calculate_interaction_zscores.R 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Continue with the rest of the function as before
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  259. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  260. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  261. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  262. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  263. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  264. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  265. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  266. )
  267. # Continue with gene Z-scores and interactions
  268. calculations <- calculations %>%
  269. left_join(lm_means_sds, by = group_vars) %>%
  270. group_by(across(all_of(group_vars))) %>%
  271. mutate(
  272. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  273. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  274. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  275. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  276. )
  277. # Build summary stats (interactions)
  278. interactions <- calculations %>%
  279. group_by(across(all_of(group_vars))) %>%
  280. summarise(
  281. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  282. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  283. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  284. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  285. # Interaction Z-scores
  286. Z_lm_L = first(Z_lm_L),
  287. Z_lm_K = first(Z_lm_K),
  288. Z_lm_r = first(Z_lm_r),
  289. Z_lm_AUC = first(Z_lm_AUC),
  290. # Raw Shifts
  291. Raw_Shift_L = first(Raw_Shift_L),
  292. Raw_Shift_K = first(Raw_Shift_K),
  293. Raw_Shift_r = first(Raw_Shift_r),
  294. Raw_Shift_AUC = first(Raw_Shift_AUC),
  295. # Z Shifts
  296. Z_Shift_L = first(Z_Shift_L),
  297. Z_Shift_K = first(Z_Shift_K),
  298. Z_Shift_r = first(Z_Shift_r),
  299. Z_Shift_AUC = first(Z_Shift_AUC)
  300. ) %>%
  301. arrange(desc(Z_lm_L), desc(NG)) %>%
  302. ungroup() %>%
  303. mutate(
  304. Overlap = case_when(
  305. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  306. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  307. Z_lm_L >= overlap_threshold & Avg_Zscore_L < overlap_threshold ~ "Deletion Enhancer lm only",
  308. Z_lm_L < overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  309. Z_lm_L <= -overlap_threshold & Avg_Zscore_L > -overlap_threshold ~ "Deletion Suppressor lm only",
  310. Z_lm_L > -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  311. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  312. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  313. TRUE ~ "No Effect"
  314. )
  315. )
  316. # Return full data and correlation stats
  317. full_data <- calculations %>%
  318. left_join(interactions, by = group_vars)
  319. return(list(
  320. calculations = calculations,
  321. interactions = interactions,
  322. full_data = full_data
  323. ))
  324. }
  325. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  326. message("Generating ", filename, ".pdf and ", filename, ".html")
  327. # Check if we're dealing with multiple plot groups
  328. plot_groups <- if ("plots" %in% names(plot_configs)) {
  329. list(plot_configs) # Single group
  330. } else {
  331. plot_configs # Multiple groups
  332. }
  333. for (group in plot_groups) {
  334. static_plots <- list()
  335. plotly_plots <- list()
  336. grid_layout <- group$grid_layout
  337. plots <- group$plots
  338. for (i in seq_along(plots)) {
  339. config <- plots[[i]]
  340. df <- config$df
  341. if (config$plot_type == "bar") {
  342. if (!is.null(config$color_var)) {
  343. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  344. } else {
  345. aes_mapping <- aes(x = .data[[config$x_var]])
  346. }
  347. } else if (config$plot_type == "density") {
  348. if (!is.null(config$color_var)) {
  349. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  350. } else {
  351. aes_mapping <- aes(x = .data[[config$x_var]])
  352. }
  353. } else {
  354. # For other plot types
  355. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  356. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  357. } else if (!is.null(config$y_var)) {
  358. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  359. } else {
  360. aes_mapping <- aes(x = .data[[config$x_var]])
  361. }
  362. }
  363. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  364. plot <- switch(config$plot_type,
  365. "scatter" = generate_scatter_plot(plot, config),
  366. "box" = generate_boxplot(plot, config),
  367. "density" = plot + geom_density(),
  368. "bar" = plot + geom_bar(),
  369. plot # default (unused)
  370. )
