calculate_interaction_zscores.R 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. transmute(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. Raw_Shift_L = first(Raw_Shift_L),
  250. Raw_Shift_K = first(Raw_Shift_K),
  251. Raw_Shift_r = first(Raw_Shift_r),
  252. Raw_Shift_AUC = first(Raw_Shift_AUC),
  253. Z_Shift_L = first(Z_Shift_L),
  254. Z_Shift_K = first(Z_Shift_K),
  255. Z_Shift_r = first(Z_Shift_r),
  256. Z_Shift_AUC = first(Z_Shift_AUC),
  257. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  258. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  259. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  260. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  261. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  262. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  263. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  264. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  265. R_Squared_L = summary(lm_L)$r.squared,
  266. R_Squared_K = summary(lm_K)$r.squared,
  267. R_Squared_r = summary(lm_r)$r.squared,
  268. R_Squared_AUC = summary(lm_AUC)$r.squared,
  269. NG = sum(NG, na.rm = TRUE),
  270. DB = sum(DB, na.rm = TRUE),
  271. SM = sum(SM, na.rm = TRUE)
  272. )
  273. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  274. interactions <- interactions %>%
  275. mutate(
  276. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  277. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  278. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  279. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  280. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  281. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  282. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  283. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  284. ) %>%
  285. arrange(desc(Z_lm_L)) %>%
  286. arrange(desc(NG))
  287. # Declare column order for output
  288. calculations <- stats %>%
  289. select(
  290. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  291. "mean_L", "mean_K", "mean_r", "mean_AUC",
  292. "median_L", "median_K", "median_r", "median_AUC",
  293. "sd_L", "sd_K", "sd_r", "sd_AUC",
  294. "se_L", "se_K", "se_r", "se_AUC",
  295. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  296. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  297. "WT_L", "WT_K", "WT_r", "WT_AUC",
  298. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  299. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  300. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  301. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  302. "NG", "SM", "DB")
  303. df <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  304. df <- left_join(df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  305. # df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
  306. # df <- left_join(df, interactions, by = group_vars)
  307. return(list(calculations = calculations, interactions = interactions, joined = df))
  308. }
  309. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  310. message("Generating html and pdf plots for: ", file_name)
  311. plots <- lapply(plot_configs, function(config) {
  312. df <- config$df
  313. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  314. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  315. # Plots are testy about missing aesthetics, so handle them here
  316. aes_mapping <-
  317. if (is.null(config$color_var)) {
  318. if (is.null(config$y_var)) {
  319. aes(x = !!sym(config$x_var))
  320. } else {
  321. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  322. }
  323. } else {
  324. if (is.null(config$y_var)) {
  325. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  326. } else {
  327. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  328. }
  329. }
  330. # Start building the plot
  331. plot <- ggplot(df, aes_mapping)
  332. # Use appropriate helper function based on plot type
  333. plot <- switch(config$plot_type,
  334. "scatter" = generate_scatter_plot(plot, config),
  335. "box" = generate_box_plot(plot, config),
  336. "density" = plot + geom_density(),
  337. "bar" = plot + geom_bar(),
  338. plot # default case if no type matches
  339. )
  340. return(plot)
  341. })
  342. # PDF saving logic
  343. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  344. lapply(plots, print)
  345. dev.off()
  346. # HTML saving logic
  347. plotly_plots <- lapply(plots, function(plot) {
  348. config <- plot$config
  349. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  350. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  351. } else {
  352. ggplotly(plot, tooltip = "text")
  353. }
  354. })
  355. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  356. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  357. }
  358. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  359. # Add the interactive `text` aesthetic if `interactive` is TRUE
  360. if (interactive) {
  361. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  362. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  363. shape = config$shape %||% 3, size = config$size %||% 0.2)
  364. } else if (!is.null(config$gene_point) && config$gene_point) {
  365. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  366. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  367. } else {
