123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278 |
- suppressMessages({
- library(ggplot2)
- library(plotly)
- library(htmlwidgets)
- library(dplyr)
- library(ggthemes)
- library(data.table)
- library(unix)
- })
- options(warn = 2)
- # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
- soft_limit <- 30 * 1024 * 1024 * 1024
- hard_limit <- 30 * 1024 * 1024 * 1024
- rlimit_as(soft_limit, hard_limit)
- # Constants for configuration
- plot_width <- 14
- plot_height <- 9
- base_size <- 14
- parse_arguments <- function() {
- args <- if (interactive()) {
- c(
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
- "Experiment 1: Doxo versus HLD",
- 3,
- "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
- "Experiment 2: HLD versus Doxo",
- 3
- )
- } else {
- commandArgs(trailingOnly = TRUE)
- }
-
- # Extract paths, names, and standard deviations
- paths <- args[seq(4, length(args), by = 3)]
- names <- args[seq(5, length(args), by = 3)]
- sds <- as.numeric(args[seq(6, length(args), by = 3)])
-
- # Normalize paths
- normalized_paths <- normalizePath(paths, mustWork = FALSE)
-
- # Create named list of experiments
- experiments <- list()
- for (i in seq_along(paths)) {
- experiments[[names[i]]] <- list(
- path = normalized_paths[i],
- sd = sds[i]
- )
- }
-
- list(
- out_dir = normalizePath(args[1], mustWork = FALSE),
- sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
- easy_results_file = normalizePath(args[3], mustWork = FALSE),
- experiments = experiments
- )
- }
- args <- parse_arguments()
- # Should we keep output in exp dirs or combine in the study output dir?
- # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
- # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
- # Define themes and scales
- theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
- theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
-
- theme_foundation %+replace%
- theme(
- plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
- text = element_text(),
- panel.background = element_rect(colour = NA),
- plot.background = element_rect(colour = NA),
- panel.border = element_rect(colour = NA),
- axis.title = element_text(face = "bold", size = rel(1)),
- axis.title.y = element_text(angle = 90, vjust = 2),
- axis.title.x = element_text(vjust = -0.2),
- axis.line = element_line(colour = "black"),
- panel.grid.major = element_line(colour = "#f0f0f0"),
- panel.grid.minor = element_blank(),
- legend.key = element_rect(colour = NA),
- legend.position = legend_position,
- legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
- plot.margin = unit(c(10, 5, 5, 5), "mm"),
- strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
- strip.text = element_text(face = "bold")
- )
- }
- scale_fill_publication <- function(...) {
- discrete_scale("fill", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- scale_colour_publication <- function(...) {
- discrete_scale("colour", "Publication", manual_pal(values = c(
- "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
- "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
- )), ...)
- }
- # Load the initial dataframe from the easy_results_file
- load_and_process_data <- function(easy_results_file, sd = 3) {
- df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
-
- df <- df %>%
- filter(!(.[[1]] %in% c("", "Scan"))) %>%
- filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
- # Rename columns
- rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
- mutate(
- across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
- delta_bg = last_bg - first_bg,
- delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
- NG = if_else(L == 0 & !is.na(L), 1, 0),
- DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
- SM = 0,
- OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
- conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
- conc_num_factor = as.factor(conc_num)
- # conc_num_factor = factor(conc_num, levels = sort(unique(conc_num)))
- # conc_num_numeric = as.numeric(conc_num_factor) - 1
- )
-
- return(df)
- }
- # Update Gene names using the SGD gene list
- update_gene_names <- function(df, sgd_gene_list) {
- # Load SGD gene list
- genes <- read.delim(file = sgd_gene_list,
- quote = "", header = FALSE,
- colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
-
- # Create a named vector for mapping ORF to GeneName
- gene_map <- setNames(genes$V5, genes$V4)
- # Vectorized match to find the GeneName from gene_map
- mapped_genes <- gene_map[df$ORF]
- # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
- updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
- # Ensure Gene is not left blank or incorrectly updated to "OCT1"
- df <- df %>%
- mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
-
- return(df)
- }
- # Calculate summary statistics for all variables
- calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
- # Summarize the variables within the grouped data
