calculate_interaction_zscores.R 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # Calculate WT statistics from df_bg
  190. wt_stats <- df_bg %>%
  191. group_by(across(all_of(bg_group_vars))) %>%
  192. summarise(
  193. WT_L = mean(mean_L, na.rm = TRUE),
  194. WT_sd_L = mean(sd_L, na.rm = TRUE),
  195. WT_K = mean(mean_K, na.rm = TRUE),
  196. WT_sd_K = mean(sd_K, na.rm = TRUE),
  197. WT_r = mean(mean_r, na.rm = TRUE),
  198. WT_sd_r = mean(sd_r, na.rm = TRUE),
  199. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  200. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  201. .groups = "drop"
  202. )
  203. # Join WT statistics to df
  204. df <- df %>%
  205. left_join(wt_stats, by = bg_group_vars)
  206. # Compute mean values at zero concentration
  207. mean_zeroes <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. df <- df %>%
  218. left_join(mean_zeroes, by = c(group_vars))
  219. # Calculate Raw Shifts and Z Shifts
  220. df <- df %>%
  221. mutate(
  222. Raw_Shift_L = mean_L_zero - WT_L,
  223. Raw_Shift_K = mean_K_zero - WT_K,
  224. Raw_Shift_r = mean_r_zero - WT_r,
  225. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  226. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  227. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  228. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  229. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  230. )
  231. calculations <- df %>%
  232. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  233. mutate(
  234. NG_sum = sum(NG, na.rm = TRUE),
  235. DB_sum = sum(DB, na.rm = TRUE),
  236. SM_sum = sum(SM, na.rm = TRUE),
  237. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  238. # Expected values
  239. Exp_L = WT_L + Raw_Shift_L,
  240. Exp_K = WT_K + Raw_Shift_K,
  241. Exp_r = WT_r + Raw_Shift_r,
  242. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  243. # Deltas
  244. Delta_L = mean_L - Exp_L,
  245. Delta_K = mean_K - Exp_K,
  246. Delta_r = mean_r - Exp_r,
  247. Delta_AUC = mean_AUC - Exp_AUC,
  248. # Adjust deltas for NG and SM
  249. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  250. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  251. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  252. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  253. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  254. # Calculate Z-scores
  255. Zscore_L = Delta_L / WT_sd_L,
  256. Zscore_K = Delta_K / WT_sd_K,
  257. Zscore_r = Delta_r / WT_sd_r,
  258. Zscore_AUC = Delta_AUC / WT_sd_AUC
  259. ) %>%
  260. ungroup() %>% # Ungroup before group_modify
  261. group_by(across(all_of(group_vars))) %>%
  262. group_modify(~ {
  263. # Perform linear models only if there are enough unique conc_num_factor levels
  264. if (length(unique(.x$conc_num_factor)) > 1) {
  265. # Filter and calculate each lm() separately with individual checks for NAs
  266. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  267. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  268. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  270. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  271. .x %>%
  272. mutate(
  273. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  274. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  275. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  276. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  277. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  278. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  279. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  280. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  281. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  282. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  283. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  284. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  285. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  286. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  287. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  288. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  289. )
  290. } else {
  291. # If not enough conc_num_factor levels, set lm-related values to NA
  292. .x %>%
  293. mutate(
  294. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  295. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  296. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  297. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  298. )
  299. }
  300. }) %>%
  301. ungroup()
  302. # For interaction plot error bars
  303. delta_means_sds <- calculations %>%
  304. group_by(across(all_of(group_vars))) %>%
  305. summarise(
  306. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  307. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  308. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  309. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  310. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  311. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  312. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  313. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  314. .groups = "drop"
  315. )
  316. calculations <- calculations %>%
  317. left_join(delta_means_sds, by = group_vars)
  318. # Summary statistics for lm scores