  371. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  372. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  373. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  374. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  375. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  376. static_plots[[i]] <- plot
  377. plotly_plots[[i]] <- plotly_plot
  378. }
  379. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  380. if (is.null(grid_layout)) {
  381. for (plot in static_plots) {
  382. print(plot)
  383. }
  384. } else {
  385. grid.arrange(
  386. grobs = static_plots,
  387. ncol = grid_layout$ncol,
  388. nrow = grid_layout$nrow
  389. )
  390. }
  391. dev.off()
  392. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  393. message("Saving combined HTML file: ", out_html_file)
  394. htmltools::save_html(
  395. htmltools::tagList(plotly_plots),
  396. file = out_html_file
  397. )
  398. }
  399. }
  400. generate_scatter_plot <- function(plot, config) {
  401. # Define the points
  402. shape <- if (!is.null(config$shape)) config$shape else 3
  403. size <- if (!is.null(config$size)) config$size else 1.5
  404. position <-
  405. if (!is.null(config$position) && config$position == "jitter") {
  406. position_jitter(width = 0.1, height = 0)
  407. } else {
  408. "identity"
  409. }
  410. plot <- plot + geom_point(
  411. shape = shape,
  412. size = size,
  413. position = position
  414. )
  415. if (!is.null(config$cyan_points) && config$cyan_points) {
  416. plot <- plot + geom_point(
  417. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  418. color = "cyan",
  419. shape = 3,
  420. size = 0.5
  421. )
  422. }
  423. # Add Smooth Line if specified
  424. if (!is.null(config$smooth) && config$smooth) {
  425. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  426. if (!is.null(config$lm_line)) {
  427. plot <- plot +
  428. geom_abline(
  429. intercept = config$lm_line$intercept,
  430. slope = config$lm_line$slope,
  431. color = smooth_color
  432. )
  433. } else {
  434. plot <- plot +
  435. geom_smooth(
  436. method = "lm",
  437. se = FALSE,
  438. color = smooth_color
  439. )
  440. }
  441. }
  442. # Add SD Bands if specified
  443. if (!is.null(config$sd_band)) {
  444. plot <- plot +
  445. annotate(
  446. "rect",
  447. xmin = -Inf, xmax = Inf,
  448. ymin = config$sd_band, ymax = Inf,
  449. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  450. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  451. ) +
  452. annotate(
  453. "rect",
  454. xmin = -Inf, xmax = Inf,
  455. ymin = -config$sd_band, ymax = -Inf,
  456. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  457. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  458. ) +
  459. geom_hline(
  460. yintercept = c(-config$sd_band, config$sd_band),
  461. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  462. )
  463. }
  464. # Add Rectangles if specified
  465. if (!is.null(config$rectangles)) {
  466. for (rect in config$rectangles) {
  467. plot <- plot + annotate(
  468. "rect",
  469. xmin = rect$xmin,
  470. xmax = rect$xmax,
  471. ymin = rect$ymin,
  472. ymax = rect$ymax,
  473. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  474. color = ifelse(is.null(rect$color), "black", rect$color),
  475. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  476. )
  477. }
  478. }
  479. # Add error bars if specified
  480. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  481. if (!is.null(config$error_bar_params)) {
  482. plot <- plot + geom_errorbar(aes(ymin = config$error_bar_params$ymin, ymax = config$error_bar_params$ymax))
  483. } else {
  484. y_mean_col <- paste0("mean_", config$y_var)
  485. y_sd_col <- paste0("sd_", config$y_var)
  486. plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col), ymax = !!sym(y_mean_col) + !!sym(y_sd_col)))
  487. }
  488. }
  489. # Customize X-axis if specified
  490. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  491. # Check if x_var is factor or character (for discrete x-axis)
  492. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  493. plot <- plot +
  494. scale_x_discrete(
  495. name = config$x_label,
  496. breaks = config$x_breaks,
  497. labels = config$x_labels
  498. )
  499. } else {
  500. plot <- plot +
  501. scale_x_continuous(
  502. name = config$x_label,
  503. breaks = config$x_breaks,
  504. labels = config$x_labels
  505. )
  506. }
  507. }
  508. # Set Y-axis limits if specified
  509. if (!is.null(config$ylim_vals)) {
  510. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  511. }
  512. # Add annotations if specified
  513. if (!is.null(config$annotations)) {
  514. for (annotation in config$annotations) {
  515. plot <- plot +
  516. annotate(
  517. "text",
  518. x = annotation$x,