- summary_stats <- df %>%
- group_by(across(all_of(group_vars))) %>%
- summarise(
- N = sum(!is.na(L)),
- across(all_of(variables), list(
- mean = ~mean(., na.rm = TRUE),
- median = ~median(., na.rm = TRUE),
- max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
- min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
- sd = ~sd(., na.rm = TRUE),
- se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
- ), .names = "{.fn}_{.col}")
- )
- # print(summary_stats)
- # Prevent .x and .y suffix issues by renaming columns
- df_cleaned <- df %>%
- select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
-
- # Join the stats back to the original dataframe
- df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
- return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
- }
- calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
- # Calculate total concentration variables
- total_conc_num <- length(unique(df$conc_num))
- # Pull the background means and standard deviations from zero concentration
- bg_means <- list(
- L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
- K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
- r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
- AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
- )
- bg_sd <- list(
- L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
- K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
- r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
- AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
- )
- stats <- df %>%
- group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
- summarise(
- N = sum(!is.na(L)),
- NG = sum(NG, na.rm = TRUE),
- DB = sum(DB, na.rm = TRUE),
- SM = sum(SM, na.rm = TRUE),
- across(all_of(variables), list(
- mean = ~mean(., na.rm = TRUE),
- median = ~median(., na.rm = TRUE),
- max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
- min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
- sd = ~sd(., na.rm = TRUE),
- se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
- ), .names = "{.fn}_{.col}")
- )
- stats <- df %>%
- group_by(OrfRep, Gene, num) %>%
- mutate(
- WT_L = mean_L,
- WT_K = mean_K,
- WT_r = mean_r,
- WT_AUC = mean_AUC,
- WT_sd_L = sd_L,
- WT_sd_K = sd_K,
- WT_sd_r = sd_r,
- WT_sd_AUC = sd_AUC
- )
- stats <- stats %>%
- mutate(
- Raw_Shift_L = first(mean_L) - bg_means$L,
- Raw_Shift_K = first(mean_K) - bg_means$K,
- Raw_Shift_r = first(mean_r) - bg_means$r,
- Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
- Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
- Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
- Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
- Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
- )
- stats <- stats %>%
- mutate(
- Exp_L = WT_L + Raw_Shift_L,
- Exp_K = WT_K + Raw_Shift_K,
- Exp_r = WT_r + Raw_Shift_r,
- Exp_AUC = WT_AUC + Raw_Shift_AUC,
- Delta_L = mean_L - Exp_L,
- Delta_K = mean_K - Exp_K,
- Delta_r = mean_r - Exp_r,
- Delta_AUC = mean_AUC - Exp_AUC
- )
- stats <- stats %>%
- mutate(
- Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
- Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
- Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
- Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
- Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
- )
- stats <- stats %>%
- mutate(
- Zscore_L = Delta_L / WT_sd_L,
- Zscore_K = Delta_K / WT_sd_K,
- Zscore_r = Delta_r / WT_sd_r,
- Zscore_AUC = Delta_AUC / WT_sd_AUC
- )
- # Calculate linear models
- lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
- lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
- lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
- lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
- interactions <- stats %>%
- group_by(OrfRep, Gene, num) %>%
- summarise(
- OrfRep = first(OrfRep),
- Gene = first(Gene),
- num = first(num),
- conc_num = first(conc_num),
- conc_num_factor = first(conc_num_factor),
- Raw_Shift_L = first(Raw_Shift_L),
- Raw_Shift_K = first(Raw_Shift_K),
- Raw_Shift_r = first(Raw_Shift_r),
- Raw_Shift_AUC = first(Raw_Shift_AUC),
- Z_Shift_L = first(Z_Shift_L),
- Z_Shift_K = first(Z_Shift_K),
- Z_Shift_r = first(Z_Shift_r),
- Z_Shift_AUC = first(Z_Shift_AUC),
- Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
- Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
- Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
- Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
- lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
- lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
- lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
- lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
- R_Squared_L = summary(lm_L)$r.squared,
- R_Squared_K = summary(lm_K)$r.squared,
- R_Squared_r = summary(lm_r)$r.squared,
- R_Squared_AUC = summary(lm_AUC)$r.squared,
- lm_intercept_L = coef(lm_L)[1],
- lm_slope_L = coef(lm_L)[2],
