calculate_interaction_zscores.R 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  226. ) %>%
  227. group_modify(~ {
  228. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  229. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  230. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  231. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  232. # Return coefficients and R-squared values
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Calculate overall mean and SD for lm_Score_* variables
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. L_mean = mean(lm_Score_L, na.rm = TRUE),
  259. L_sd = sd(lm_Score_L, na.rm = TRUE),
  260. K_mean = mean(lm_Score_K, na.rm = TRUE),
  261. K_sd = sd(lm_Score_K, na.rm = TRUE),
  262. r_mean = mean(lm_Score_r, na.rm = TRUE),
  263. r_sd = sd(lm_Score_r, na.rm = TRUE),
  264. AUC_mean = mean(lm_Score_AUC, na.rm = TRUE),
  265. AUC_sd = sd(lm_Score_AUC, na.rm = TRUE)
  266. )
  267. # Calculate gene Z-scores
  268. calculations <- calculations %>%
  269. mutate(
  270. Z_lm_L = (lm_Score_L - lm_means_sds$L_mean) / lm_means_sds$L_sd,
  271. Z_lm_K = (lm_Score_K - lm_means_sds$K_mean) / lm_means_sds$K_sd,
  272. Z_lm_r = (lm_Score_r - lm_means_sds$r_mean) / lm_means_sds$r_sd,
  273. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$AUC_mean) / lm_means_sds$AUC_sd
  274. )
  275. # Build summary stats (interactions)
  276. interactions <- calculations %>%
  277. summarise(
  278. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  279. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  280. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  281. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  282. # Interaction Z-scores
  283. Z_lm_L = first(Z_lm_L),
  284. Z_lm_K = first(Z_lm_K),
  285. Z_lm_r = first(Z_lm_r),
  286. Z_lm_AUC = first(Z_lm_AUC),
  287. # Raw Shifts
  288. Raw_Shift_L = first(Raw_Shift_L),
  289. Raw_Shift_K = first(Raw_Shift_K),
  290. Raw_Shift_r = first(Raw_Shift_r),
  291. Raw_Shift_AUC = first(Raw_Shift_AUC),
  292. # Z Shifts
  293. Z_Shift_L = first(Z_Shift_L),
  294. Z_Shift_K = first(Z_Shift_K),
  295. Z_Shift_r = first(Z_Shift_r),
  296. Z_Shift_AUC = first(Z_Shift_AUC),
  297. NG = first(NG),
  298. DB = first(DB),
  299. SM = first(SM)
  300. ) %>%
  301. arrange(desc(Z_lm_L), desc(NG)) %>%
  302. ungroup() %>%
  303. mutate(
  304. Overlap = case_when(
  305. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  306. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  307. Z_lm_L >= overlap_threshold & Avg_Zscore_L < overlap_threshold ~ "Deletion Enhancer lm only",
  308. Z_lm_L < overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  309. Z_lm_L <= -overlap_threshold & Avg_Zscore_L > -overlap_threshold ~ "Deletion Suppressor lm only",
  310. Z_lm_L > -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  311. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  312. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  313. TRUE ~ "No Effect"
  314. )
  315. )
  316. # Fit correlation models between Z_lm_* and Avg_Zscore_* (same-variable)
  317. correlation_lms_same <- list(
  318. L = lm(Z_lm_L ~ Avg_Zscore_L, data = interactions),
  319. K = lm(Z_lm_K ~ Avg_Zscore_K, data = interactions),
  320. r = lm(Z_lm_r ~ Avg_Zscore_r, data = interactions),
  321. AUC = lm(Z_lm_AUC ~ Avg_Zscore_AUC, data = interactions)
  322. )
  323. # Extract correlation statistics for same-variable correlations
  324. correlation_stats_same <- map(correlation_lms_same, ~ {
  325. list(
  326. intercept = coef(.x)[1],
  327. slope = coef(.x)[2],
  328. r_squared = summary(.x)$r.squared
  329. )
  330. })
  331. # Fit additional correlation models between different Z_lm_* variables
  332. correlation_lms_diff <- list(
  333. L_vs_K = lm(Z_lm_K ~ Z_lm_L, data = interactions),
  334. L_vs_r = lm(Z_lm_r ~ Z_lm_L, data = interactions),
  335. L_vs_AUC = lm(Z_lm_AUC ~ Z_lm_L, data = interactions),
  336. K_vs_r = lm(Z_lm_r ~ Z_lm_K, data = interactions),
  337. K_vs_AUC = lm(Z_lm_AUC ~ Z_lm_K, data = interactions),
  338. r_vs_AUC = lm(Z_lm_AUC ~ Z_lm_r, data = interactions)
  339. )
  340. # Extract correlation statistics for different-variable correlations
  341. correlation_stats_diff <- map(correlation_lms_diff, ~ {
  342. list(
  343. intercept = coef(.x)[1],
  344. slope = coef(.x)[2],
  345. r_squared = summary(.x)$r.squared
  346. )
  347. })
  348. # Combine all correlation stats
  349. correlation_stats <- c(correlation_stats_same, correlation_stats_diff)
  350. # Prepare full_data by merging interactions back into calculations
  351. full_data <- calculations %>%
  352. left_join(interactions, by = group_vars)
  353. return(list(
  354. calculations = calculations,
  355. interactions = interactions,
  356. full_data = full_data,
  357. correlation_stats = correlation_stats
  358. ))
  359. }