  519. y = annotation$y,
  520. label = annotation$label,
  521. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  522. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  523. size = ifelse(is.null(annotation$size), 6, annotation$size),
  524. color = ifelse(is.null(annotation$color), "black", annotation$color)
  525. )
  526. }
  527. }
  528. return(plot)
  529. }
  530. generate_boxplot <- function(plot, config) {
  531. # Convert x_var to a factor within aes mapping
  532. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  533. # Customize X-axis if specified
  534. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  535. # Check if x_var is factor or character (for discrete x-axis)
  536. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  537. plot <- plot +
  538. scale_x_discrete(
  539. name = config$x_label,
  540. breaks = config$x_breaks,
  541. labels = config$x_labels
  542. )
  543. } else {
  544. plot <- plot +
  545. scale_x_continuous(
  546. name = config$x_label,
  547. breaks = config$x_breaks,
  548. labels = config$x_labels
  549. )
  550. }
  551. }
  552. return(plot)
  553. }
  554. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  555. plot_type = "scatter", stages = c("before", "after")) {
  556. plot_configs <- list()
  557. for (var in variables) {
  558. for (stage in stages) {
  559. df_plot <- if (stage == "before") df_before else df_after
  560. # Check for non-finite values in the y-variable
  561. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  562. # Adjust settings based on plot_type
  563. plot_config <- list(
  564. df = df_plot_filtered,
  565. x_var = "scan",
  566. y_var = var,
  567. plot_type = plot_type,
  568. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  569. color_var = "conc_num_factor_factor",
  570. position = if (plot_type == "scatter") "jitter" else NULL,
  571. size = 0.2,
  572. error_bar = (plot_type == "scatter")
  573. )
  574. # Add config to plots list
  575. plot_configs <- append(plot_configs, list(plot_config))
  576. }
  577. }
  578. return(list(plots = plot_configs))
  579. }
  580. generate_interaction_plot_configs <- function(df, type) {
  581. # Set group_vars based on the type (reference or deletion)
  582. if (type == "reference") {
  583. group_vars <- c("OrfRep", "Gene", "num")
  584. } else if (type == "deletion") {
  585. group_vars <- c("OrfRep", "Gene")
  586. }
  587. # Define the limits for the plots
  588. limits_map <- list(
  589. L = c(0, 130),
  590. K = c(-20, 160),
  591. r = c(0, 1),
  592. AUC = c(0, 12500)
  593. )
  594. delta_limits_map <- list(
  595. L = c(-60, 60),
  596. K = c(-60, 60),
  597. r = c(-0.6, 0.6),
  598. AUC = c(-6000, 6000)
  599. )
  600. overall_plot_configs <- list()
  601. delta_plot_configs <- list()
  602. # Overall statistics plots
  603. for (var in names(limits_map)) {
  604. y_limits <- limits_map[[var]]
  605. # Use the pre-calculated lm intercept and slope from the dataframe
  606. lm_intercept_col <- paste0("lm_intercept_", var)
  607. lm_slope_col <- paste0("lm_slope_", var)
  608. # Ensure no NA or invalid values in lm_line calculations
  609. intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
  610. slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
  611. plot_config <- list(
  612. df = df,
  613. plot_type = "scatter",
  614. x_var = "conc_num_factor_factor",
  615. y_var = var,
  616. x_label = unique(df$Drug)[1],
  617. title = sprintf("Scatter RF for %s with SD", var),
  618. coord_cartesian = y_limits,
  619. error_bar = TRUE,
  620. x_breaks = unique(df$conc_num_factor_factor),
  621. x_labels = as.character(unique(df$conc_num)),
  622. position = "jitter",
  623. smooth = TRUE,
  624. lm_line = list(
  625. intercept = intercept_value,
  626. slope = slope_value
  627. )
  628. )
  629. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  630. }
  631. # Delta interaction plots
  632. grouped_data <- df %>%
  633. group_by(across(all_of(group_vars))) %>%
  634. group_split()
  635. for (group_data in grouped_data) {
  636. OrfRep <- first(group_data$OrfRep)
  637. Gene <- first(group_data$Gene)
  638. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  639. if (type == "reference") {
  640. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  641. } else if (type == "deletion") {
  642. OrfRepTitle <- OrfRep
  643. }
  644. for (var in names(delta_limits_map)) {
  645. y_limits <- delta_limits_map[[var]]
  646. y_span <- y_limits[2] - y_limits[1]
  647. # Error bars
  648. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  649. # Z_Shift and lm values
  650. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  651. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  652. R_squared_value <- round(first(group_data[[paste0("R_squared_", var)]], default = 0), 2)