- lm_intercept_K = coef(lm_K)[1],
- lm_slope_K = coef(lm_K)[2],
- lm_intercept_r = coef(lm_r)[1],
- lm_slope_r = coef(lm_r)[2],
- lm_intercept_AUC = coef(lm_AUC)[1],
- lm_slope_AUC = coef(lm_AUC)[2],
- NG = sum(NG, na.rm = TRUE),
- DB = sum(DB, na.rm = TRUE),
- SM = sum(SM, na.rm = TRUE)
- )
- num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
-
- interactions <- interactions %>%
- mutate(
- Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
- Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
- Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
- Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
- Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
- Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
- Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
- Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
- ) %>%
- arrange(desc(Z_lm_L), desc(NG))
- # Declare column order for output
- calculations <- stats %>%
- select(
- "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
- "mean_L", "mean_K", "mean_r", "mean_AUC",
- "median_L", "median_K", "median_r", "median_AUC",
- "sd_L", "sd_K", "sd_r", "sd_AUC",
- "se_L", "se_K", "se_r", "se_AUC",
- "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
- "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
- "WT_L", "WT_K", "WT_r", "WT_AUC",
- "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
- "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
- "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
- "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
- "NG", "SM", "DB")
-
- calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
- calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
- interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
- interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
- return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
- calculations_joined = calculations_joined))
- }
- generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
- message("Generating ", file_name, ".pdf and ", file_name, ".html")
- # Prepare lists to collect plots
- static_plots <- list()
- plotly_plots <- list()
- for (i in seq_along(plot_configs)) {
- config <- plot_configs[[i]]
- df <- config$df
- # Build the aes_mapping based on config
- aes_mapping <- if (is.null(config$color_var)) {
- if (is.null(config$y_var)) {
- aes(x = .data[[config$x_var]])
- } else {
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
- }
- } else {
- if (is.null(config$y_var)) {
- aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
- } else {
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
- }
- }
- # Start building the plot with aes_mapping
- plot_base <- ggplot(df, aes_mapping)
- # Use appropriate helper function based on plot type
- plot <- switch(config$plot_type,
- "scatter" = generate_scatter_plot(plot_base, config),
- "box" = generate_box_plot(plot_base, config),
- "density" = plot_base + geom_density(),
- "bar" = plot_base + geom_bar(),
- plot_base # default case if no type matches
- )
- # Apply additional settings if provided
- if (!is.null(config$legend_position)) {
- plot <- plot + theme(legend.position = config$legend_position)
- }
- # Add title and labels if provided
- if (!is.null(config$title)) {
- plot <- plot + ggtitle(config$title)
- }
- if (!is.null(config$x_label)) {
- plot <- plot + xlab(config$x_label)
- }
- if (!is.null(config$y_label)) {
- plot <- plot + ylab(config$y_label)
- }
- # Add interactive tooltips for plotly plots
- tooltip_vars <- c("x", "y") # default tooltip variables
- if (!is.null(config$tooltip_vars)) {
- tooltip_vars <- config$tooltip_vars
- } else {
- # Include default variables based on config
- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
- tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
- } else if (!is.null(config$gene_point) && config$gene_point) {
- tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
- } else {
- # Include x and y variables by default
- tooltip_vars <- c("x", "y")
- }
- }
- # Convert to plotly object
- plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
- if (!is.null(config$legend_position) && config$legend_position == "bottom") {
- plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
- }
- # Add plots to lists
- static_plots[[i]] <- plot
- plotly_plots[[i]] <- plotly_plot
- }
- # Save static PDF plots
- pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
- lapply(static_plots, print)
- dev.off()
- # Combine and save interactive HTML plots
- combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plotly_plots), margin = 0.05)
- saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
- }
- generate_scatter_plot <- function(plot, config) {
- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
- plot <- plot + geom_point(
- shape = config$shape %||% 3,
- size = config$size %||% 0.2
- )
- } else if (!is.null(config$gene_point) && config$gene_point) {