  360. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  361. message("Generating ", filename, ".pdf and ", filename, ".html")
  362. # Check if we're dealing with multiple plot groups
  363. plot_groups <- if ("plots" %in% names(plot_configs)) {
  364. list(plot_configs) # Single group
  365. } else {
  366. plot_configs # Multiple groups
  367. }
  368. for (group in plot_groups) {
  369. static_plots <- list()
  370. plotly_plots <- list()
  371. grid_layout <- group$grid_layout
  372. plots <- group$plots
  373. for (i in seq_along(plots)) {
  374. config <- plots[[i]]
  375. df <- config$df
  376. if (config$plot_type == "bar") {
  377. if (!is.null(config$color_var)) {
  378. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  379. } else {
  380. aes_mapping <- aes(x = .data[[config$x_var]])
  381. }
  382. } else if (config$plot_type == "density") {
  383. if (!is.null(config$color_var)) {
  384. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  385. } else {
  386. aes_mapping <- aes(x = .data[[config$x_var]])
  387. }
  388. } else {
  389. # For other plot types
  390. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  391. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  392. } else if (!is.null(config$y_var)) {
  393. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  394. } else {
  395. aes_mapping <- aes(x = .data[[config$x_var]])
  396. }
  397. }
  398. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  399. plot <- switch(config$plot_type,
  400. "scatter" = generate_scatter_plot(plot, config),
  401. "box" = generate_boxplot(plot, config),
  402. "density" = plot + geom_density(),
  403. "bar" = plot + geom_bar(),
  404. plot # default (unused)
  405. )
  406. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  407. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  408. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  409. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  410. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  411. static_plots[[i]] <- plot
  412. plotly_plots[[i]] <- plotly_plot
  413. }
  414. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  415. if (is.null(grid_layout)) {
  416. for (plot in static_plots) {
  417. print(plot)
  418. }
  419. } else {
  420. grid.arrange(
  421. grobs = static_plots,
  422. ncol = grid_layout$ncol,
  423. nrow = grid_layout$nrow
  424. )
  425. }
  426. dev.off()
  427. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  428. message("Saving combined HTML file: ", out_html_file)
  429. htmltools::save_html(
  430. htmltools::tagList(plotly_plots),
  431. file = out_html_file
  432. )
  433. }
  434. }
  435. generate_scatter_plot <- function(plot, config) {
  436. # Define the points
  437. shape <- if (!is.null(config$shape)) config$shape else 3
  438. size <- if (!is.null(config$size)) config$size else 1.5
  439. position <-
  440. if (!is.null(config$position) && config$position == "jitter") {
  441. position_jitter(width = 0.1, height = 0)
  442. } else {
  443. "identity"
  444. }
  445. plot <- plot + geom_point(
  446. shape = shape,
  447. size = size,
  448. position = position
  449. )
  450. if (!is.null(config$cyan_points) && config$cyan_points) {
  451. plot <- plot + geom_point(
  452. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  453. color = "cyan",
  454. shape = 3,
  455. size = 0.5
  456. )
  457. }
  458. # Add Smooth Line if specified
  459. if (!is.null(config$smooth) && config$smooth) {
  460. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  461. if (!is.null(config$lm_line)) {
  462. plot <- plot +
  463. geom_abline(
  464. intercept = config$lm_line$intercept,
  465. slope = config$lm_line$slope,
  466. color = smooth_color
  467. )
  468. } else {
  469. plot <- plot +
  470. geom_smooth(
  471. method = "lm",
  472. se = FALSE,
  473. color = smooth_color
  474. )
  475. }
  476. }
  477. # Add SD Bands if specified
  478. if (!is.null(config$sd_band)) {
  479. plot <- plot +
  480. annotate(
  481. "rect",
  482. xmin = -Inf, xmax = Inf,
  483. ymin = config$sd_band, ymax = Inf,
  484. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  485. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  486. ) +
  487. annotate(
  488. "rect",
  489. xmin = -Inf, xmax = Inf,
  490. ymin = -config$sd_band, ymax = -Inf,
  491. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  492. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  493. ) +
  494. geom_hline(
  495. yintercept = c(-config$sd_band, config$sd_band),
  496. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  497. )
  498. }
  499. # Add Rectangles if specified
  500. if (!is.null(config$rectangles)) {
  501. for (rect in config$rectangles) {
  502. plot <- plot + annotate(
  503. "rect",
  504. xmin = rect$xmin,
  505. xmax = rect$xmax,
  506. ymin = rect$ymin,
  507. ymax = rect$ymax,
  508. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  509. color = ifelse(is.null(rect$color), "black", rect$color),