  653. # NG, DB, SM values
  654. NG_value <- first(group_data$NG, default = 0)
  655. DB_value <- first(group_data$DB, default = 0)
  656. SM_value <- first(group_data$SM, default = 0)
  657. annotations <- list(
  658. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  659. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  660. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  661. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  662. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  663. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  664. )
  665. # lm_line for delta plots
  666. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  667. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  668. plot_config <- list(
  669. df = group_data,
  670. plot_type = "scatter",
  671. x_var = "conc_num_factor_factor",
  672. y_var = var,
  673. x_label = unique(group_data$Drug)[1],
  674. title = paste(OrfRepTitle, Gene, num, sep = " "),
  675. coord_cartesian = y_limits,
  676. annotations = annotations,
  677. error_bar = TRUE,
  678. error_bar_params = list(
  679. ymin = 0 - (2 * WT_sd_value),
  680. ymax = 0 + (2 * WT_sd_value)
  681. ),
  682. smooth = TRUE,
  683. x_breaks = unique(group_data$conc_num_factor_factor),
  684. x_labels = as.character(unique(group_data$conc_num)),
  685. ylim_vals = y_limits,
  686. lm_line = list(
  687. intercept = lm_intercept_value,
  688. slope = lm_slope_value
  689. )
  690. )
  691. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  692. }
  693. }
  694. # Calculate dynamic grid layout
  695. grid_ncol <- 4
  696. num_plots <- length(delta_plot_configs)
  697. grid_nrow <- ceiling(num_plots / grid_ncol)
  698. return(list(
  699. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  700. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  701. ))
  702. }
  703. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  704. sd_bands <- c(1, 2, 3)
  705. plot_configs <- list()
  706. variables <- c("L", "K")
  707. # Adjust (if necessary) and rank columns
  708. for (variable in variables) {
  709. if (adjust) {
  710. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  711. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  712. }
  713. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  714. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  715. }
  716. # Helper function to create a plot configuration
  717. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  718. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  719. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  720. # Default plot config
  721. plot_config <- list(
  722. df = df,
  723. x_var = rank_var,
  724. y_var = zscore_var,
  725. plot_type = "scatter",
  726. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  727. sd_band = sd_band,
  728. fill_positive = "#542788",
  729. fill_negative = "orange",
  730. alpha_positive = 0.3,
  731. alpha_negative = 0.3,
  732. annotations = NULL,
  733. shape = 3,
  734. size = 0.1,
  735. y_label = y_label,
  736. x_label = "Rank",
  737. legend_position = "none"
  738. )
  739. if (with_annotations) {
  740. # Add specific annotations for plots with annotations
  741. plot_config$annotations <- list(
  742. list(
  743. x = median(df[[rank_var]], na.rm = TRUE),
  744. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  745. label = paste("Deletion Enhancers =", num_enhancers)
  746. ),
  747. list(
  748. x = median(df[[rank_var]], na.rm = TRUE),
  749. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  750. label = paste("Deletion Suppressors =", num_suppressors)
  751. )
  752. )
  753. }
  754. return(plot_config)
  755. }
  756. # Generate plots for each variable
  757. for (variable in variables) {
  758. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  759. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  760. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  761. # Loop through SD bands
  762. for (sd_band in sd_bands) {
  763. # Create plot with annotations
  764. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  765. # Create plot without annotations
  766. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  767. }
  768. }
  769. # Calculate dynamic grid layout based on the number of plots
  770. grid_ncol <- 3
  771. num_plots <- length(plot_configs)
  772. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  773. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  774. }
  775. generate_correlation_plot_configs <- function(df, correlation_stats) {
  776. # Define relationships for different-variable correlations
  777. relationships <- list(
  778. list(x = "L", y = "K"),
