function(plot, config) {
  392. shape <- if (!is.null(config$shape)) config$shape else 3
  393. size <- if (!is.null(config$size)) config$size else 0.1
  394. position <-
  395. if (!is.null(config$position) && config$position == "jitter") {
  396. position_jitter(width = 0.1, height = 0)
  397. } else {
  398. "identity"
  399. }
  400. plot <- plot + geom_point(
  401. shape = shape,
  402. size = size,
  403. position = position
  404. )
  405. if (!is.null(config$cyan_points) && config$cyan_points) {
  406. plot <- plot + geom_point(
  407. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  408. color = "cyan",
  409. shape = 3,
  410. size = 0.5
  411. )
  412. }
  413. # Add Smooth Line if specified
  414. if (!is.null(config$smooth) && config$smooth) {
  415. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  416. if (!is.null(config$lm_line)) {
  417. plot <- plot +
  418. geom_abline(
  419. intercept = config$lm_line$intercept,
  420. slope = config$lm_line$slope,
  421. color = smooth_color
  422. )
  423. } else {
  424. plot <- plot +
  425. geom_smooth(
  426. method = "lm",
  427. se = FALSE,
  428. color = smooth_color
  429. )
  430. }
  431. }
  432. # Add SD Bands if specified
  433. if (!is.null(config$sd_band)) {
  434. plot <- plot +
  435. annotate(
  436. "rect",
  437. xmin = -Inf, xmax = Inf,
  438. ymin = config$sd_band, ymax = Inf,
  439. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  440. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  441. ) +
  442. annotate(
  443. "rect",
  444. xmin = -Inf, xmax = Inf,
  445. ymin = -config$sd_band, ymax = -Inf,
  446. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  447. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  448. ) +
  449. geom_hline(
  450. yintercept = c(-config$sd_band, config$sd_band),
  451. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  452. )
  453. }
  454. # Add Rectangles if specified
  455. if (!is.null(config$rectangles)) {
  456. for (rect in config$rectangles) {
  457. plot <- plot + annotate(
  458. "rect",
  459. xmin = rect$xmin,
  460. xmax = rect$xmax,
  461. ymin = rect$ymin,
  462. ymax = rect$ymax,
  463. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  464. color = ifelse(is.null(rect$color), "black", rect$color),
  465. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  466. )
  467. }
  468. }
  469. # Add Error Bars if specified
  470. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  471. y_mean_col <- paste0("mean_", config$y_var)
  472. y_sd_col <- paste0("sd_", config$y_var)
  473. plot <- plot +
  474. geom_errorbar(
  475. aes(
  476. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  477. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  478. ),
  479. alpha = 0.3
  480. )
  481. }
  482. # Customize X-axis if specified
  483. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  484. plot <- plot +
  485. scale_x_discrete(
  486. name = config$x_label,
  487. breaks = config$x_breaks,
  488. labels = config$x_labels
  489. )
  490. }
  491. # Apply coord_cartesian if specified
  492. if (!is.null(config$coord_cartesian)) {
  493. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  494. }
  495. # Set Y-axis limits if specified
  496. if (!is.null(config$ylim_vals)) {
  497. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  498. }
  499. # Add Annotations if specified
  500. if (!is.null(config$annotations)) {
  501. for (annotation in config$annotations) {
  502. plot <- plot +
  503. annotate(
  504. "text",
  505. x = annotation$x,
  506. y = annotation$y,
  507. label = annotation$label,
  508. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  509. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  510. size = ifelse(is.null(annotation$size), 4, annotation$size),
  511. color = ifelse(is.null(annotation$color), "black", annotation$color)
  512. )
  513. }
  514. }
  515. # Add Title if specified
  516. if (!is.null(config$title)) {
  517. plot <- plot + ggtitle(config$title)
  518. }
  519. # Adjust Legend Position if specified
  520. if (!is.null(config$legend_position)) {
  521. plot <- plot + theme(legend.position = config$legend_position)
  522. }
  523. return(plot)
  524. }
  525. generate_box_plot <- function(plot, config) {
  526. plot <- plot + geom_boxplot()
  527. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  528. plot <- plot + scale_x_discrete(
  529. name = config$x_label,
  530. breaks = config$x_breaks,
  531. labels = config$x_labels
  532. )
  533. }
  534. if (!is.null(config$coord_cartesian)) {
  535. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  536. }
  537. return(plot)
  538. }
  539. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  540. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  541. plots <- list()
  542. for (var in variables) {
  543. for (stage in stages) {
  544. df_plot <- if (stage == "before") df_before else df_after