  510. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  511. )
  512. }
  513. }
  514. # Add error bars if specified
  515. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  516. if (!is.null(config$error_bar_params)) {
  517. plot <- plot + geom_errorbar(aes(ymin = config$error_bar_params$ymin, ymax = config$error_bar_params$ymax))
  518. } else {
  519. y_mean_col <- paste0("mean_", config$y_var)
  520. y_sd_col <- paste0("sd_", config$y_var)
  521. plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col), ymax = !!sym(y_mean_col) + !!sym(y_sd_col)))
  522. }
  523. }
  524. # Customize X-axis if specified
  525. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  526. # Check if x_var is factor or character (for discrete x-axis)
  527. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  528. plot <- plot +
  529. scale_x_discrete(
  530. name = config$x_label,
  531. breaks = config$x_breaks,
  532. labels = config$x_labels
  533. )
  534. } else {
  535. plot <- plot +
  536. scale_x_continuous(
  537. name = config$x_label,
  538. breaks = config$x_breaks,
  539. labels = config$x_labels
  540. )
  541. }
  542. }
  543. # Set Y-axis limits if specified
  544. if (!is.null(config$ylim_vals)) {
  545. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  546. }
  547. # Add annotations if specified
  548. if (!is.null(config$annotations)) {
  549. for (annotation in config$annotations) {
  550. plot <- plot +
  551. annotate(
  552. "text",
  553. x = annotation$x,
  554. y = annotation$y,
  555. label = annotation$label,
  556. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  557. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  558. size = ifelse(is.null(annotation$size), 6, annotation$size),
  559. color = ifelse(is.null(annotation$color), "black", annotation$color)
  560. )
  561. }
  562. }
  563. return(plot)
  564. }
  565. generate_boxplot <- function(plot, config) {
  566. # Convert x_var to a factor within aes mapping
  567. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  568. # Customize X-axis if specified
  569. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  570. # Check if x_var is factor or character (for discrete x-axis)
  571. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  572. plot <- plot +
  573. scale_x_discrete(
  574. name = config$x_label,
  575. breaks = config$x_breaks,
  576. labels = config$x_labels
  577. )
  578. } else {
  579. plot <- plot +
  580. scale_x_continuous(
  581. name = config$x_label,
  582. breaks = config$x_breaks,
  583. labels = config$x_labels
  584. )
  585. }
  586. }
  587. return(plot)
  588. }
  589. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  590. plot_type = "scatter", stages = c("before", "after")) {
  591. plot_configs <- list()
  592. for (var in variables) {
  593. for (stage in stages) {
  594. df_plot <- if (stage == "before") df_before else df_after
  595. # Check for non-finite values in the y-variable
  596. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  597. # Adjust settings based on plot_type
  598. plot_config <- list(
  599. df = df_plot_filtered,
  600. x_var = "scan",
  601. y_var = var,
  602. plot_type = plot_type,
  603. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  604. color_var = "conc_num_factor_factor",
  605. position = if (plot_type == "scatter") "jitter" else NULL,
  606. size = 0.2,
  607. error_bar = (plot_type == "scatter")
  608. )
  609. # Add config to plots list
  610. plot_configs <- append(plot_configs, list(plot_config))
  611. }
  612. }
  613. return(list(plots = plot_configs))
  614. }
  615. generate_interaction_plot_configs <- function(df, type) {
  616. if (type == "reference") {
  617. group_vars <- c("OrfRep", "Gene", "num")
  618. df <- df %>%
  619. mutate(OrfRepCombined = do.call(paste, c(across(all_of(group_vars)), sep = "_")))
  620. } else if (type == "deletion") {
  621. group_vars <- c("OrfRep", "Gene")
  622. df <- df %>%
  623. mutate(OrfRepCombined = OrfRep)
  624. }
  625. limits_map <- list(
  626. L = c(0, 130),
  627. K = c(-20, 160),
  628. r = c(0, 1),
  629. AUC = c(0, 12500)
  630. )
  631. delta_limits_map <- list(
  632. L = c(-60, 60),
  633. K = c(-60, 60),
  634. r = c(-0.6, 0.6),
  635. AUC = c(-6000, 6000)
  636. )
  637. overall_plot_configs <- list()
  638. delta_plot_configs <- list()
  639. # Overall plots with lm_line for each interaction
  640. for (var in names(limits_map)) {
  641. y_limits <- limits_map[[var]]
  642. # Use the pre-calculated lm intercept and slope from the dataframe
  643. lm_intercept_col <- paste0("lm_intercept_", var)
  644. lm_slope_col <- paste0("lm_slope_", var)
  645. plot_config <- list(
  646. df = df,
  647. plot_type = "scatter",
  648. x_var = "conc_num_factor_factor",
  649. y_var = var,
  650. x_label = unique(df$Drug)[1],
  651. title = sprintf("Scatter RF for %s with SD", var),