  368. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  369. }
  370. } else {
  371. # For non-interactive plots, just add `geom_point`
  372. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  373. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  374. }
  375. # Add smooth line if specified
  376. if (!is.null(config$add_smooth) && config$add_smooth) {
  377. plot <- if (!is.null(config$lm_line)) {
  378. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  379. } else {
  380. plot + geom_smooth(method = "lm", se = FALSE)
  381. }
  382. }
  383. # Add SD bands (iterate over sd_band only here)
  384. if (!is.null(config$sd_band)) {
  385. for (i in config$sd_band) {
  386. plot <- plot +
  387. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  388. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  389. geom_hline(yintercept = c(-i, i), color = "gray")
  390. }
  391. }
  392. # Add error bars if specified
  393. if (!is.null(config$error_bar) && config$error_bar) {
  394. y_mean_col <- paste0("mean_", config$y_var)
  395. y_sd_col <- paste0("sd_", config$y_var)
  396. plot <- plot + geom_errorbar(aes(
  397. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  398. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  399. ), alpha = 0.3)
  400. }
  401. # Add x-axis customization if specified
  402. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  403. plot <- plot + scale_x_continuous(
  404. name = config$x_label,
  405. breaks = config$x_breaks,
  406. labels = config$x_labels)
  407. }
  408. # Add y-axis limits if specified
  409. if (!is.null(config$ylim_vals)) {
  410. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  411. }
  412. # Add Cartesian coordinates customization if specified
  413. if (!is.null(config$coord_cartesian)) {
  414. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  415. }
  416. return(plot)
  417. }
  418. generate_box_plot <- function(plot, config) {
  419. plot <- plot + geom_boxplot()
  420. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  421. plot <- plot + scale_x_discrete(
  422. name = config$x_label,
  423. breaks = config$x_breaks,
  424. labels = config$x_labels
  425. )
  426. }
  427. if (!is.null(config$coord_cartesian)) {
  428. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  429. }
  430. return(plot)
  431. }
  432. # Adjust missing values and calculate ranks
  433. adjust_missing_and_rank <- function(df, variables) {
  434. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  435. df <- df %>%
  436. mutate(across(all_of(variables), list(
  437. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  438. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  439. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  440. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  441. ), .names = "{fn}_{col}"))
  442. return(df)
  443. }
  444. generate_interaction_plot_configs <- function(df, variables) {
  445. configs <- list()
  446. # Define common y-limits and other attributes for each variable dynamically
  447. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  448. # Define annotation positions based on the variable being plotted
  449. annotation_positions <- list(
  450. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  451. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  452. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  453. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  454. )
  455. # Define which annotations to include for each plot
  456. annotation_labels <- list(
  457. ZShift = function(df, var) {
  458. val <- df[[paste0("Z_Shift_", var)]]
  459. if (is.numeric(val)) {
  460. paste("ZShift =", round(val, 2))
  461. } else {
  462. paste("ZShift =", val)
  463. }
  464. },
  465. lm_ZScore = function(df, var) {
  466. val <- df[[paste0("Z_lm_", var)]]
  467. if (is.numeric(val)) {
  468. paste("lm ZScore =", round(val, 2))
  469. } else {
  470. paste("lm ZScore =", val)
  471. }
  472. },
  473. NG = function(df, var) paste("NG =", df$NG),
  474. DB = function(df, var) paste("DB =", df$DB),
  475. SM = function(df, var) paste("SM =", df$SM)
  476. )
  477. for (variable in variables) {
  478. # Dynamically generate the names of the columns
  479. var_info <- list(
  480. ylim = limits_map[[variable]],
  481. lm_model = df[[paste0("lm_", variable)]][[1]],
  482. sd_col = paste0("WT_sd_", variable),
  483. delta_var = paste0("Delta_", variable)
  484. )
  485. # Extract the precomputed linear model coefficients
  486. lm_line <- list(
  487. intercept = coef(var_info$lm_model)[1],
  488. slope = coef(var_info$lm_model)[2]
  489. )
  490. # Dynamically create annotations based on variable
  491. # Dynamically create annotations based on variable
  492. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  493. y_pos <- annotation_positions[[variable]][[annotation_name]]
  494. # Check if the annotation_name exists in annotation_labels
  495. if (!is.null(annotation_labels[[annotation_name]])) {
  496. label <- annotation_labels[[annotation_name]](df, variable)
  497. list(x = 1, y = y_pos, label = label)
  498. } else {
  499. message(paste("Warning: No annotation function found for", annotation_name))
  500. NULL