- plot <- plot + geom_point(
- shape = config$shape %||% 3,
- size = config$size %||% 0.2,
- position = "jitter"
- )
- } else {
- plot <- plot + geom_point(
- shape = config$shape %||% 3,
- position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
- )
- }
- # Add smooth line if specified
- if (!is.null(config$add_smooth) && config$add_smooth) {
- plot <- if (!is.null(config$lm_line)) {
- plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
- } else {
- plot + geom_smooth(method = "lm", se = FALSE)
- }
- }
- # Add SD bands (iterate over sd_band only here)
- if (!is.null(config$sd_band)) {
- for (i in config$sd_band) {
- plot <- plot +
- annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
- annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
- geom_hline(yintercept = c(-i, i), color = "gray")
- }
- }
- # Add error bars if specified
- if (!is.null(config$error_bar) && config$error_bar) {
- y_mean_col <- paste0("mean_", config$y_var)
- y_sd_col <- paste0("sd_", config$y_var)
- plot <- plot + geom_errorbar(
- aes(
- ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
- ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
- ),
- alpha = 0.3
- )
- }
- # Add x-axis customization if specified
- if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
- plot <- plot + scale_x_discrete(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- }
- # Use coord_cartesian for zooming in without removing data outside the range
- if (!is.null(config$coord_cartesian)) {
- plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
- }
- # Use scale_y_continuous for setting the y-axis limits
- if (!is.null(config$ylim_vals)) {
- plot <- plot + scale_y_continuous(limits = config$ylim_vals)
- }
- # Add annotations if specified
- if (!is.null(config$annotations)) {
- for (annotation in config$annotations) {
- plot <- plot + annotate("text",
- x = annotation$x,
- y = annotation$y,
- label = annotation$label,
- na.rm = TRUE)
- }
- }
- # Add titles and themes if specified
- if (!is.null(config$title)) {
- plot <- plot + ggtitle(config$title)
- }
- if (!is.null(config$legend_position)) {
- plot <- plot + theme(legend.position = config$legend_position)
- }
- return(plot)
- }
- generate_box_plot <- function(plot, config) {
- plot <- plot + geom_boxplot()
-
- if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
- plot <- plot + scale_x_discrete(
- name = config$x_label,
- breaks = config$x_breaks,
- labels = config$x_labels
- )
- }
- if (!is.null(config$coord_cartesian)) {
- plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
- }
- return(plot)
- }
- # Adjust missing values and calculate ranks
- adjust_missing_and_rank <- function(df, variables) {
-
- # Loop over each variable
- for (var in variables) {
- # Construct column names
- avg_zscore_col <- paste0("Avg_Zscore_", var)
- z_lm_col <- paste0("Z_lm_", var)
- rank_col <- paste0("Rank_", var)
- rank_lm_col <- paste0("Rank_lm_", var)
-
- # Check if the columns exist in the data frame
- if (all(c(avg_zscore_col, z_lm_col) %in% names(df))) {
- # Adjust missing values by replacing NA with 0.001
- df[[avg_zscore_col]] <- if_else(is.na(df[[avg_zscore_col]]), 0.001, df[[avg_zscore_col]])
- df[[z_lm_col]] <- if_else(is.na(df[[z_lm_col]]), 0.001, df[[z_lm_col]])
-
- # Compute ranks and create new columns
- df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
- df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
- } else {
- warning(paste("Columns", avg_zscore_col, "or", z_lm_col, "not found in data frame"))
- }
- }
-
- return(df)
- }
- generate_interaction_plot_configs <- function(df, variables) {
- configs <- list()
-
- # Data frames to collect filtered data and out-of-range data
- filtered_data_list <- list()
- out_of_range_data_list <- list()
-
- # Define common y-limits for each variable
- limits_map <- list(
- L = c(-65, 65),
- K = c(-65, 65),
- r = c(-0.65, 0.65),
- AUC = c(-6500, 6500)
- )
-
- # Define functions to generate annotation labels
- annotation_labels <- list(
- ZShift = function(df, var) {
- val <- df[[paste0("Z_Shift_", var)]]
- paste("ZShift =", round(val, 2))
- },
- lm_ZScore = function(df, var) {
- val <- df[[paste0("Z_lm_", var)]]
- paste("lm ZScore =", round(val, 2))
- },
- NG = function(df, var) paste("NG =", df$NG),
- DB = function(df, var) paste("DB =", df$DB),
- SM = function(df, var) paste("SM =", df$SM)
- )
-
- for (variable in variables) {
- # Get y-limits for the variable
- ylim_vals <- limits_map[[variable]]
-
- # Extract precomputed linear model coefficients
- lm_line <- list(
- intercept = df[[paste0("lm_intercept_", variable)]],
- slope = df[[paste0("lm_slope_", variable)]]
- )
-
- # Filter the data based on y-limits and missing values
- y_var_sym <- sym(variable)
- x_var_sym <- sym("conc_num_factor")
-
- # Identify missing data and out-of-range data
- missing_data <- df %>% filter(is.na(!!x_var_sym) | is.na(!!y_var_sym))
- out_of_range_data <- df %>% filter(