  652. coord_cartesian = y_limits,
  653. error_bar = TRUE,
  654. x_breaks = unique(df$conc_num_factor_factor),
  655. x_labels = as.character(unique(df$conc_num)),
  656. position = "jitter",
  657. smooth = TRUE,
  658. lm_line = list(
  659. intercept = mean(df[[lm_intercept_col]], na.rm = TRUE),
  660. slope = mean(df[[lm_slope_col]], na.rm = TRUE)
  661. )
  662. )
  663. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  664. }
  665. # Delta plots (add lm_line if necessary)
  666. unique_groups <- df %>% select(all_of(group_vars)) %>% distinct()
  667. for (i in seq_len(nrow(unique_groups))) {
  668. group <- unique_groups[i, ]
  669. group_data <- df %>% semi_join(group, by = group_vars)
  670. OrfRep <- as.character(group$OrfRep)
  671. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  672. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  673. for (var in names(delta_limits_map)) {
  674. y_limits <- delta_limits_map[[var]]
  675. y_span <- y_limits[2] - y_limits[1]
  676. # For error bars
  677. WT_sd_value <- group_data[[paste0("WT_sd_", var)]][1]
  678. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", var)]][1], 2)
  679. Z_lm_value <- round(group_data[[paste0("Z_lm_", var)]][1], 2)
  680. R_squared_value <- round(group_data[[paste0("R_squared_", var)]][1], 2)
  681. NG_value <- group_data$NG[1]
  682. DB_value <- group_data$DB[1]
  683. SM_value <- group_data$SM[1]
  684. annotations <- list(
  685. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  686. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  687. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  688. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  689. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  690. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  691. )
  692. # Delta plot configuration with lm_line if needed
  693. plot_config <- list(
  694. df = group_data,
  695. plot_type = "scatter",
  696. x_var = "conc_num_factor_factor",
  697. y_var = var,
  698. x_label = unique(group_data$Drug)[1],
  699. title = paste(OrfRepCombined, Gene, sep = " "),
  700. coord_cartesian = y_limits,
  701. annotations = annotations,
  702. error_bar = TRUE,
  703. error_bar_params = list(
  704. ymin = 0 - (2 * WT_sd_value),
  705. ymax = 0 + (2 * WT_sd_value)
  706. ),
  707. smooth = TRUE,
  708. x_breaks = unique(group_data$conc_num_factor_factor),
  709. x_labels = as.character(unique(group_data$conc_num)),
  710. ylim_vals = y_limits,
  711. lm_line = list(
  712. intercept = group_data[[lm_intercept_col]][1],
  713. slope = group_data[[lm_slope_col]][1]
  714. )
  715. )
  716. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  717. }
  718. }
  719. # Calculate dynamic grid layout based on the number of plots for the delta_L plots
  720. grid_ncol <- 4
  721. num_plots <- length(delta_plot_configs)
  722. grid_nrow <- ceiling(num_plots / grid_ncol)
  723. return(list(
  724. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  725. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  726. ))
  727. }
  728. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  729. sd_bands <- c(1, 2, 3)
  730. plot_configs <- list()
  731. variables <- c("L", "K")
  732. # Adjust (if necessary) and rank columns
  733. for (variable in variables) {
  734. if (adjust) {
  735. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  736. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  737. }
  738. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  739. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  740. }
  741. # Helper function to create a plot configuration
  742. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  743. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  744. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  745. # Default plot config
  746. plot_config <- list(
  747. df = df,
  748. x_var = rank_var,
  749. y_var = zscore_var,
  750. plot_type = "scatter",
  751. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  752. sd_band = sd_band,
  753. fill_positive = "#542788",
  754. fill_negative = "orange",
  755. alpha_positive = 0.3,
  756. alpha_negative = 0.3,
  757. annotations = NULL,
  758. shape = 3,
  759. size = 0.1,
  760. y_label = y_label,
  761. x_label = "Rank",
  762. legend_position = "none"
  763. )
  764. if (with_annotations) {
  765. # Add specific annotations for plots with annotations
  766. plot_config$annotations <- list(
  767. list(
  768. x = median(df[[rank_var]], na.rm = TRUE),
  769. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  770. label = paste("Deletion Enhancers =", num_enhancers)
  771. ),
  772. list(
  773. x = median(df[[rank_var]], na.rm = TRUE),
  774. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  775. label = paste("Deletion Suppressors =", num_suppressors)
  776. )
  777. )
  778. }
  779. return(plot_config)
  780. }
  781. # Generate plots for each variable