  545. # Adjust settings based on plot_type
  546. if (plot_type == "scatter") {
  547. error_bar <- TRUE
  548. position <- "jitter"
  549. } else if (plot_type == "box") {
  550. error_bar <- FALSE
  551. position <- NULL
  552. }
  553. config <- list(
  554. df = df_plot,
  555. x_var = "scan",
  556. y_var = var,
  557. plot_type = plot_type,
  558. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  559. error_bar = error_bar,
  560. color_var = "conc_num_factor",
  561. position = position
  562. )
  563. plots <- append(plots, list(config))
  564. }
  565. }
  566. return(plots)
  567. }
  568. generate_interaction_plot_configs <- function(df, variables) {
  569. configs <- list()
  570. limits_map <- list(
  571. L = c(-65, 65),
  572. K = c(-65, 65),
  573. r = c(-0.65, 0.65),
  574. AUC = c(-6500, 6500)
  575. )
  576. df_filtered <- process_data(df, variables, filter_na = TRUE, limits_map = limits_map)
  577. # Define annotation label functions
  578. generate_annotation_labels <- function(df, var, annotation_name) {
  579. switch(annotation_name,
  580. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  581. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  582. NG = paste("NG =", df$NG),
  583. DB = paste("DB =", df$DB),
  584. SM = paste("SM =", df$SM),
  585. NULL # Default case for unrecognized annotation names
  586. )
  587. }
  588. # Define annotation positions relative to the y-axis range
  589. calculate_annotation_positions <- function(y_range) {
  590. y_min <- min(y_range)
  591. y_max <- max(y_range)
  592. y_span <- y_max - y_min
  593. list(
  594. ZShift = y_max - 0.1 * y_span,
  595. lm_ZScore = y_max - 0.2 * y_span,
  596. NG = y_min + 0.2 * y_span,
  597. DB = y_min + 0.1 * y_span,
  598. SM = y_min + 0.05 * y_span
  599. )
  600. }
  601. # Create configurations for each variable
  602. for (variable in variables) {
  603. y_range <- limits_map[[variable]]
  604. annotation_positions <- calculate_annotation_positions(y_range)
  605. lm_line <- list(
  606. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  607. slope = df_filtered[[paste0("lm_slope_", variable)]]
  608. )
  609. # Determine x-axis midpoint
  610. num_levels <- length(levels(df_filtered$conc_num_factor))
  611. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  612. # Generate annotations
  613. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  614. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  615. y_pos <- annotation_positions[[annotation_name]]
  616. if (!is.null(label)) {
  617. list(x = x_pos, y = y_pos, label = label)
  618. } else {
  619. message(paste("Warning: No annotation found for", annotation_name))
  620. NULL
  621. }
  622. })
  623. # Remove NULL annotations
  624. annotations <- Filter(Negate(is.null), annotations)
  625. # Shared plot settings
  626. plot_settings <- list(
  627. df = df_filtered,
  628. x_var = "conc_num_factor",
  629. y_var = variable,
  630. ylim_vals = y_range,
  631. annotations = annotations,
  632. lm_line = lm_line,
  633. x_breaks = levels(df_filtered$conc_num_factor),
  634. x_labels = levels(df_filtered$conc_num_factor),
  635. x_label = unique(df_filtered$Drug[1]),
  636. coord_cartesian = y_range # Use the actual y-limits
  637. )
  638. # Scatter plot config
  639. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  640. plot_type = "scatter",
  641. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  642. error_bar = TRUE,
  643. position = "jitter"
  644. ))
  645. # Box plot config
  646. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  647. plot_type = "box",
  648. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  649. error_bar = FALSE
  650. ))
  651. }
  652. return(configs)
  653. }
  654. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE, overlap_color = FALSE) {
  655. sd_bands <- c(1, 2, 3)
  656. configs <- list()
  657. # SD-based plots for L and K
  658. for (variable in c("L", "K")) {
  659. if (is_lm) {
  660. rank_var <- paste0("Rank_lm_", variable)
  661. zscore_var <- paste0("Z_lm_", variable)
  662. y_label <- paste("Int Z score", variable)
  663. } else {
  664. rank_var <- paste0("Rank_", variable)
  665. zscore_var <- paste0("Avg_Zscore_", variable)
  666. y_label <- paste("Avg Z score", variable)
  667. }
  668. for (sd_band in sd_bands) {
  669. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  670. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  671. # Annotated plot configuration
  672. configs[[length(configs) + 1]] <- list(
  673. df = df_filtered,
  674. x_var = rank_var,
  675. y_var = zscore_var,
  676. plot_type = "scatter",
  677. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  678. sd_band = sd_band,
  679. fill_positive = "#542788",
  680. fill_negative = "orange",
  681. alpha_positive = 0.3,
  682. alpha_negative = 0.3,
  683. annotations = list(
  684. list(
  685. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  686. y = 10,