  501. }
  502. })
  503. # Filter out any NULL annotations
  504. annotations <- Filter(Negate(is.null), annotations)
  505. # Add scatter plot configuration for this variable
  506. configs[[length(configs) + 1]] <- list(
  507. df = df,
  508. x_var = "conc_num_factor",
  509. y_var = variable,
  510. plot_type = "scatter",
  511. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  512. ylim_vals = var_info$ylim,
  513. annotations = annotations,
  514. lm_line = lm_line, # Precomputed linear model
  515. error_bar = TRUE,
  516. x_breaks = unique(df$conc_num_factor),
  517. x_labels = unique(as.character(df$conc_num)),
  518. x_label = unique(df$Drug[1]),
  519. position = "jitter",
  520. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  521. )
  522. # Add box plot configuration for this variable
  523. configs[[length(configs) + 1]] <- list(
  524. df = df,
  525. x_var = "conc_num_factor",
  526. y_var = variable,
  527. plot_type = "box",
  528. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  529. ylim_vals = var_info$ylim,
  530. annotations = annotations,
  531. error_bar = FALSE,
  532. x_breaks = unique(df$conc_num_factor),
  533. x_labels = unique(as.character(df$conc_num)),
  534. x_label = unique(df$Drug[1]),
  535. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  536. )
  537. }
  538. return(configs)
  539. }
  540. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  541. configs <- list()
  542. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  543. # Single config with all sd bands
  544. configs[[length(configs) + 1]] <- list(
  545. df = df,
  546. x_var = rank_var,
  547. y_var = zscore_var,
  548. plot_type = "scatter",
  549. title = paste(plot_title_prefix, var, "Rank Plot"),
  550. sd_band = c(1, 2, 3), # Pass all sd bands at once
  551. enhancer_label = list(
  552. x = nrow(df) / 2, y = 10,
  553. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= 1, ])) # Example for the first SD band
  554. ),
  555. suppressor_label = list(
  556. x = nrow(df) / 2, y = -10,
  557. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -1, ]))
  558. ),
  559. shape = 3,
  560. size = 0.1
  561. )
  562. # Non-annotated version
  563. configs[[length(configs) + 1]] <- list(
  564. df = df,
  565. x_var = rank_var,
  566. y_var = zscore_var,
  567. plot_type = "scatter",
  568. title = paste(plot_title_prefix, var, "Rank Plot No Annotations"),
  569. sd_band = c(1, 2, 3),
  570. enhancer_label = NULL,
  571. suppressor_label = NULL,
  572. shape = 3,
  573. size = 0.1,
  574. position = "jitter"
  575. )
  576. return(configs)
  577. }
  578. generate_correlation_plot_configs <- function(df, variables) {
  579. configs <- list()
  580. for (variable in variables) {
  581. z_lm_var <- paste0("Z_lm_", variable)
  582. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  583. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  584. configs[[length(configs) + 1]] <- list(
  585. df = df,
  586. x_var = avg_zscore_var,
  587. y_var = z_lm_var,
  588. plot_type = "scatter",
  589. title = paste("Avg Zscore vs lm", variable),
  590. color_var = "Overlap",
  591. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  592. shape = 3,
  593. geom_smooth = TRUE,
  594. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  595. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  596. legend_position = "right"
  597. )
  598. }
  599. return(configs)
  600. }
  601. main <- function() {
  602. lapply(names(args$experiments), function(exp_name) {
  603. exp <- args$experiments[[exp_name]]
  604. exp_path <- exp$path
  605. exp_sd <- exp$sd
  606. out_dir <- file.path(exp_path, "zscores")
  607. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  608. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  609. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  610. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  611. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  612. orf_group_vars <- c("OrfRep", "Gene", "num")
  613. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  614. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  615. message("Loading and filtering data")
  616. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  617. df <- update_gene_names(df, args$sgd_gene_list)
  618. df <- as_tibble(df)
  619. # Filter rows that are above tolerance for quality control plots
  620. df_above_tolerance <- df %>% filter(DB == 1)
  621. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  622. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  623. # Remove rows with 0 values in L
  624. df_no_zeros <- df_na %>% filter(L > 0)
  625. # Save some constants
  626. max_conc <- max(df$conc_num_factor)
  627. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  628. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  629. message("Calculating summary statistics before quality control")
  630. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  631. # df_ss <- ss$summary_stats
  632. df_stats <- ss$df_with_stats
  633. df_filtered_stats <- df_stats %>%
  634. {
  635. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  636. if (nrow(non_finite_rows) > 0) {
  637. message("Filtering out the following non-finite rows:")
  638. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  639. }