  782. for (variable in variables) {
  783. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  784. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  785. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  786. # Loop through SD bands
  787. for (sd_band in sd_bands) {
  788. # Create plot with annotations
  789. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  790. # Create plot without annotations
  791. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  792. }
  793. }
  794. # Calculate dynamic grid layout based on the number of plots
  795. grid_ncol <- 3
  796. num_plots <- length(plot_configs)
  797. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  798. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  799. }
  800. generate_correlation_plot_configs <- function(df, correlation_stats) {
  801. # Define relationships for different-variable correlations
  802. relationships <- list(
  803. list(x = "L", y = "K"),
  804. list(x = "L", y = "r"),
  805. list(x = "L", y = "AUC"),
  806. list(x = "K", y = "r"),
  807. list(x = "K", y = "AUC"),
  808. list(x = "r", y = "AUC")
  809. )
  810. plot_configs <- list()
  811. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  812. highlight_cyan_options <- c(FALSE, TRUE)
  813. for (highlight_cyan in highlight_cyan_options) {
  814. for (rel in relationships) {
  815. # Extract relevant variable names for Z_lm values
  816. x_var <- paste0("Z_lm_", rel$x)
  817. y_var <- paste0("Z_lm_", rel$y)
  818. # Access the correlation statistics from the correlation_stats list
  819. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  820. stats <- correlation_stats[[relationship_name]]
  821. intercept <- stats$intercept
  822. slope <- stats$slope
  823. r_squared <- stats$r_squared
  824. # Generate the label for the plot
  825. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  826. # Construct plot config
  827. plot_config <- list(
  828. df = df,
  829. x_var = x_var,
  830. y_var = y_var,
  831. plot_type = "scatter",
  832. title = plot_label,
  833. annotations = list(
  834. list(
  835. x = mean(df[[x_var]], na.rm = TRUE),
  836. y = mean(df[[y_var]], na.rm = TRUE),
  837. label = paste("R-squared =", round(r_squared, 3))
  838. )
  839. ),
  840. smooth = TRUE,
  841. smooth_color = "tomato3",
  842. lm_line = list(
  843. intercept = intercept,
  844. slope = slope
  845. ),
  846. shape = 3,
  847. size = 0.5,
  848. color_var = "Overlap",
  849. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  850. )
  851. plot_configs <- append(plot_configs, list(plot_config))
  852. }
  853. }
  854. return(list(plots = plot_configs))
  855. }
  856. main <- function() {
  857. lapply(names(args$experiments), function(exp_name) {
  858. exp <- args$experiments[[exp_name]]
  859. exp_path <- exp$path
  860. exp_sd <- exp$sd
  861. out_dir <- file.path(exp_path, "zscores")
  862. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  863. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  864. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  865. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  866. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  867. message("Loading and filtering data for experiment: ", exp_name)
  868. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  869. update_gene_names(args$sgd_gene_list) %>%
  870. as_tibble()
  871. # Filter rows above delta background tolerance
  872. df_above_tolerance <- df %>% filter(DB == 1)
  873. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  874. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  875. # Save some constants
  876. max_conc <- max(df$conc_num_factor)
  877. message("Calculating summary statistics before quality control")
  878. df_stats <- calculate_summary_stats(
  879. df = df,
  880. variables = summary_vars,
  881. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  882. message("Calculating summary statistics after quality control")
  883. ss <- calculate_summary_stats(
  884. df = df_na,
  885. variables = summary_vars,
  886. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  887. df_na_ss <- ss$summary_stats
  888. df_na_stats <- ss$df_with_stats
  889. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  890. # For plotting (ggplot warns on NAs)
  891. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  892. df_na_stats <- df_na_stats %>%
  893. mutate(
  894. WT_L = mean_L,
  895. WT_K = mean_K,
  896. WT_r = mean_r,
  897. WT_AUC = mean_AUC,
  898. WT_sd_L = sd_L,
  899. WT_sd_K = sd_K,
  900. WT_sd_r = sd_r,
  901. WT_sd_AUC = sd_AUC
  902. )
  903. # Pull the background means and standard deviations from zero concentration for interactions
  904. bg_stats <- df_na_stats %>%
  905. filter(conc_num == 0) %>%
  906. summarise(
  907. mean_L = first(mean_L),
  908. mean_K = first(mean_K),
  909. mean_r = first(mean_r),
  910. mean_AUC = first(mean_AUC),