  687. label = paste("Deletion Enhancers =", num_enhancers),
  688. hjust = 0.5,
  689. vjust = 1
  690. ),
  691. list(
  692. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  693. y = -10,
  694. label = paste("Deletion Suppressors =", num_suppressors),
  695. hjust = 0.5,
  696. vjust = 0
  697. )
  698. ),
  699. shape = 3,
  700. size = 0.1,
  701. y_label = y_label,
  702. x_label = "Rank",
  703. legend_position = "none"
  704. )
  705. # Non-Annotated Plot Configuration
  706. configs[[length(configs) + 1]] <- list(
  707. df = df_filtered,
  708. x_var = rank_var,
  709. y_var = zscore_var,
  710. plot_type = "scatter",
  711. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  712. sd_band = sd_band,
  713. fill_positive = "#542788",
  714. fill_negative = "orange",
  715. alpha_positive = 0.3,
  716. alpha_negative = 0.3,
  717. annotations = NULL,
  718. shape = 3,
  719. size = 0.1,
  720. y_label = y_label,
  721. x_label = "Rank",
  722. legend_position = "none"
  723. )
  724. }
  725. }
  726. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  727. for (variable in variables) {
  728. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  729. title <- paste(plot_type, variable)
  730. # Define specific variables based on plot type
  731. if (plot_type == "Avg Zscore vs lm") {
  732. x_var <- paste0("Avg_Zscore_", variable)
  733. y_var <- paste0("Z_lm_", variable)
  734. rectangles <- list(
  735. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  736. fill = NA, color = "grey20", alpha = 0.1
  737. )
  738. )
  739. } else if (plot_type == "Rank Avg Zscore vs lm") {
  740. x_var <- paste0("Rank_", variable)
  741. y_var <- paste0("Rank_lm_", variable)
  742. rectangles <- NULL
  743. }
  744. # Fit linear model
  745. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_filtered)
  746. lm_summary <- summary(lm_model)
  747. # Extract intercept and slope from the model coefficients
  748. intercept <- coef(lm_model)[1]
  749. slope <- coef(lm_model)[2]
  750. configs[[length(configs) + 1]] <- list(
  751. df = df_filtered,
  752. x_var = x_var,
  753. y_var = y_var,
  754. plot_type = "scatter",
  755. title = title,
  756. annotations = list(
  757. list(
  758. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  759. y = 10,
  760. label = paste("Deletion Enhancers =", num_enhancers),
  761. hjust = 0.5,
  762. vjust = 1
  763. ),
  764. list(
  765. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  766. y = -10,
  767. label = paste("Deletion Suppressors =", num_suppressors),
  768. hjust = 0.5,
  769. vjust = 0
  770. )
  771. ),
  772. shape = 3,
  773. size = 0.1,
  774. smooth = TRUE,
  775. smooth_color = "black",
  776. lm_line = list(intercept = intercept, slope = slope),
  777. legend_position = "right",
  778. color_var = if (overlap_color) "Overlap" else NULL,
  779. x_label = x_var,
  780. y_label = y_var,
  781. rectangles = rectangles
  782. )
  783. }
  784. }
  785. return(configs)
  786. }
  787. generate_correlation_plot_configs <- function(df) {
  788. # Define relationships for plotting
  789. relationships <- list(
  790. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  791. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  792. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  793. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  794. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  795. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  796. )
  797. configs <- list()
  798. for (rel in relationships) {
  799. # Fit linear model
  800. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  801. lm_summary <- summary(lm_model)
  802. # Construct plot configuration
  803. config <- list(
  804. df = df,
  805. x_var = rel$x,
  806. y_var = rel$y,
  807. plot_type = "scatter",
  808. title = rel$label,
  809. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  810. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  811. annotations = list(
  812. list(
  813. x = Inf,
  814. y = Inf,
  815. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  816. hjust = 1.1,
  817. vjust = 2,
  818. size = 4,
  819. color = "black"
  820. )
  821. ),
  822. smooth = TRUE,
  823. smooth_color = "tomato3",
  824. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  825. legend_position = "right",
  826. shape = 3,
  827. size = 0.5,
  828. color_var = "Overlap",
  829. rectangles = list(
  830. list(
  831. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  832. fill = NA, color = "grey20", alpha = 0.1
  833. )
  834. ),
  835. cyan_points = TRUE
  836. )
  837. configs[[length(configs) + 1]] <- config
  838. }
  839. return(configs)
  840. }
  841. process_data <- function(df, variables, filter_nf = FALSE, filter_na = FALSE, adjust = FALSE,
  842. rank = FALSE, limits_map = NULL) {
  843. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  844. z_lm_cols <- paste0("Z_lm_", variables)