  319. calculations <- calculations %>%
  320. mutate(
  321. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  322. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  323. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  324. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  325. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  326. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  327. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  328. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  329. ) %>%
  330. # Calculate Z-lm scores
  331. mutate(
  332. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  333. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  334. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  335. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  336. )
  337. # Build summary stats (interactions)
  338. interactions <- calculations %>%
  339. group_by(across(all_of(group_vars))) %>%
  340. summarise(
  341. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  342. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  343. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  344. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  345. # Interaction Z-scores
  346. Z_lm_L = first(Z_lm_L),
  347. Z_lm_K = first(Z_lm_K),
  348. Z_lm_r = first(Z_lm_r),
  349. Z_lm_AUC = first(Z_lm_AUC),
  350. # Raw Shifts
  351. Raw_Shift_L = first(Raw_Shift_L),
  352. Raw_Shift_K = first(Raw_Shift_K),
  353. Raw_Shift_r = first(Raw_Shift_r),
  354. Raw_Shift_AUC = first(Raw_Shift_AUC),
  355. # Z Shifts
  356. Z_Shift_L = first(Z_Shift_L),
  357. Z_Shift_K = first(Z_Shift_K),
  358. Z_Shift_r = first(Z_Shift_r),
  359. Z_Shift_AUC = first(Z_Shift_AUC),
  360. # R Squared values
  361. R_Squared_L = first(R_Squared_L),
  362. R_Squared_K = first(R_Squared_K),
  363. R_Squared_r = first(R_Squared_r),
  364. R_Squared_AUC = first(R_Squared_AUC),
  365. # NG, DB, SM values
  366. NG = first(NG),
  367. DB = first(DB),
  368. SM = first(SM),
  369. .groups = "drop"
  370. )
  371. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  372. interactions <- interactions %>%
  373. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  374. mutate(
  375. Overlap = case_when(
  376. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  377. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  378. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  379. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  380. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  381. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  382. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  383. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  384. TRUE ~ "No Effect"
  385. ),
  386. # For correlations
  387. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  388. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  389. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  390. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  391. )
  392. # Creating the final calculations and interactions dataframes with only required columns for csv output
  393. calculations_df <- calculations %>%
  394. select(
  395. all_of(group_vars),
  396. conc_num, conc_num_factor, conc_num_factor_factor, N,
  397. mean_L, median_L, sd_L, se_L,
  398. mean_K, median_K, sd_K, se_K,
  399. mean_r, median_r, sd_r, se_r,
  400. mean_AUC, median_AUC, sd_AUC, se_AUC,
  401. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  402. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  403. WT_L, WT_K, WT_r, WT_AUC,
  404. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  405. Exp_L, Exp_K, Exp_r, Exp_AUC,
  406. Delta_L, Delta_K, Delta_r, Delta_AUC,
  407. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  408. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  409. )
  410. interactions_df <- interactions %>%
  411. select(
  412. all_of(group_vars),
  413. NG, DB, SM,
  414. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  415. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  416. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  417. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  418. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  419. Overlap
  420. )
  421. # Join calculations and interactions to avoid dimension mismatch
  422. calculations_no_overlap <- calculations %>%
  423. select(-any_of(c("DB", "NG", "SM",
  424. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  425. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  426. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  427. full_data <- calculations_no_overlap %>%
  428. left_join(interactions_df, by = group_vars)
  429. # Return final dataframes
  430. return(list(
  431. calculations = calculations_df,
  432. interactions = interactions_df,
  433. full_data = full_data
  434. ))
  435. }
  436. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  437. message("Generating ", filename, ".pdf and ", filename, ".html")
  438. # Check if we're dealing with multiple plot groups
  439. plot_groups <- if ("plots" %in% names(plot_configs)) {
  440. list(plot_configs) # Single group
  441. } else {
  442. plot_configs # Multiple groups
  443. }
  444. # Open the PDF device once for all plots