  911. sd_L = first(sd_L),
  912. sd_K = first(sd_K),
  913. sd_r = first(sd_r),
  914. sd_AUC = first(sd_AUC)
  915. )
  916. message("Calculating summary statistics after quality control excluding zero values")
  917. df_no_zeros_stats <- calculate_summary_stats(
  918. df = df_no_zeros,
  919. variables = summary_vars,
  920. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  921. )$df_with_stats
  922. message("Filtering by 2SD of K")
  923. df_na_within_2sd_k <- df_na_stats %>%
  924. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  925. df_na_outside_2sd_k <- df_na_stats %>%
  926. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  927. message("Calculating summary statistics for L within 2SD of K")
  928. # TODO We're omitting the original z_max calculation, not sure if needed?
  929. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  930. write.csv(ss,
  931. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  932. row.names = FALSE)
  933. message("Calculating summary statistics for L outside 2SD of K")
  934. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  935. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  936. write.csv(ss$summary_stats,
  937. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  938. row.names = FALSE)
  939. # Each list of plots corresponds to a file
  940. l_vs_k_plot_configs <- list(
  941. plots = list(
  942. list(
  943. df = df,
  944. x_var = "L",
  945. y_var = "K",
  946. plot_type = "scatter",
  947. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  948. title = "Raw L vs K before quality control",
  949. color_var = "conc_num_factor_factor",
  950. error_bar = FALSE,
  951. legend_position = "right"
  952. )
  953. )
  954. )
  955. frequency_delta_bg_plot_configs <- list(
  956. plots = list(
  957. list(
  958. df = df_stats,
  959. x_var = "delta_bg",
  960. y_var = NULL,
  961. plot_type = "density",
  962. title = "Density plot for Delta Background by [Drug] (All Data)",
  963. color_var = "conc_num_factor_factor",
  964. x_label = "Delta Background",
  965. y_label = "Density",
  966. error_bar = FALSE,
  967. legend_position = "right"
  968. ),
  969. list(
  970. df = df_stats,
  971. x_var = "delta_bg",
  972. y_var = NULL,
  973. plot_type = "bar",
  974. title = "Bar plot for Delta Background by [Drug] (All Data)",
  975. color_var = "conc_num_factor_factor",
  976. x_label = "Delta Background",
  977. y_label = "Count",
  978. error_bar = FALSE,
  979. legend_position = "right"
  980. )
  981. )
  982. )
  983. above_threshold_plot_configs <- list(
  984. plots = list(
  985. list(
  986. df = df_above_tolerance,
  987. x_var = "L",
  988. y_var = "K",
  989. plot_type = "scatter",
  990. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  991. title = paste("Raw L vs K for strains above Delta Background threshold of",
  992. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  993. color_var = "conc_num_factor_factor",
  994. position = "jitter",
  995. annotations = list(
  996. list(
  997. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  998. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  999. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1000. )
  1001. ),
  1002. error_bar = FALSE,
  1003. legend_position = "right"
  1004. )
  1005. )
  1006. )
  1007. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1008. variables = summary_vars,
  1009. df_before = df_stats,
  1010. df_after = df_na_stats_filtered
  1011. )
  1012. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1013. variables = summary_vars,
  1014. df_before = df_stats,
  1015. df_after = df_na_stats_filtered,
  1016. plot_type = "box"
  1017. )
  1018. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1019. variables = summary_vars,
  1020. stages = c("after"), # Only after QC
  1021. df_after = df_no_zeros_stats
  1022. )
  1023. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1024. variables = summary_vars,
  1025. stages = c("after"), # Only after QC
  1026. df_after = df_no_zeros_stats,
  1027. plot_type = "box"
  1028. )
  1029. l_outside_2sd_k_plot_configs <- list(
  1030. plots = list(
  1031. list(
  1032. df = df_na_l_outside_2sd_k_stats,
  1033. x_var = "L",
  1034. y_var = "K",
  1035. plot_type = "scatter",
  1036. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1037. color_var = "conc_num_factor_factor",
  1038. position = "jitter",
  1039. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1040. annotations = list(
  1041. list(
  1042. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1043. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1044. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1045. )
  1046. ),
  1047. error_bar = FALSE,
  1048. legend_position = "right"
  1049. )
  1050. )
  1051. )
  1052. delta_bg_outside_2sd_k_plot_configs <- list(
  1053. plots = list(
  1054. list(
  1055. df = df_na_l_outside_2sd_k_stats,