  845. rank_avg_zscore_cols <- paste0("Rank_", variables)
  846. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  847. if (filter_nf) {
  848. message("Filtering non-finite values")
  849. df <- df %>%
  850. filter(if_all(all_of(variables), ~ is.finite(.)))
  851. }
  852. if (filter_na) {
  853. message("Filtering NA values")
  854. df <- df %>%
  855. filter(if_all(all_of(variables), ~ !is.na(.)))
  856. }
  857. if (!is.null(limits_map)) {
  858. message("Filtering data outside y-limits (for plotting)")
  859. for (variable in names(limits_map)) {
  860. if (variable %in% variables) {
  861. ylim_vals <- limits_map[[variable]]
  862. df <- df %>%
  863. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  864. }
  865. }
  866. }
  867. if (adjust) {
  868. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  869. df <- df %>%
  870. mutate(
  871. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  872. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  873. )
  874. }
  875. # Calculate and add rank columns
  876. # TODO probably should be moved to separate function
  877. if (rank) {
  878. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  879. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  880. df <- df %>%
  881. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  882. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  883. df <- df %>%
  884. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  885. }
  886. return(df)
  887. }
  888. main <- function() {
  889. lapply(names(args$experiments), function(exp_name) {
  890. exp <- args$experiments[[exp_name]]
  891. exp_path <- exp$path
  892. exp_sd <- exp$sd
  893. out_dir <- file.path(exp_path, "zscores")
  894. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  895. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  896. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  897. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  898. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  899. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  900. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  901. message("Loading and filtering data for experiment: ", exp_name)
  902. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  903. update_gene_names(args$sgd_gene_list) %>%
  904. as_tibble()
  905. # Filter rows above delta background tolerance
  906. df_above_tolerance <- df %>% filter(DB == 1)
  907. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  908. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  909. # Save some constants
  910. max_conc <- max(as.numeric(df$conc_num_factor))
  911. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  912. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  913. message("Calculating summary statistics before quality control")
  914. df_stats <- calculate_summary_stats(
  915. df = df,
  916. variables = summary_vars,
  917. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  918. message("Filtering non-finite data")
  919. # df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
  920. message("Calculating summary statistics after quality control")
  921. ss <- calculate_summary_stats(
  922. df = df_na,
  923. variables = summary_vars,
  924. group_vars = c("conc_num", "conc_num_factor"))
  925. df_na_ss <- ss$summary_stats
  926. df_na_stats <- ss$df_with_stats
  927. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  928. # df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
  929. # Create background (WT) data columns
  930. df_na_stats <- df_na_stats %>%
  931. mutate(
  932. WT_L = mean_L,
  933. WT_K = mean_K,
  934. WT_r = mean_r,
  935. WT_AUC = mean_AUC,
  936. WT_sd_L = sd_L,
  937. WT_sd_K = sd_K,
  938. WT_sd_r = sd_r,
  939. WT_sd_AUC = sd_AUC
  940. )
  941. # Pull the background means and standard deviations from zero concentration for interactions
  942. bg_stats <- df_na_stats %>%
  943. filter(conc_num == 0) %>%
  944. summarise(
  945. L = first(mean_L),
  946. K = first(mean_K),
  947. r = first(mean_r),
  948. AUC = first(mean_AUC),
  949. sd_L = first(sd_L),
  950. sd_K = first(sd_K),
  951. sd_r = first(sd_r),
  952. sd_AUC = first(sd_AUC)
  953. )
  954. message("Calculating summary statistics after quality control excluding zero values")
  955. ss <- calculate_summary_stats(
  956. df = df_no_zeros,
  957. variables = summary_vars,
  958. group_vars = c("conc_num", "conc_num_factor"))
  959. df_no_zeros_stats <- ss$df_with_stats
  960. # df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
  961. message("Filtering by 2SD of K")
  962. df_na_within_2sd_k <- df_na_stats %>%
  963. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  964. df_na_outside_2sd_k <- df_na_stats %>%
  965. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  966. message("Calculating summary statistics for L within 2SD of K")
  967. # TODO We're omitting the original z_max calculation, not sure if needed?