  445. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  446. # Loop through each plot group
  447. for (group in plot_groups) {
  448. static_plots <- list()
  449. plotly_plots <- list()
  450. # Retrieve grid layout if it exists, otherwise skip
  451. grid_layout <- group$grid_layout
  452. plots <- group$plots
  453. for (i in seq_along(plots)) {
  454. config <- plots[[i]]
  455. df <- config$df
  456. # Filter points outside of y-limits if specified
  457. if (!is.null(config$ylim_vals)) {
  458. out_of_bounds_df <- df %>%
  459. filter(
  460. is.na(.data[[config$y_var]]) |
  461. .data[[config$y_var]] < config$ylim_vals[1] |
  462. .data[[config$y_var]] > config$ylim_vals[2]
  463. )
  464. # Print rows being filtered out
  465. if (nrow(out_of_bounds_df) > 0) {
  466. message("Filtered: ", config$title, " using y-limits: [", config$ylim_vals[1], ", ", config$ylim_vals[2], "]")
  467. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  468. print(out_of_bounds_df)
  469. }
  470. df <- df %>%
  471. filter(
  472. !is.na(.data[[config$y_var]]) &
  473. .data[[config$y_var]] >= config$ylim_vals[1] &
  474. .data[[config$y_var]] <= config$ylim_vals[2]
  475. )
  476. }
  477. # Set up aes mapping based on plot type
  478. aes_mapping <- if (config$plot_type == "bar") {
  479. if (!is.null(config$color_var)) {
  480. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  481. } else {
  482. aes(x = .data[[config$x_var]])
  483. }
  484. } else if (config$plot_type == "density") {
  485. if (!is.null(config$color_var)) {
  486. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  487. } else {
  488. aes(x = .data[[config$x_var]])
  489. }
  490. } else {
  491. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  492. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  493. } else if (!is.null(config$y_var)) {
  494. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  495. } else {
  496. aes(x = .data[[config$x_var]])
  497. }
  498. }
  499. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  500. # Add appropriate plot layer or helper function based on plot type
  501. plot <- switch(config$plot_type,
  502. "scatter" = generate_scatter_plot(plot, config),
  503. "box" = generate_boxplot(plot, config),
  504. "density" = plot + geom_density(),
  505. "bar" = plot + geom_bar(),
  506. plot # default (unused)
  507. )
  508. # Add labels and title
  509. if (!is.null(config$title)) {
  510. plot <- plot + ggtitle(config$title)
  511. if (!is.null(config$title_size)) {
  512. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  513. }
  514. }
  515. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  516. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  517. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  518. # Add annotations if specified
  519. if (!is.null(config$annotations)) {
  520. for (annotation in config$annotations) {
  521. plot <- plot +
  522. annotate(
  523. "text",
  524. x = ifelse(is.null(annotation$x), 0, annotation$x),
  525. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  526. label = annotation$label,
  527. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  528. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  529. size = ifelse(is.null(annotation$size), 3, annotation$size),
  530. color = ifelse(is.null(annotation$color), "black", annotation$color)
  531. )
  532. }
  533. }
  534. # Add error bars if specified
  535. if (!is.null(config$error_bar) && config$error_bar) {
  536. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  537. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  538. config$error_bar_params$y_mean_col
  539. } else {
  540. paste0("mean_", config$y_var)
  541. }
  542. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  543. config$error_bar_params$y_sd_col
  544. } else {
  545. paste0("sd_", config$y_var)
  546. }
  547. # Use rlang to handle custom error bar calculations
  548. if (!is.null(config$error_bar_params$custom_error_bar)) {
  549. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  550. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  551. plot <- plot + geom_errorbar(
  552. aes(
  553. x = .data[[config$x_var]],
  554. ymin = !!custom_ymin_expr,
  555. ymax = !!custom_ymax_expr
  556. ),
  557. color = config$error_bar_params$color,
  558. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  559. )
  560. } else {
  561. # If no custom error bar formula, use the default or dynamic ones
  562. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  563. plot <- plot + geom_errorbar(
  564. aes(
  565. x = .data[[config$x_var]],
  566. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  567. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  568. color = .data[[config$color_var]]
  569. ),
  570. linewidth = 0.1
  571. )
  572. } else {
  573. plot <- plot + geom_errorbar(
  574. aes(
  575. x = .data[[config$x_var]],
  576. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  577. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  578. ),
  579. color = config$error_bar_params$color,
  580. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  581. )
  582. }
  583. }
  584. # Add the center point if the option is provided