  1056. x_var = "delta_bg",
  1057. y_var = "K",
  1058. plot_type = "scatter",
  1059. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1060. color_var = "conc_num_factor_factor",
  1061. position = "jitter",
  1062. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1063. annotations = list(
  1064. list(
  1065. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1066. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1067. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1068. )
  1069. ),
  1070. error_bar = FALSE,
  1071. legend_position = "right"
  1072. )
  1073. )
  1074. )
  1075. message("Generating quality control plots in parallel")
  1076. # future::plan(future::multicore, workers = parallel::detectCores())
  1077. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1078. plot_configs <- list(
  1079. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1080. plot_configs = l_vs_k_plot_configs),
  1081. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1082. plot_configs = frequency_delta_bg_plot_configs),
  1083. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1084. plot_configs = above_threshold_plot_configs),
  1085. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1086. plot_configs = plate_analysis_plot_configs),
  1087. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1088. plot_configs = plate_analysis_boxplot_configs),
  1089. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1090. plot_configs = plate_analysis_no_zeros_plot_configs),
  1091. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1092. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1093. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1094. plot_configs = l_outside_2sd_k_plot_configs),
  1095. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1096. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1097. )
  1098. # Generating quality control plots in parallel
  1099. furrr::future_map(plot_configs, function(config) {
  1100. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1101. }, .options = furrr_options(seed = TRUE))
  1102. # Process background strains
  1103. bg_strains <- c("YDL227C")
  1104. lapply(bg_strains, function(strain) {
  1105. message("Processing background strain: ", strain)
  1106. # Handle missing data by setting zero values to NA
  1107. # and then removing any rows with NA in L col
  1108. df_bg <- df_na %>%
  1109. filter(OrfRep == strain) %>%
  1110. mutate(
  1111. L = if_else(L == 0, NA, L),
  1112. K = if_else(K == 0, NA, K),
  1113. r = if_else(r == 0, NA, r),
  1114. AUC = if_else(AUC == 0, NA, AUC)
  1115. ) %>%
  1116. filter(!is.na(L))
  1117. # Recalculate summary statistics for the background strain
  1118. message("Calculating summary statistics for background strain")
  1119. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1120. summary_stats_bg <- ss_bg$summary_stats
  1121. write.csv(summary_stats_bg,
  1122. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1123. row.names = FALSE)
  1124. # Set the missing values to the highest theoretical value at each drug conc for L
  1125. # Leave other values as 0 for the max/min
  1126. df_reference <- df_na_stats %>% # formerly X2_RF
  1127. filter(OrfRep == strain) %>%
  1128. filter(!is.na(L)) %>%
  1129. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1130. mutate(
  1131. max_l_theoretical = max(max_L, na.rm = TRUE),
  1132. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1133. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1134. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1135. ungroup()
  1136. # Ditto for deletion strains
  1137. df_deletion <- df_na_stats %>% # formerly X2
  1138. filter(OrfRep != strain) %>%
  1139. filter(!is.na(L)) %>%
  1140. mutate(SM = 0) %>%
  1141. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1142. mutate(
  1143. max_l_theoretical = max(max_L, na.rm = TRUE),
  1144. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1145. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1146. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1147. ungroup()
  1148. message("Calculating reference strain interaction scores")
  1149. df_reference_stats <- calculate_summary_stats(
  1150. df = df_reference,
  1151. variables = interaction_vars,
  1152. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1153. )$df_with_stats
  1154. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1155. zscore_calculations_reference <- reference_results$calculations
  1156. zscore_interactions_reference <- reference_results$interactions
  1157. zscore_interactions_reference_joined <- reference_results$full_data
  1158. message("Calculating deletion strain(s) interactions scores")
  1159. df_deletion_stats <- calculate_summary_stats(
  1160. df = df_deletion,
  1161. variables = interaction_vars,
  1162. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1163. )$df_with_stats