  968. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  969. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  970. write.csv(ss$summary_stats,
  971. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  972. row.names = FALSE)
  973. message("Calculating summary statistics for L outside 2SD of K")
  974. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  975. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  976. write.csv(ss$summary_stats,
  977. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  978. row.names = FALSE)
  979. # Each plots list corresponds to a file
  980. l_vs_k_plot_configs <- list(
  981. list(
  982. df = df,
  983. x_var = "L",
  984. y_var = "K",
  985. plot_type = "scatter",
  986. delta_bg_point = TRUE,
  987. title = "Raw L vs K before quality control",
  988. color_var = "conc_num_factor",
  989. error_bar = FALSE,
  990. legend_position = "right"
  991. )
  992. )
  993. frequency_delta_bg_plot_configs <- list(
  994. list(
  995. df = df_stats,
  996. x_var = "delta_bg",
  997. y_var = NULL,
  998. plot_type = "density",
  999. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1000. color_var = "conc_num_factor",
  1001. x_label = "Delta Background",
  1002. y_label = "Density",
  1003. error_bar = FALSE,
  1004. legend_position = "right"),
  1005. list(
  1006. df = df_stats,
  1007. x_var = "delta_bg",
  1008. y_var = NULL,
  1009. plot_type = "bar",
  1010. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1011. color_var = "conc_num_factor",
  1012. x_label = "Delta Background",
  1013. y_label = "Count",
  1014. error_bar = FALSE,
  1015. legend_position = "right")
  1016. )
  1017. above_threshold_plot_configs <- list(
  1018. list(
  1019. df = df_above_tolerance,
  1020. x_var = "L",
  1021. y_var = "K",
  1022. plot_type = "scatter",
  1023. delta_bg_point = TRUE,
  1024. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1025. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1026. color_var = "conc_num_factor",
  1027. position = "jitter",
  1028. annotations = list(
  1029. list(
  1030. x = l_half_median,
  1031. y = k_half_median,
  1032. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1033. )
  1034. ),
  1035. error_bar = FALSE,
  1036. legend_position = "right"
  1037. )
  1038. )
  1039. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1040. variables = summary_vars,
  1041. df_before = df_stats,
  1042. df_after = df_na_stats,
  1043. )
  1044. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1045. variables = summary_vars,
  1046. df_before = df_stats,
  1047. df_after = df_na_stats,
  1048. plot_type = "box"
  1049. )
  1050. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1051. variables = summary_vars,
  1052. stages = c("after"), # Only after QC
  1053. df_after = df_no_zeros_stats,
  1054. )
  1055. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1056. variables = summary_vars,
  1057. stages = c("after"), # Only after QC
  1058. df_after = df_no_zeros_stats,
  1059. plot_type = "box"
  1060. )
  1061. l_outside_2sd_k_plot_configs <- list(
  1062. list(
  1063. df = df_na_l_outside_2sd_k_stats,
  1064. x_var = "L",
  1065. y_var = "K",
  1066. plot_type = "scatter",
  1067. delta_bg_point = TRUE,
  1068. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1069. color_var = "conc_num_factor",
  1070. position = "jitter",
  1071. legend_position = "right"
  1072. )
  1073. )
  1074. delta_bg_outside_2sd_k_plot_configs <- list(
  1075. list(
  1076. df = df_na_l_outside_2sd_k_stats,
  1077. x_var = "delta_bg",
  1078. y_var = "K",
  1079. plot_type = "scatter",
  1080. gene_point = TRUE,
  1081. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1082. color_var = "conc_num_factor",
  1083. position = "jitter",
  1084. legend_position = "right"
  1085. )
  1086. )
  1087. message("Generating quality control plots")
  1088. # TODO trying out some parallelization
  1089. # future::plan(future::multicore, workers = parallel::detectCores())
  1090. future::plan(future::multisession, workers = 3)
  1091. plot_configs <- list(
  1092. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1093. plot_configs = l_vs_k_plot_configs),
  1094. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1095. plot_configs = frequency_delta_bg_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1097. plot_configs = above_threshold_plot_configs),
  1098. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1099. plot_configs = plate_analysis_plot_configs),
  1100. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1101. plot_configs = plate_analysis_boxplot_configs),