  779. list(x = "L", y = "r"),
  780. list(x = "L", y = "AUC"),
  781. list(x = "K", y = "r"),
  782. list(x = "K", y = "AUC"),
  783. list(x = "r", y = "AUC")
  784. )
  785. plot_configs <- list()
  786. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  787. highlight_cyan_options <- c(FALSE, TRUE)
  788. for (highlight_cyan in highlight_cyan_options) {
  789. for (rel in relationships) {
  790. # Extract relevant variable names for Z_lm values
  791. x_var <- paste0("Z_lm_", rel$x)
  792. y_var <- paste0("Z_lm_", rel$y)
  793. # Access the correlation statistics from the correlation_stats list
  794. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  795. stats <- correlation_stats[[relationship_name]]
  796. intercept <- stats$intercept
  797. slope <- stats$slope
  798. r_squared <- stats$r_squared
  799. # Generate the label for the plot
  800. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  801. # Construct plot config
  802. plot_config <- list(
  803. df = df,
  804. x_var = x_var,
  805. y_var = y_var,
  806. plot_type = "scatter",
  807. title = plot_label,
  808. annotations = list(
  809. list(
  810. x = mean(df[[x_var]], na.rm = TRUE),
  811. y = mean(df[[y_var]], na.rm = TRUE),
  812. label = paste("R-squared =", round(r_squared, 3))
  813. )
  814. ),
  815. smooth = TRUE,
  816. smooth_color = "tomato3",
  817. lm_line = list(
  818. intercept = intercept,
  819. slope = slope
  820. ),
  821. shape = 3,
  822. size = 0.5,
  823. color_var = "Overlap",
  824. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  825. )
  826. plot_configs <- append(plot_configs, list(plot_config))
  827. }
  828. }
  829. return(list(plots = plot_configs))
  830. }
  831. main <- function() {
  832. lapply(names(args$experiments), function(exp_name) {
  833. exp <- args$experiments[[exp_name]]
  834. exp_path <- exp$path
  835. exp_sd <- exp$sd
  836. out_dir <- file.path(exp_path, "zscores")
  837. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  838. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  839. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  840. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  841. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  842. message("Loading and filtering data for experiment: ", exp_name)
  843. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  844. update_gene_names(args$sgd_gene_list) %>%
  845. as_tibble()
  846. # Filter rows above delta background tolerance
  847. df_above_tolerance <- df %>% filter(DB == 1)
  848. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  849. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  850. # Save some constants
  851. max_conc <- max(df$conc_num_factor)
  852. message("Calculating summary statistics before quality control")
  853. df_stats <- calculate_summary_stats(
  854. df = df,
  855. variables = summary_vars,
  856. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  857. message("Calculating summary statistics after quality control")
  858. ss <- calculate_summary_stats(
  859. df = df_na,
  860. variables = summary_vars,
  861. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  862. df_na_ss <- ss$summary_stats
  863. df_na_stats <- ss$df_with_stats
  864. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  865. # For plotting (ggplot warns on NAs)
  866. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  867. df_na_stats <- df_na_stats %>%
  868. mutate(
  869. WT_L = mean_L,
  870. WT_K = mean_K,
  871. WT_r = mean_r,
  872. WT_AUC = mean_AUC,
  873. WT_sd_L = sd_L,
  874. WT_sd_K = sd_K,
  875. WT_sd_r = sd_r,
  876. WT_sd_AUC = sd_AUC
  877. )
  878. # Pull the background means and standard deviations from zero concentration for interactions
  879. bg_stats <- df_na_stats %>%
  880. filter(conc_num == 0) %>%
  881. summarise(
  882. mean_L = first(mean_L),
  883. mean_K = first(mean_K),
  884. mean_r = first(mean_r),
  885. mean_AUC = first(mean_AUC),
  886. sd_L = first(sd_L),
  887. sd_K = first(sd_K),
  888. sd_r = first(sd_r),
  889. sd_AUC = first(sd_AUC)
  890. )
  891. message("Calculating summary statistics after quality control excluding zero values")
  892. df_no_zeros_stats <- calculate_summary_stats(
  893. df = df_no_zeros,
  894. variables = summary_vars,
  895. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  896. )$df_with_stats
  897. message("Filtering by 2SD of K")
  898. df_na_within_2sd_k <- df_na_stats %>%
  899. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  900. df_na_outside_2sd_k <- df_na_stats %>%
  901. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  902. message("Calculating summary statistics for L within 2SD of K")
  903. # TODO We're omitting the original z_max calculation, not sure if needed?