  585. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  586. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  587. plot <- plot + geom_point(
  588. aes(
  589. x = .data[[config$x_var]],
  590. y = .data[[y_mean_col]],
  591. color = .data[[config$color_var]]
  592. ),
  593. shape = 16
  594. )
  595. } else {
  596. plot <- plot + geom_point(
  597. aes(
  598. x = .data[[config$x_var]],
  599. y = .data[[y_mean_col]]
  600. ),
  601. color = config$error_bar_params$color,
  602. shape = 16
  603. )
  604. }
  605. }
  606. }
  607. # Convert ggplot to plotly for interactive version
  608. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  609. # Store both static and interactive versions
  610. static_plots[[i]] <- plot
  611. plotly_plots[[i]] <- plotly_plot
  612. }
  613. # Print the plots in the current group to the PDF
  614. if (!is.null(grid_layout)) {
  615. # Set grid_ncol to 1 if not specified
  616. if (is.null(grid_layout$ncol)) {
  617. grid_layout$ncol <- 1
  618. }
  619. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  620. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  621. num_plots <- length(static_plots)
  622. nrow <- ceiling(num_plots / grid_layout$ncol)
  623. # message("No nrow provided, automatically using nrow = ", nrow)
  624. grid_layout$nrow <- nrow
  625. }
  626. total_spots <- grid_layout$nrow * grid_layout$ncol
  627. num_plots <- length(static_plots)
  628. # if (num_plots < total_spots) {
  629. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  630. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  631. # }
  632. grid.arrange(
  633. grobs = static_plots,
  634. ncol = grid_layout$ncol,
  635. nrow = grid_layout$nrow
  636. )
  637. } else {
  638. # Print individual plots on separate pages if no grid layout
  639. for (plot in static_plots) {
  640. print(plot)
  641. }
  642. }
  643. }
  644. # Close the PDF device after all plots are done
  645. dev.off()
  646. # Save HTML file with interactive plots if needed
  647. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  648. message("Saving combined HTML file: ", out_html_file)
  649. htmltools::save_html(
  650. htmltools::tagList(plotly_plots),
  651. file = out_html_file
  652. )
  653. }
  654. generate_scatter_plot <- function(plot, config) {
  655. # Define the points
  656. shape <- if (!is.null(config$shape)) config$shape else 3
  657. size <- if (!is.null(config$size)) config$size else 1.5
  658. position <-
  659. if (!is.null(config$position) && config$position == "jitter") {
  660. position_jitter(width = 0.4, height = 0.1)
  661. } else {
  662. "identity"
  663. }
  664. plot <- plot + geom_point(
  665. shape = shape,
  666. size = size,
  667. position = position
  668. )
  669. if (!is.null(config$cyan_points) && config$cyan_points) {
  670. plot <- plot + geom_point(
  671. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  672. color = "cyan",
  673. shape = 3,
  674. size = 0.5
  675. )
  676. }
  677. if (!is.null(config$gray_points) && config$gray_points) {
  678. plot <- plot + geom_point(shape = 3, color = "gray70", size = 1)
  679. }
  680. # Add linear regression line if specified
  681. if (!is.null(config$lm_line)) {
  682. plot <- plot +
  683. annotate(
  684. "segment",
  685. x = config$lm_line$x_min,
  686. xend = config$lm_line$x_max,
  687. y = config$lm_line$intercept + config$lm_line$slope * config$lm_line$x_min, # Calculate y for x_min
  688. yend = config$lm_line$intercept + config$lm_line$slope * config$lm_line$x_max, # Calculate y for x_max
  689. color = ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue"),
  690. linewidth = ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  691. )
  692. }
  693. # Add SD Bands if specified
  694. if (!is.null(config$sd_band)) {
  695. plot <- plot +
  696. annotate(
  697. "rect",
  698. xmin = -Inf, xmax = Inf,
  699. ymin = config$sd_band, ymax = Inf,
  700. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  701. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  702. ) +
  703. annotate(
  704. "rect",
  705. xmin = -Inf, xmax = Inf,
  706. ymin = -config$sd_band, ymax = -Inf,
  707. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  708. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  709. ) +
  710. geom_hline(
  711. yintercept = c(-config$sd_band, config$sd_band),
  712. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  713. )
  714. }
  715. # Add Rectangles if specified
  716. if (!is.null(config$rectangles)) {
  717. for (rect in config$rectangles) {
  718. plot <- plot + annotate(
  719. "rect",
  720. xmin = rect$xmin,
  721. xmax = rect$xmax,
  722. ymin = rect$ymin,
  723. ymax = rect$ymax,
  724. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  725. color = ifelse(is.null(rect$color), "black", rect$color),
  726. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  727. )
  728. }
  729. }
  730. # Customize X-axis if specified
  731. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  732. # Check if x_var is factor or character (for discrete x-axis)
  733. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  734. plot <- plot +
  735. scale_x_discrete(
  736. name = config$x_label,
  737. breaks = config$x_breaks,
  738. labels = config$x_labels
  739. )
  740. } else {
  741. plot <- plot +
  742. scale_x_continuous(