  1164. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1165. zscore_calculations <- deletion_results$calculations
  1166. zscore_interactions <- deletion_results$interactions
  1167. zscore_interactions_joined <- deletion_results$full_data
  1168. # Writing Z-Scores to file
  1169. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1170. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1171. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1172. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1173. # Create interaction plots
  1174. message("Generating reference interaction plots")
  1175. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1176. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1177. message("Generating deletion interaction plots")
  1178. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1179. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1180. # Define conditions for enhancers and suppressors
  1181. # TODO Add to study config?
  1182. threshold <- 2
  1183. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1184. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1185. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1186. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1187. # Subset data
  1188. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1189. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1190. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1191. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1192. # Save enhancers and suppressors
  1193. message("Writing enhancer/suppressor csv files")
  1194. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1195. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1196. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1197. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1198. # Combine conditions for enhancers and suppressors
  1199. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1200. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1201. # Save combined enhancers and suppressors
  1202. write.csv(enhancers_and_suppressors_L,
  1203. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1204. write.csv(enhancers_and_suppressors_K,
  1205. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1206. # Handle linear model based enhancers and suppressors
  1207. lm_threshold <- 2 # TODO add to study config?
  1208. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1209. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1210. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1211. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1212. # Save linear model based enhancers and suppressors
  1213. message("Writing linear model enhancer/suppressor csv files")
  1214. write.csv(enhancers_lm_L,
  1215. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1216. write.csv(suppressors_lm_L,
  1217. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1218. write.csv(enhancers_lm_K,
  1219. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1220. write.csv(suppressors_lm_K,
  1221. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1222. message("Generating rank plots")
  1223. rank_plot_configs <- generate_rank_plot_configs(
  1224. df = zscore_interactions_joined,
  1225. is_lm = FALSE,
  1226. adjust = TRUE
  1227. )
  1228. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1229. plot_configs = rank_plot_configs)
  1230. message("Generating ranked linear model plots")
  1231. rank_lm_plot_configs <- generate_rank_plot_configs(
  1232. df = zscore_interactions_joined,
  1233. is_lm = TRUE,
  1234. adjust = TRUE
  1235. )
  1236. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1237. plot_configs = rank_lm_plot_configs)
  1238. message("Generating filtered ranked plots")
  1239. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1240. df = zscore_interactions_filtered,
  1241. is_lm = FALSE,
  1242. adjust = FALSE,
  1243. overlap_color = TRUE
  1244. )
  1245. generate_and_save_plots(
  1246. out_dir = out_dir,
  1247. filename = "RankPlots_na_rm",
  1248. plot_configs = rank_plot_filtered_configs)
  1249. message("Generating filtered ranked linear model plots")
  1250. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1251. df = zscore_interactions_filtered,
  1252. is_lm = TRUE,
  1253. adjust = FALSE,
  1254. overlap_color = TRUE
  1255. )
  1256. generate_and_save_plots(
  1257. out_dir = out_dir,
  1258. filename = "rank_plots_lm_na_rm",
  1259. plot_configs = rank_plot_lm_filtered_configs)
  1260. message("Generating correlation curve parameter pair plots")
  1261. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1262. generate_and_save_plots(
  1263. out_dir = out_dir,
  1264. filename = "correlation_cpps",
  1265. plot_configs = correlation_plot_configs,
  1266. )
  1267. })
  1268. })
  1269. }
  1270. main()
  1271. # For future simplification of joined dataframes
  1272. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))