  904. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  905. write.csv(ss,
  906. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  907. row.names = FALSE)
  908. message("Calculating summary statistics for L outside 2SD of K")
  909. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  910. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  911. write.csv(ss$summary_stats,
  912. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  913. row.names = FALSE)
  914. # Each list of plots corresponds to a file
  915. l_vs_k_plot_configs <- list(
  916. plots = list(
  917. list(
  918. df = df,
  919. x_var = "L",
  920. y_var = "K",
  921. plot_type = "scatter",
  922. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  923. title = "Raw L vs K before quality control",
  924. color_var = "conc_num_factor_factor",
  925. error_bar = FALSE,
  926. legend_position = "right"
  927. )
  928. )
  929. )
  930. frequency_delta_bg_plot_configs <- list(
  931. plots = list(
  932. list(
  933. df = df_stats,
  934. x_var = "delta_bg",
  935. y_var = NULL,
  936. plot_type = "density",
  937. title = "Density plot for Delta Background by [Drug] (All Data)",
  938. color_var = "conc_num_factor_factor",
  939. x_label = "Delta Background",
  940. y_label = "Density",
  941. error_bar = FALSE,
  942. legend_position = "right"
  943. ),
  944. list(
  945. df = df_stats,
  946. x_var = "delta_bg",
  947. y_var = NULL,
  948. plot_type = "bar",
  949. title = "Bar plot for Delta Background by [Drug] (All Data)",
  950. color_var = "conc_num_factor_factor",
  951. x_label = "Delta Background",
  952. y_label = "Count",
  953. error_bar = FALSE,
  954. legend_position = "right"
  955. )
  956. )
  957. )
  958. above_threshold_plot_configs <- list(
  959. plots = list(
  960. list(
  961. df = df_above_tolerance,
  962. x_var = "L",
  963. y_var = "K",
  964. plot_type = "scatter",
  965. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  966. title = paste("Raw L vs K for strains above Delta Background threshold of",
  967. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  968. color_var = "conc_num_factor_factor",
  969. position = "jitter",
  970. annotations = list(
  971. list(
  972. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  973. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  974. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  975. )
  976. ),
  977. error_bar = FALSE,
  978. legend_position = "right"
  979. )
  980. )
  981. )
  982. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  983. variables = summary_vars,
  984. df_before = df_stats,
  985. df_after = df_na_stats_filtered
  986. )
  987. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  988. variables = summary_vars,
  989. df_before = df_stats,
  990. df_after = df_na_stats_filtered,
  991. plot_type = "box"
  992. )
  993. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  994. variables = summary_vars,
  995. stages = c("after"), # Only after QC
  996. df_after = df_no_zeros_stats
  997. )
  998. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  999. variables = summary_vars,
  1000. stages = c("after"), # Only after QC
  1001. df_after = df_no_zeros_stats,
  1002. plot_type = "box"
  1003. )
  1004. l_outside_2sd_k_plot_configs <- list(
  1005. plots = list(
  1006. list(
  1007. df = df_na_l_outside_2sd_k_stats,
  1008. x_var = "L",
  1009. y_var = "K",
  1010. plot_type = "scatter",
  1011. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1012. color_var = "conc_num_factor_factor",
  1013. position = "jitter",
  1014. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1015. annotations = list(
  1016. list(
  1017. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1018. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1019. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1020. )
  1021. ),
  1022. error_bar = FALSE,
  1023. legend_position = "right"
  1024. )
  1025. )
  1026. )
  1027. delta_bg_outside_2sd_k_plot_configs <- list(
  1028. plots = list(
  1029. list(
  1030. df = df_na_l_outside_2sd_k_stats,
  1031. x_var = "delta_bg",
  1032. y_var = "K",
  1033. plot_type = "scatter",
  1034. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1035. color_var = "conc_num_factor_factor",
  1036. position = "jitter",
  1037. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1038. annotations = list(
  1039. list(
  1040. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1041. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1042. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1043. )
  1044. ),
  1045. error_bar = FALSE,
  1046. legend_position = "right"
  1047. )
  1048. )
  1049. )
  1050. message("Generating quality control plots in parallel")
  1051. # future::plan(future::multicore, workers = parallel::detectCores())
  1052. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1053. plot_configs <- list(
  1054. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1055. plot_configs = l_vs_k_plot_configs),