  743. name = config$x_label,
  744. breaks = config$x_breaks,
  745. labels = config$x_labels
  746. )
  747. }
  748. }
  749. # Set Y-axis limits if specified
  750. if (!is.null(config$ylim_vals)) {
  751. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  752. }
  753. return(plot)
  754. }
  755. generate_boxplot <- function(plot, config) {
  756. # Convert x_var to a factor within aes mapping
  757. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  758. # Customize X-axis if specified
  759. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  760. # Check if x_var is factor or character (for discrete x-axis)
  761. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  762. plot <- plot +
  763. scale_x_discrete(
  764. name = config$x_label,
  765. breaks = config$x_breaks,
  766. labels = config$x_labels
  767. )
  768. } else {
  769. plot <- plot +
  770. scale_x_continuous(
  771. name = config$x_label,
  772. breaks = config$x_breaks,
  773. labels = config$x_labels
  774. )
  775. }
  776. }
  777. return(plot)
  778. }
  779. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  780. plot_type = "scatter", stages = c("before", "after")) {
  781. plot_configs <- list()
  782. for (var in variables) {
  783. for (stage in stages) {
  784. df_plot <- if (stage == "before") df_before else df_after
  785. # Check for non-finite values in the y-variable
  786. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  787. # Adjust settings based on plot_type
  788. plot_config <- list(
  789. df = df_plot_filtered,
  790. x_var = "scan",
  791. y_var = var,
  792. plot_type = plot_type,
  793. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  794. color_var = "conc_num_factor_factor",
  795. size = 0.2,
  796. error_bar = (plot_type == "scatter"),
  797. legend_position = "bottom"
  798. )
  799. # Add config to plots list
  800. plot_configs <- append(plot_configs, list(plot_config))
  801. }
  802. }
  803. return(list(plots = plot_configs))
  804. }
  805. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  806. # Define the y-limits for the plots
  807. limits_map <- list(
  808. L = c(0, 130),
  809. K = c(-20, 160),
  810. r = c(0, 1),
  811. AUC = c(0, 12500)
  812. )
  813. stats_plot_configs <- list()
  814. stats_boxplot_configs <- list()
  815. delta_plot_configs <- list()
  816. # Overall statistics plots
  817. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  818. for (plot_type in c("scatter", "box")) {
  819. for (var in names(limits_map)) {
  820. y_limits <- limits_map[[var]]
  821. y_span <- y_limits[2] - y_limits[1]
  822. # Common plot configuration
  823. plot_config <- list(
  824. df = df_summary,
  825. plot_type = plot_type,
  826. x_var = "conc_num_factor_factor",
  827. y_var = var,
  828. shape = 16,
  829. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  830. coord_cartesian = y_limits,
  831. x_breaks = unique(df_summary$conc_num_factor_factor),
  832. x_labels = as.character(unique(df_summary$conc_num))
  833. )
  834. # Add specific configurations for scatter and box plots
  835. if (plot_type == "scatter") {
  836. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  837. plot_config$error_bar <- TRUE
  838. plot_config$error_bar_params <- list(
  839. color = "red",
  840. mean_point = TRUE,
  841. y_mean_col = paste0("mean_mean_", var),
  842. y_sd_col = paste0("mean_sd_", var)
  843. )
  844. plot_config$position <- "jitter"
  845. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  846. annotations <- list(
  847. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  848. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  849. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  850. )
  851. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  852. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  853. annotations <- append(annotations, list(
  854. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  855. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  856. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  857. ))
  858. }
  859. plot_config$annotations <- annotations
  860. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  861. } else if (plot_type == "box") {
  862. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  863. plot_config$position <- "dodge"
  864. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  865. }
  866. }
  867. }
  868. # Delta interaction plots
  869. delta_limits_map <- list(
  870. L = c(-60, 60),
  871. K = c(-60, 60),
  872. r = c(-0.6, 0.6),
  873. AUC = c(-6000, 6000)
  874. )
  875. # Select the data grouping by data type
  876. if (type == "reference") {
  877. group_vars <- c("OrfRep", "Gene", "num")
  878. } else if (type == "deletion") {
  879. group_vars <- c("OrfRep", "Gene")
  880. }
  881. grouped_data <- df_interactions %>%
  882. group_by(across(all_of(group_vars))) %>%
  883. group_split()
  884. for (group_data in grouped_data) {
  885. # Build the plot title
  886. OrfRep <- first(group_data$OrfRep)
  887. Gene <- first(group_data$Gene)
  888. if (type == "reference") {
  889. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  890. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  891. } else if (type == "deletion") {
  892. OrfRepTitle <- OrfRep
  893. }