- !is.na(!!y_var_sym) &
- (!!y_var_sym < min(ylim_vals, na.rm = TRUE) | !!y_var_sym > max(ylim_vals, na.rm = TRUE))
- )
-
- # Combine missing data and out-of-range data
- data_to_filter_out <- bind_rows(missing_data, out_of_range_data) %>% distinct()
-
- # Filtered data for plotting
- filtered_data <- df %>% anti_join(data_to_filter_out, by = names(df))
-
- # Collect the filtered data and out-of-range data
- filtered_data_list[[variable]] <- filtered_data
- out_of_range_data_list[[variable]] <- data_to_filter_out
-
- # Calculate x and y positions for annotations based on filtered data
- x_levels <- levels(filtered_data$conc_num_factor)
- x_pos <- mean(seq_along(x_levels)) # Midpoint of x-axis
- y_min <- min(ylim_vals)
- y_max <- max(ylim_vals)
- y_span <- y_max - y_min
-
- # Adjust y positions as fractions of y-span
- annotation_positions <- list(
- ZShift = y_max - 0.1 * y_span,
- lm_ZScore = y_max - 0.2 * y_span,
- NG = y_min + 0.2 * y_span,
- DB = y_min + 0.1 * y_span,
- SM = y_min + 0.05 * y_span
- )
-
- # Generate annotations
- annotations <- lapply(names(annotation_positions), function(annotation_name) {
- y_pos <- annotation_positions[[annotation_name]]
- label_func <- annotation_labels[[annotation_name]]
- if (!is.null(label_func)) {
- label <- label_func(df, variable)
- list(x = x_pos, y = y_pos, label = label)
- } else {
- message(paste("Warning: No annotation function found for", annotation_name))
- NULL
- }
- })
-
- # Remove NULL annotations
- annotations <- Filter(Negate(is.null), annotations)
-
- # Create scatter plot config
- configs[[length(configs) + 1]] <- list(
- df = filtered_data,
- x_var = "conc_num_factor",
- y_var = variable,
- plot_type = "scatter",
- title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
- ylim_vals = ylim_vals,
- annotations = annotations,
- lm_line = lm_line,
- error_bar = TRUE,
- x_breaks = levels(filtered_data$conc_num_factor),
- x_labels = levels(filtered_data$conc_num_factor),
- x_label = unique(df$Drug[1]),
- position = "jitter",
- coord_cartesian = ylim_vals # Use the actual y-limits
- )
-
- # Create box plot config
- configs[[length(configs) + 1]] <- list(
- df = filtered_data,
- x_var = "conc_num_factor",
- y_var = variable,
- plot_type = "box",
- title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
- ylim_vals = ylim_vals,
- annotations = annotations,
- error_bar = FALSE,
- x_breaks = unique(filtered_data$conc_num_factor),
- x_labels = unique(as.character(filtered_data$conc_num)),
- x_label = unique(df$Drug[1]),
- coord_cartesian = ylim_vals
- )
- }
-
- # Combine the filtered data and out-of-range data into data frames
- filtered_data_df <- bind_rows(filtered_data_list, .id = "variable")
- out_of_range_data_df <- bind_rows(out_of_range_data_list, .id = "variable")
-
- return(list(
- configs = configs,
- filtered_data = filtered_data_df,
- out_of_range_data = out_of_range_data_df
- ))
- }
- generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
- configs <- list()
-
- plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
- # Single config with all sd bands
- configs[[length(configs) + 1]] <- list(
- df = df,
- x_var = rank_var,
- y_var = zscore_var,
- plot_type = "scatter",
- title = paste(plot_title_prefix, var, "Rank Plot"),
- sd_band = c(1, 2, 3), # Pass all sd bands at once
- enhancer_label = list(
- x = nrow(df) / 2, y = 10,
- label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= 1, ])) # Example for the first SD band
- ),
- suppressor_label = list(
- x = nrow(df) / 2, y = -10,
- label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -1, ]))
- ),
- shape = 3,
- size = 0.1
- )
- # Non-annotated version
- configs[[length(configs) + 1]] <- list(
- df = df,
- x_var = rank_var,
- y_var = zscore_var,
- plot_type = "scatter",
- title = paste(plot_title_prefix, var, "Rank Plot No Annotations"),
- sd_band = c(1, 2, 3),
- enhancer_label = NULL,
- suppressor_label = NULL,
- shape = 3,
- size = 0.1,
- position = "jitter"
- )
- return(configs)
- }
- generate_correlation_plot_configs <- function(df, variables) {
- configs <- list()
- for (variable in variables) {
- z_lm_var <- paste0("Z_lm_", variable)
- avg_zscore_var <- paste0("Avg_Zscore_", variable)
- lm_r_squared_col <- paste0("lm_R_squared_", variable)
- configs[[length(configs) + 1]] <- list(
- df = df,
- x_var = avg_zscore_var,
- y_var = z_lm_var,
- plot_type = "scatter",
- title = paste("Avg Zscore vs lm", variable),
- color_var = "Overlap",
- correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
- shape = 3,
- geom_smooth = TRUE,
- rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
- annotate_position = list(x = 0, y = 0), # Position for the R-squared text
- legend_position = "right"
- )
- }
- return(configs)
- }
- filter_and_print_non_finite <- function(df, vars_to_check, print_vars) {
- non_finite_rows <- df %>% filter(if_any(all_of(vars_to_check), ~ !is.finite(.)))