  1102. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1103. plot_configs = plate_analysis_no_zeros_plot_configs),
  1104. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1105. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1106. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1107. plot_configs = l_outside_2sd_k_plot_configs),
  1108. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1109. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1110. )
  1111. # Generating quality control plots in parallel
  1112. # furrr::future_map(plot_configs, function(config) {
  1113. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1114. # }, .options = furrr_options(seed = TRUE))
  1115. # Process background strains
  1116. bg_strains <- c("YDL227C")
  1117. lapply(bg_strains, function(strain) {
  1118. message("Processing background strain: ", strain)
  1119. # Handle missing data by setting zero values to NA
  1120. # and then removing any rows with NA in L col
  1121. df_bg <- df_na %>%
  1122. filter(OrfRep == strain) %>%
  1123. mutate(
  1124. L = if_else(L == 0, NA, L),
  1125. K = if_else(K == 0, NA, K),
  1126. r = if_else(r == 0, NA, r),
  1127. AUC = if_else(AUC == 0, NA, AUC)
  1128. ) %>%
  1129. filter(!is.na(L))
  1130. # Recalculate summary statistics for the background strain
  1131. message("Calculating summary statistics for background strain")
  1132. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1133. summary_stats_bg <- ss_bg$summary_stats
  1134. write.csv(summary_stats_bg,
  1135. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1136. row.names = FALSE)
  1137. # Filter reference and deletion strains
  1138. df_reference <- df_na_stats %>% # formerly X2_RF
  1139. filter(OrfRep == strain) %>%
  1140. mutate(SM = 0)
  1141. df_deletion <- df_na_stats %>% # formerly X2
  1142. filter(OrfRep != strain) %>%
  1143. mutate(SM = 0)
  1144. # Set the missing values to the highest theoretical value at each drug conc for L
  1145. # Leave other values as 0 for the max/min
  1146. reference_strain <- df_reference %>%
  1147. group_by(conc_num, conc_num_factor) %>%
  1148. mutate(
  1149. max_l_theoretical = max(max_L, na.rm = TRUE),
  1150. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1151. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1152. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1153. ungroup()
  1154. # Ditto for deletion strains
  1155. deletion_strains <- df_deletion %>%
  1156. group_by(conc_num, conc_num_factor) %>%
  1157. mutate(
  1158. max_l_theoretical = max(max_L, na.rm = TRUE),
  1159. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1160. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1161. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1162. ungroup()
  1163. message("Calculating reference strain interaction scores")
  1164. df_reference_stats <- calculate_summary_stats(
  1165. df = reference_strain,
  1166. variables = interaction_vars,
  1167. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1168. )$df_with_stats
  1169. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1170. zscores_calculations_reference <- reference_results$calculations
  1171. zscores_interactions_reference <- reference_results$interactions
  1172. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1173. message("Calculating deletion strain(s) interactions scores")
  1174. df_deletion_stats <- calculate_summary_stats(
  1175. df = deletion_strains,
  1176. variables = interaction_vars,
  1177. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1178. )$df_with_stats
  1179. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1180. zscores_calculations <- deletion_results$calculations
  1181. zscores_interactions <- deletion_results$interactions
  1182. zscores_interactions_joined <- deletion_results$interactions_joined
  1183. # Writing Z-Scores to file
  1184. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1185. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1186. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1187. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1188. # Create interaction plots
  1189. message("Generating reference interaction plots")
  1190. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1191. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1192. message("Generating deletion interaction plots")
  1193. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1194. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1195. # Define conditions for enhancers and suppressors
  1196. # TODO Add to study config?