  640. filter(., if_all(c(L), is.finite))
  641. }
  642. message("Calculating summary statistics after quality control")
  643. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  644. df_na_ss <- ss$summary_stats
  645. df_na_stats <- ss$df_with_stats
  646. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  647. # Filter out non-finite rows for plotting
  648. df_na_filtered_stats <- df_na_stats %>%
  649. {
  650. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  651. if (nrow(non_finite_rows) > 0) {
  652. message("Removed the following non-finite rows:")
  653. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  654. }
  655. filter(., if_all(c(L), is.finite))
  656. }
  657. message("Calculating summary statistics after quality control excluding zero values")
  658. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  659. df_no_zeros_stats <- ss$df_with_stats
  660. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  661. {
  662. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  663. if (nrow(non_finite_rows) > 0) {
  664. message("Removed the following non-finite rows:")
  665. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  666. }
  667. filter(., if_all(c(L), is.finite))
  668. }
  669. message("Filtering by 2SD of K")
  670. df_na_within_2sd_k <- df_na_stats %>%
  671. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  672. df_na_outside_2sd_k <- df_na_stats %>%
  673. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  674. message("Calculating summary statistics for L within 2SD of K")
  675. # TODO We're omitting the original z_max calculation, not sure if needed?
  676. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  677. l_within_2sd_k_ss <- ss$summary_stats
  678. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  679. write.csv(l_within_2sd_k_ss,
  680. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  681. message("Calculating summary statistics for L outside 2SD of K")
  682. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  683. l_outside_2sd_k_ss <- ss$summary_stats
  684. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  685. write.csv(l_outside_2sd_k_ss,
  686. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  687. # Each plots list corresponds to a file
  688. message("Generating quality control plot configurations")
  689. l_vs_k_plots <- list(
  690. list(
  691. df = df,
  692. x_var = "L",
  693. y_var = "K",
  694. plot_type = "scatter",
  695. delta_bg_point = TRUE,
  696. title = "Raw L vs K before quality control",
  697. color_var = "conc_num",
  698. error_bar = FALSE,
  699. legend_position = "right"
  700. )
  701. )
  702. frequency_delta_bg_plots <- list(
  703. list(
  704. df = df_filtered_stats,
  705. x_var = "delta_bg",
  706. y_var = NULL,
  707. plot_type = "density",
  708. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  709. color_var = "conc_num",
  710. x_label = "Delta Background",
  711. y_label = "Density",
  712. error_bar = FALSE,
  713. legend_position = "right"),
  714. list(
  715. df = df_filtered_stats,
  716. x_var = "delta_bg",
  717. y_var = NULL,
  718. plot_type = "bar",
  719. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  720. color_var = "conc_num",
  721. x_label = "Delta Background",
  722. y_label = "Count",
  723. error_bar = FALSE,
  724. legend_position = "right")
  725. )
  726. above_threshold_plots <- list(
  727. list(
  728. df = df_above_tolerance,
  729. x_var = "L",
  730. y_var = "K",
  731. plot_type = "scatter",
  732. delta_bg_point = TRUE,
  733. title = paste("Raw L vs K for strains above Delta Background threshold of",
  734. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  735. color_var = "conc_num",
  736. position = "jitter",
  737. annotations = list(
  738. x = l_half_median,
  739. y = k_half_median,
  740. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  741. ),
  742. error_bar = FALSE,
  743. legend_position = "right"
  744. )
  745. )
  746. plate_analysis_plots <- list()
  747. for (var in summary_vars) {
  748. for (stage in c("before", "after")) {
  749. if (stage == "before") {
  750. df_plot <- df_filtered_stats
  751. } else {
  752. df_plot <- df_na_filtered_stats
  753. }
  754. config <- list(
  755. df = df_plot,
  756. x_var = "scan",
  757. y_var = var,
  758. plot_type = "scatter",
  759. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  760. error_bar = TRUE,
  761. color_var = "conc_num",
  762. position = "jitter")
  763. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  764. }
  765. }
  766. plate_analysis_boxplots <- list()
  767. for (var in summary_vars) {
  768. for (stage in c("before", "after")) {
  769. if (stage == "before") {
  770. df_plot <- df_filtered_stats
  771. } else {
  772. df_plot <- df_na_filtered_stats
  773. }
  774. config <- list(
  775. df = df_plot,
  776. x_var = "scan",
  777. y_var = var,
  778. plot_type = "box",
  779. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  780. error_bar = FALSE,
  781. color_var = "conc_num")
  782. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  783. }
  784. }
  785. plate_analysis_no_zeros_plots <- list()
  786. for (var in summary_vars) {
  787. config <- list(
  788. df = df_no_zeros_filtered_stats,