-
- if (nrow(non_finite_rows) > 0) {
- message("Removing the following non-finite rows:")
- print(non_finite_rows %>% select(all_of(print_vars)), n = 200)
- }
-
- df %>% filter(if_all(all_of(vars_to_check), is.finite))
- }
- main <- function() {
- lapply(names(args$experiments), function(exp_name) {
- exp <- args$experiments[[exp_name]]
- exp_path <- exp$path
- exp_sd <- exp$sd
- out_dir <- file.path(exp_path, "zscores")
- out_dir_qc <- file.path(exp_path, "zscores", "qc")
- dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
- dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
- summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
- group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
- orf_group_vars <- c("OrfRep", "Gene", "num")
- print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
- "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
-
- message("Loading and filtering data for experiment: ", exp_name)
- df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
- update_gene_names(args$sgd_gene_list) %>%
- as_tibble()
- # Quality Control: Filter rows above tolerance
- df_above_tolerance <- df %>% filter(DB == 1)
- df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
- df_no_zeros <- df_na %>% filter(L > 0)
-
- # Save some constants
- max_conc <- max(df$conc_num)
- l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
- k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
- message("Calculating summary statistics before quality control")
- ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
- df_stats <- ss$df_with_stats
- df_filtered_stats <- filter_and_print_non_finite(df_stats, "L", print_vars)
- message("Calculating summary statistics after quality control")
- ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
- df_na_ss <- ss$summary_stats
- df_na_stats <- ss$df_with_stats
- write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
- # Filter out non-finite rows for plotting
- df_na_filtered_stats <- filter_and_print_non_finite(df_na_stats, "L", print_vars)
- message("Calculating summary statistics after quality control excluding zero values")
- ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
- df_no_zeros_stats <- ss$df_with_stats
- df_no_zeros_filtered_stats <- filter_and_print_non_finite(df_no_zeros_stats, "L", print_vars)
- message("Filtering by 2SD of K")
- df_na_within_2sd_k <- df_na_stats %>%
- filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
- df_na_outside_2sd_k <- df_na_stats %>%
- filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
- message("Calculating summary statistics for L within 2SD of K")
- # TODO We're omitting the original z_max calculation, not sure if needed?
- ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
- write.csv(ss$summary_stats, file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
-
- message("Calculating summary statistics for L outside 2SD of K")
- ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
- write.csv(ss$summary_stats, file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
-
- # Each plots list corresponds to a file
- message("Generating quality control plot configurations")
- l_vs_k_plots <- list(
- list(
- df = df,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- delta_bg_point = TRUE,
- title = "Raw L vs K before quality control",
- color_var = "conc_num_factor",
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- frequency_delta_bg_plots <- list(
- list(
- df = df_filtered_stats,
- x_var = "delta_bg",
- y_var = NULL,
- plot_type = "density",
- title = "Plate analysis by Drug Conc for Delta Background before quality control",
- color_var = "conc_num_factor",
- x_label = "Delta Background",
- y_label = "Density",
- error_bar = FALSE,
- legend_position = "right"),
- list(
- df = df_filtered_stats,
- x_var = "delta_bg",
- y_var = NULL,
- plot_type = "bar",
- title = "Plate analysis by Drug Conc for Delta Background before quality control",
- color_var = "conc_num_factor",
- x_label = "Delta Background",
- y_label = "Count",
- error_bar = FALSE,
- legend_position = "right")
- )
- above_threshold_plots <- list(
- list(
- df = df_above_tolerance,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- delta_bg_point = TRUE,
- title = paste("Raw L vs K for strains above Delta Background threshold of",
- df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
- color_var = "conc_num_factor",
- position = "jitter",
- annotations = list(
- x = l_half_median,
- y = k_half_median,
- label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
- ),
- error_bar = FALSE,
- legend_position = "right"
- )
- )
- plate_analysis_plots <- list()
- for (var in summary_vars) {
- for (stage in c("before", "after")) {
- if (stage == "before") {
- df_plot <- df_filtered_stats
- } else {
- df_plot <- df_na_filtered_stats
- }
-
- config <- list(
- df = df_plot,
- x_var = "scan",
- y_var = var,
- plot_type = "scatter",
- title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
- error_bar = TRUE,
- color_var = "conc_num_factor",
- position = "jitter")
- plate_analysis_plots <- append(plate_analysis_plots, list(config))
- }
- }
- plate_analysis_boxplots <- list()
- for (var in summary_vars) {
- for (stage in c("before", "after")) {
- if (stage == "before") {
- df_plot <- df_filtered_stats
- } else {
- df_plot <- df_na_filtered_stats
- }
-
- config <- list(
- df = df_plot,
- x_var = "scan",
- y_var = var,
- plot_type = "box",
- title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
- error_bar = FALSE,
- color_var = "conc_num_factor")
- plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
- }
- }
- plate_analysis_no_zeros_plots <- list()
- for (var in summary_vars) {
- config <- list(
- df = df_no_zeros_filtered_stats,
- x_var = "scan",
- y_var = var,
- plot_type = "scatter",
- title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
- error_bar = TRUE,
- color_var = "conc_num_factor",
- position = "jitter")
- plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
- }
- plate_analysis_no_zeros_boxplots <- list()
- for (var in summary_vars) {
- config <- list(
- df = df_no_zeros_filtered_stats,
- x_var = "scan",
- y_var = var,
- plot_type = "box",
- title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
- error_bar = FALSE,
- color_var = "conc_num_factor"
- )
- plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
- }
- l_outside_2sd_k_plots <- list(
- list(
- df = df_na_l_outside_2sd_k_stats,
- x_var = "L",
- y_var = "K",
- plot_type = "scatter",
- delta_bg_point = TRUE,
- title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num_factor",
- position = "jitter",
- legend_position = "right"
- )
- )
- delta_bg_outside_2sd_k_plots <- list(
- list(
- df = df_na_l_outside_2sd_k_stats,
- x_var = "delta_bg",
- y_var = "K",
- plot_type = "scatter",
- gene_point = TRUE,
- title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
- color_var = "conc_num_factor",
- position = "jitter",
- legend_position = "right"
- )
- )
- message("Generating quality control plots")
- generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
- generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
- generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
- generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
- generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
- generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
- generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
- generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
- generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
- # TODO: Originally this filtered L NA's
- # Let's try to avoid for now since stats have already been calculated
- # Process background strains
- bg_strains <- c("YDL227C")
- lapply(bg_strains, function(strain) {
-
- message("Processing background strain: ", strain)
-
- # Handle missing data by setting zero values to NA
- # and then removing any rows with NA in L col
- df_bg <- df_na %>%
- filter(OrfRep == strain) %>%
- mutate(
- L = if_else(L == 0, NA, L),
- K = if_else(K == 0, NA, K),
- r = if_else(r == 0, NA, r),
- AUC = if_else(AUC == 0, NA, AUC)
- ) %>%
- filter(!is.na(L))
-
- # Recalculate summary statistics for the background strain
- message("Calculating summary statistics for background strain")
- ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
- summary_stats_bg <- ss_bg$summary_stats
- # df_bg_stats <- ss_bg$df_with_stats
- write.csv(summary_stats_bg,
- file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
- row.names = FALSE)
-
- # Filter reference and deletion strains
- # Formerly X2_RF (reference strains)
- df_reference <- df_na_stats %>%
- filter(OrfRep == strain) %>%
- mutate(SM = 0)
-
- # Formerly X2 (deletion strains)
- df_deletion <- df_na_stats %>%
- filter(OrfRep != strain) %>%
- mutate(SM = 0)
- # Set the missing values to the highest theoretical value at each drug conc for L
- # Leave other values as 0 for the max/min
- reference_strain <- df_reference %>%
- group_by(conc_num) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- # Ditto for deletion strains
- deletion_strains <- df_deletion %>%
- group_by(conc_num) %>%
- mutate(
- max_l_theoretical = max(max_L, na.rm = TRUE),
- L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
- SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
- L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
- ungroup()
- message("Calculating interaction scores")
- interaction_vars <- c("L", "K", "r", "AUC")
- message("Calculating reference strain(s)")
- reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
- zscores_calculations_reference <- reference_results$calculations
- zscores_interactions_reference <- reference_results$interactions
- zscores_calculations_reference_joined <- reference_results$calculations_joined
- zscores_interactions_reference_joined <- reference_results$interactions_joined
- message("Calculating deletion strain(s)")
- deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
- zscores_calculations <- deletion_results$calculations
- zscores_interactions <- deletion_results$interactions
- zscores_calculations_joined <- deletion_results$calculations_joined
- zscores_interactions_joined <- deletion_results$interactions_joined
- # Writing Z-Scores to file
- write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
- write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
- write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
- write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
- # Create interaction plots
- message("Generating reference interaction plots")
- results <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
- if (nrow(results$out_of_range_data) > 0) {
- message("Out-of-range data:")
- print(results$out_of_range_data %>% select("OrfRep", "Gene", "num",
- "conc_num", "conc_num_factor", config$x_var, config$y_var))
- }
- reference_plot_configs <- results$configs
- generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
- message("Generating deletion interaction plots")
- results <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
- if (nrow(results$out_of_range_data) > 0) {
- message("Out-of-range data:")
- print(results$out_of_range_data)
- }
- deletion_plot_configs <- results$configs
- generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
- # Define conditions for enhancers and suppressors
- # TODO Add to study config file?
- threshold <- 2
- enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
- suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
- enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
- suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
-
- # Subset data
- enhancers_L <- zscores_interactions[enhancer_condition_L, ]
- suppressors_L <- zscores_interactions[suppressor_condition_L, ]
- enhancers_K <- zscores_interactions[enhancer_condition_K, ]
- suppressors_K <- zscores_interactions[suppressor_condition_K, ]
-
- # Save enhancers and suppressors
- message("Writing enhancer/suppressor csv files")
- write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
- write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
- write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
-
- # Combine conditions for enhancers and suppressors
- enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
- enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
-
- # Save combined enhancers and suppressors
- write.csv(enhancers_and_suppressors_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
- write.csv(enhancers_and_suppressors_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
-
- # Handle linear model based enhancers and suppressors
- lm_threshold <- 2
- enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
- suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
- enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
- suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
-
- # Save linear model based enhancers and suppressors
- message("Writing linear model enhancer/suppressor csv files")
- write.csv(enhancers_lm_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
- write.csv(suppressors_lm_L,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
- write.csv(enhancers_lm_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
- write.csv(suppressors_lm_K,
- file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
- # TODO needs explanation
- zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
-
- rank_plot_configs <- c(
- generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
- generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
- )
- generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
- plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
- rank_lm_plot_config <- c(
- generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
- generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
- )
- generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
- plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
-
- # Formerly X_NArm
- zscores_interactions_filtered <- zscores_interactions %>%
- group_by(across(all_of(orf_group_vars))) %>%
- filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
-
- # Final filtered correlation calculations and plots
- lm_results <- zscores_interactions_filtered %>%
- summarise(
- lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
- lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
- lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
- lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
- )
- zscores_interactions_filtered <- zscores_interactions_filtered %>%
- left_join(lm_results, by = orf_group_vars) %>%
- mutate(
- Overlap = case_when(
- Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
- Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
- Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
- Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
- Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
- Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
- TRUE ~ "No Effect"
- )
- ) %>%
- ungroup()
- rank_plot_configs <- c(
- generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
- generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
- )
- generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
- plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
-
- rank_lm_plot_configs <- c(
- generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
- generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
- )
- generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
- plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
- correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
- generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
- plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
- })
- })
- }
- main()
|