  1197. threshold <- 2
  1198. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1199. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1200. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1201. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1202. # Subset data
  1203. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1204. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1205. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1206. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1207. # Save enhancers and suppressors
  1208. message("Writing enhancer/suppressor csv files")
  1209. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1210. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1211. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1212. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1213. # Combine conditions for enhancers and suppressors
  1214. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1215. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1216. # Save combined enhancers and suppressors
  1217. write.csv(enhancers_and_suppressors_L,
  1218. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1219. write.csv(enhancers_and_suppressors_K,
  1220. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1221. # Handle linear model based enhancers and suppressors
  1222. lm_threshold <- 2
  1223. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1224. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1225. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1226. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1227. # Save linear model based enhancers and suppressors
  1228. message("Writing linear model enhancer/suppressor csv files")
  1229. write.csv(enhancers_lm_L,
  1230. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1231. write.csv(suppressors_lm_L,
  1232. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1233. write.csv(enhancers_lm_K,
  1234. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1235. write.csv(suppressors_lm_K,
  1236. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1237. message("Generating rank plots")
  1238. # Formerly InteractionScores_AdjustMissing
  1239. zscores_interactions_joined_ranked <- process_data(
  1240. df = zscores_interactions_joined,
  1241. variables = interaction_vars,
  1242. adjust = TRUE,
  1243. rank = TRUE)
  1244. rank_plot_configs <- generate_rank_plot_configs(
  1245. df = zscores_interactions_joined_ranked,
  1246. variables = interaction_vars,
  1247. is_lm = FALSE
  1248. )
  1249. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots",
  1250. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1251. message("Generating ranked linear model plots")
  1252. rank_lm_plot_configs <- generate_rank_plot_configs(
  1253. df = zscores_interactions_joined_ranked,
  1254. variables = interaction_vars,
  1255. is_lm = TRUE
  1256. )
  1257. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots_lm",
  1258. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1259. message("Filtering and reranking plots")
  1260. # Formerly X_NArm
  1261. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1262. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1263. mutate(
  1264. Overlap = case_when(
  1265. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1266. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1267. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1268. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1269. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1270. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1271. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1272. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1273. TRUE ~ "No Effect"
  1274. ),
  1275. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1276. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1277. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1278. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1279. )
  1280. # Re-rank
  1281. zscores_interactions_filtered_ranked <- process_data(
  1282. df = zscores_interactions_filtered,
  1283. variables = interaction_vars,
  1284. rank = TRUE
  1285. )
  1286. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1287. df = zscores_interactions_filtered_ranked,
  1288. variables = interaction_vars,
  1289. is_lm = FALSE,
  1290. overlap_color = TRUE
  1291. )
  1292. message("Generating filtered ranked plots")
  1293. generate_and_save_plots(
  1294. out_dir = out_dir,
  1295. filename = "RankPlots_na_rm",
  1296. plot_configs = rank_plot_filtered_configs,
  1297. grid_layout = list(ncol = 3, nrow = 2))
  1298. message("Generating filtered ranked linear model plots")
  1299. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1300. df = zscores_interactions_filtered_ranked,
  1301. variables = interaction_vars,
  1302. is_lm = TRUE,
  1303. overlap_color = TRUE
  1304. )
  1305. generate_and_save_plots(
  1306. out_dir = out_dir,
  1307. filename = "RankPlots_lm_na_rm",
  1308. plot_configs = rank_plot_lm_filtered_configs,
  1309. grid_layout = list(ncol = 3, nrow = 2))
  1310. message("Generating correlation plots")
  1311. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1312. generate_and_save_plots(
  1313. out_dir = out_dir,
  1314. filename = "Avg_Zscore_vs_lm_NA_rm",
  1315. plot_configs = correlation_plot_configs,
  1316. grid_layout = list(ncol = 2, nrow = 2))
  1317. })
  1318. })
  1319. }
  1320. main()