  1056. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1057. plot_configs = frequency_delta_bg_plot_configs),
  1058. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1059. plot_configs = above_threshold_plot_configs),
  1060. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1061. plot_configs = plate_analysis_plot_configs),
  1062. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1063. plot_configs = plate_analysis_boxplot_configs),
  1064. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1065. plot_configs = plate_analysis_no_zeros_plot_configs),
  1066. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1067. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1068. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1069. plot_configs = l_outside_2sd_k_plot_configs),
  1070. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1071. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1072. )
  1073. # Generating quality control plots in parallel
  1074. # furrr::future_map(plot_configs, function(config) {
  1075. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1076. # }, .options = furrr_options(seed = TRUE))
  1077. # Process background strains
  1078. bg_strains <- c("YDL227C")
  1079. lapply(bg_strains, function(strain) {
  1080. message("Processing background strain: ", strain)
  1081. # Handle missing data by setting zero values to NA
  1082. # and then removing any rows with NA in L col
  1083. df_bg <- df_na %>%
  1084. filter(OrfRep == strain) %>%
  1085. mutate(
  1086. L = if_else(L == 0, NA, L),
  1087. K = if_else(K == 0, NA, K),
  1088. r = if_else(r == 0, NA, r),
  1089. AUC = if_else(AUC == 0, NA, AUC)
  1090. ) %>%
  1091. filter(!is.na(L))
  1092. # Recalculate summary statistics for the background strain
  1093. message("Calculating summary statistics for background strain")
  1094. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1095. summary_stats_bg <- ss_bg$summary_stats
  1096. write.csv(summary_stats_bg,
  1097. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1098. row.names = FALSE)
  1099. # Set the missing values to the highest theoretical value at each drug conc for L
  1100. # Leave other values as 0 for the max/min
  1101. df_reference <- df_na_stats %>% # formerly X2_RF
  1102. filter(OrfRep == strain) %>%
  1103. filter(!is.na(L)) %>%
  1104. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1105. mutate(
  1106. max_l_theoretical = max(max_L, na.rm = TRUE),
  1107. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1108. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1109. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1110. ungroup()
  1111. # Ditto for deletion strains
  1112. df_deletion <- df_na_stats %>% # formerly X2
  1113. filter(OrfRep != strain) %>%
  1114. filter(!is.na(L)) %>%
  1115. mutate(SM = 0) %>%
  1116. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1117. mutate(
  1118. max_l_theoretical = max(max_L, na.rm = TRUE),
  1119. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1120. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1121. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1122. ungroup()
  1123. message("Calculating reference strain interaction scores")
  1124. df_reference_stats <- calculate_summary_stats(
  1125. df = df_reference,
  1126. variables = interaction_vars,
  1127. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1128. )$df_with_stats
  1129. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1130. zscore_calculations_reference <- reference_results$calculations
  1131. zscore_interactions_reference <- reference_results$interactions
  1132. zscore_interactions_reference_joined <- reference_results$full_data
  1133. message("Calculating deletion strain(s) interactions scores")
  1134. df_deletion_stats <- calculate_summary_stats(
  1135. df = df_deletion,
  1136. variables = interaction_vars,
  1137. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1138. )$df_with_stats
  1139. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1140. zscore_calculations <- deletion_results$calculations
  1141. zscore_interactions <- deletion_results$interactions
  1142. zscore_interactions_joined <- deletion_results$full_data
  1143. # Writing Z-Scores to file
  1144. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1145. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1146. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1147. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1148. # Create interaction plots
  1149. message("Generating reference interaction plots")
  1150. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1151. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1152. message("Generating deletion interaction plots")
  1153. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1154. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1155. # Define conditions for enhancers and suppressors
  1156. # TODO Add to study config?