  789. x_var = "scan",
  790. y_var = var,
  791. plot_type = "scatter",
  792. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  793. error_bar = TRUE,
  794. color_var = "conc_num",
  795. position = "jitter")
  796. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  797. }
  798. plate_analysis_no_zeros_boxplots <- list()
  799. for (var in summary_vars) {
  800. config <- list(
  801. df = df_no_zeros_filtered_stats,
  802. x_var = "scan",
  803. y_var = var,
  804. plot_type = "box",
  805. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  806. error_bar = FALSE,
  807. color_var = "conc_num"
  808. )
  809. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  810. }
  811. l_outside_2sd_k_plots <- list(
  812. list(
  813. df = df_na_l_outside_2sd_k_stats,
  814. x_var = "L",
  815. y_var = "K",
  816. plot_type = "scatter",
  817. delta_bg_point = TRUE,
  818. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  819. color_var = "conc_num",
  820. position = "jitter",
  821. legend_position = "right"
  822. )
  823. )
  824. delta_bg_outside_2sd_k_plots <- list(
  825. list(
  826. df = df_na_l_outside_2sd_k_stats,
  827. x_var = "delta_bg",
  828. y_var = "K",
  829. plot_type = "scatter",
  830. gene_point = TRUE,
  831. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  832. color_var = "conc_num",
  833. position = "jitter",
  834. legend_position = "right"
  835. )
  836. )
  837. message("Generating quality control plots")
  838. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  839. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  840. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  841. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  842. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  843. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  844. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  845. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  846. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  847. # Clean up
  848. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  849. gc()
  850. # TODO: Originally this filtered L NA's
  851. # Let's try to avoid for now since stats have already been calculated
  852. # Process background strains
  853. bg_strains <- c("YDL227C")
  854. lapply(bg_strains, function(strain) {
  855. message("Processing background strain: ", strain)
  856. # Handle missing data by setting zero values to NA
  857. # and then removing any rows with NA in L col
  858. df_bg <- df_na %>%
  859. filter(OrfRep == strain) %>%
  860. mutate(
  861. L = if_else(L == 0, NA, L),
  862. K = if_else(K == 0, NA, K),
  863. r = if_else(r == 0, NA, r),
  864. AUC = if_else(AUC == 0, NA, AUC)
  865. ) %>%
  866. filter(!is.na(L))
  867. # Recalculate summary statistics for the background strain
  868. message("Calculating summary statistics for background strain")
  869. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  870. summary_stats_bg <- ss_bg$summary_stats
  871. # df_bg_stats <- ss_bg$df_with_stats
  872. write.csv(summary_stats_bg,
  873. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  874. row.names = FALSE)
  875. # Filter reference and deletion strains
  876. # Formerly X2_RF (reference strains)
  877. df_reference <- df_na_stats %>%
  878. filter(OrfRep == strain) %>%
  879. mutate(SM = 0)
  880. # Formerly X2 (deletion strains)
  881. df_deletion <- df_na_stats %>%
  882. filter(OrfRep != strain) %>%
  883. mutate(SM = 0)
  884. # Set the missing values to the highest theoretical value at each drug conc for L
  885. # Leave other values as 0 for the max/min
  886. reference_strain <- df_reference %>%
  887. group_by(conc_num) %>%
  888. mutate(
  889. max_l_theoretical = max(max_L, na.rm = TRUE),
  890. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  891. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  892. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  893. ungroup()
  894. # Ditto for deletion strains
  895. deletion_strains <- df_deletion %>%
  896. group_by(conc_num) %>%
  897. mutate(
  898. max_l_theoretical = max(max_L, na.rm = TRUE),
  899. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  900. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  901. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  902. ungroup()
  903. # Calculate interactions
  904. interaction_vars <- c("L", "K", "r", "AUC")
  905. message("Calculating interaction scores")
  906. # print("Reference strain:")
  907. # print(head(reference_strain))
  908. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  909. # print("Deletion strains:")
  910. # print(head(deletion_strains))
  911. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  912. zscores_calculations_reference <- reference_results$calculations
  913. zscores_interactions_reference <- reference_results$interactions
  914. zscores_joined_reference <- reference_results$joined
  915. zscores_calculations <- deletion_results$calculations
  916. zscores_interactions <- deletion_results$interactions
  917. zscores_joined <- deletion_results$joined
  918. # Writing Z-Scores to file
  919. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  920. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  921. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  922. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  923. # Create interaction plots
  924. message("Generating interaction plot configurations")
  925. reference_plot_configs <- generate_interaction_plot_configs(zscores_joined_reference, interaction_vars)
  926. deletion_plot_configs <- generate_interaction_plot_configs(zscores_joined, interaction_vars)
  927. message("Generating interaction plots")
  928. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  929. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  930. # Define conditions for enhancers and suppressors
  931. # TODO Add to study config file?
  932. threshold <- 2
  933. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  934. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  935. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  936. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  937. # Subset data
  938. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  939. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  940. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  941. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  942. # Save enhancers and suppressors
  943. message("Writing enhancer/suppressor csv files")
  944. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  945. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  946. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  947. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  948. # Combine conditions for enhancers and suppressors
  949. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  950. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  951. # Save combined enhancers and suppressors
  952. write.csv(enhancers_and_suppressors_L,
  953. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  954. write.csv(enhancers_and_suppressors_K,
  955. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  956. # Handle linear model based enhancers and suppressors
  957. lm_threshold <- 2
  958. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  959. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  960. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  961. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  962. # Save linear model based enhancers and suppressors
  963. message("Writing linear model enhancer/suppressor csv files")
  964. write.csv(enhancers_lm_L,
  965. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  966. write.csv(suppressors_lm_L,
  967. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  968. write.csv(enhancers_lm_K,
  969. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  970. write.csv(suppressors_lm_K,
  971. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  972. # TODO needs explanation
  973. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  974. rank_plot_configs <- c(
  975. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  976. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  977. )
  978. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  979. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  980. rank_lm_plot_config <- c(
  981. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  982. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  983. )
  984. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  985. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  986. # Formerly X_NArm
  987. zscores_interactions_filtered <- zscores_interactions %>%
  988. group_by(across(all_of(orf_group_vars))) %>%
  989. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  990. # Final filtered correlation calculations and plots
  991. lm_results <- zscores_interactions_filtered %>%
  992. summarise(
  993. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  994. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  995. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  996. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  997. )
  998. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  999. left_join(lm_results, by = orf_group_vars) %>%
  1000. mutate(
  1001. Overlap = case_when(
  1002. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1003. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1004. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1005. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1006. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1007. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1008. TRUE ~ "No Effect"
  1009. )
  1010. ) %>%
  1011. ungroup()
  1012. rank_plot_configs <- c(
  1013. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1014. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1015. )
  1016. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1017. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1018. rank_lm_plot_configs <- c(
  1019. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1020. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1021. )
  1022. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1023. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1024. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1025. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1026. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1027. })
  1028. })
  1029. }
  1030. main()