  1157. threshold <- 2
  1158. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1159. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1160. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1161. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1162. # Subset data
  1163. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1164. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1165. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1166. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1167. # Save enhancers and suppressors
  1168. message("Writing enhancer/suppressor csv files")
  1169. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1170. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1171. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1172. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1173. # Combine conditions for enhancers and suppressors
  1174. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1175. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1176. # Save combined enhancers and suppressors
  1177. write.csv(enhancers_and_suppressors_L,
  1178. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1179. write.csv(enhancers_and_suppressors_K,
  1180. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1181. # Handle linear model based enhancers and suppressors
  1182. lm_threshold <- 2 # TODO add to study config?
  1183. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1184. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1185. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1186. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1187. # Save linear model based enhancers and suppressors
  1188. message("Writing linear model enhancer/suppressor csv files")
  1189. write.csv(enhancers_lm_L,
  1190. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1191. write.csv(suppressors_lm_L,
  1192. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1193. write.csv(enhancers_lm_K,
  1194. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1195. write.csv(suppressors_lm_K,
  1196. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1197. message("Generating rank plots")
  1198. rank_plot_configs <- generate_rank_plot_configs(
  1199. df = zscore_interactions_joined,
  1200. is_lm = FALSE,
  1201. adjust = TRUE
  1202. )
  1203. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1204. plot_configs = rank_plot_configs)
  1205. message("Generating ranked linear model plots")
  1206. rank_lm_plot_configs <- generate_rank_plot_configs(
  1207. df = zscore_interactions_joined,
  1208. is_lm = TRUE,
  1209. adjust = TRUE
  1210. )
  1211. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1212. plot_configs = rank_lm_plot_configs)
  1213. message("Generating filtered ranked plots")
  1214. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1215. df = zscore_interactions_filtered,
  1216. is_lm = FALSE,
  1217. adjust = FALSE,
  1218. overlap_color = TRUE
  1219. )
  1220. generate_and_save_plots(
  1221. out_dir = out_dir,
  1222. filename = "RankPlots_na_rm",
  1223. plot_configs = rank_plot_filtered_configs)
  1224. message("Generating filtered ranked linear model plots")
  1225. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1226. df = zscore_interactions_filtered,
  1227. is_lm = TRUE,
  1228. adjust = FALSE,
  1229. overlap_color = TRUE
  1230. )
  1231. generate_and_save_plots(
  1232. out_dir = out_dir,
  1233. filename = "rank_plots_lm_na_rm",
  1234. plot_configs = rank_plot_lm_filtered_configs)
  1235. message("Generating correlation curve parameter pair plots")
  1236. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1237. generate_and_save_plots(
  1238. out_dir = out_dir,
  1239. filename = "correlation_cpps",
  1240. plot_configs = correlation_plot_configs,
  1241. )
  1242. })
  1243. })
  1244. }
  1245. main()
  1246. # For future simplification of joined dataframes
  1247. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))