  894. for (var in names(delta_limits_map)) {
  895. y_limits <- delta_limits_map[[var]]
  896. y_span <- y_limits[2] - y_limits[1]
  897. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  898. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  899. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  900. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  901. NG_value <- first(group_data$NG, default = 0)
  902. DB_value <- first(group_data$DB, default = 0)
  903. SM_value <- first(group_data$SM, default = 0)
  904. lm_intercept_col <- paste0("lm_intercept_", var)
  905. lm_slope_col <- paste0("lm_slope_", var)
  906. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  907. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  908. plot_config <- list(
  909. df = group_data,
  910. plot_type = "scatter",
  911. x_var = "conc_num_factor_factor",
  912. y_var = paste0("Delta_", var),
  913. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  914. shape = 16,
  915. title = paste(OrfRepTitle, Gene, sep = " "),
  916. title_size = rel(1.4),
  917. coord_cartesian = y_limits,
  918. annotations = list(
  919. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  920. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  921. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  922. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  923. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  924. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  925. ),
  926. error_bar = TRUE,
  927. error_bar_params = list(
  928. custom_error_bar = list(
  929. ymin = paste0("0 - 2 * WT_sd_", var),
  930. ymax = paste0("0 + 2 * WT_sd_", var)
  931. ),
  932. color = "gray70",
  933. linewidth = 0.5
  934. ),
  935. x_breaks = unique(group_data$conc_num_factor_factor),
  936. x_labels = as.character(unique(group_data$conc_num)),
  937. ylim_vals = y_limits,
  938. y_filter = FALSE,
  939. lm_line = list(
  940. intercept = lm_intercept_value,
  941. slope = lm_slope_value,
  942. color = "blue",
  943. linewidth = 0.8,
  944. x_min = min(as.numeric(group_data$conc_num_factor_factor)),
  945. x_max = max(as.numeric(group_data$conc_num_factor_factor))
  946. )
  947. )
  948. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  949. }
  950. }
  951. # Group delta plots in chunks of 12
  952. chunk_size <- 12
  953. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  954. # TODO, only return first page of plots for testing, remove this later
  955. return(c(
  956. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  957. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  958. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  959. ))
  960. }
  961. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  962. sd_bands <- c(1, 2, 3)
  963. plot_configs <- list()
  964. variables <- c("L", "K")
  965. # Adjust (if necessary) and rank columns
  966. for (variable in variables) {
  967. if (adjust) {
  968. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  969. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  970. }
  971. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  972. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  973. }
  974. # Helper function to create a plot configuration
  975. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  976. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  977. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  978. # Default plot config
  979. plot_config <- list(
  980. df = df,
  981. x_var = rank_var,
  982. y_var = zscore_var,
  983. x_label = "Rank",
  984. plot_type = "scatter",
  985. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  986. sd_band = sd_band,
  987. fill_positive = "#542788",
  988. fill_negative = "orange",
  989. alpha_positive = 0.3,
  990. alpha_negative = 0.3,
  991. shape = 3,
  992. size = 0.1,
  993. y_label = y_label,
  994. x_label = "Rank",
  995. legend_position = "none"
  996. )
  997. if (with_annotations) {
  998. # Add specific annotations for plots with annotations
  999. plot_config$annotations <- list(
  1000. list(
  1001. x = nrow(df) / 2,
  1002. y = 10,
  1003. label = paste("Deletion Enhancers =", num_enhancers)
  1004. ),
  1005. list(
  1006. x = nrow(df) / 2,
  1007. y = -10,
  1008. label = paste("Deletion Suppressors =", num_suppressors)
  1009. )
  1010. )
  1011. }
  1012. return(plot_config)
  1013. }
  1014. # Generate plots for each variable
  1015. for (variable in variables) {
  1016. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1017. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1018. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1019. # Loop through SD bands
  1020. for (sd_band in sd_bands) {
  1021. # Create plot with annotations
  1022. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  1023. # Create plot without annotations
  1024. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  1025. }
  1026. }
  1027. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  1028. }
  1029. generate_correlation_plot_configs <- function(df) {
  1030. # Define relationships for different-variable correlations
  1031. relationships <- list(
  1032. list(x = "L", y = "K"),
  1033. list(x = "L", y = "r"),
  1034. list(x = "L", y = "AUC"),
  1035. list(x = "K", y = "r"),
  1036. list(x = "K", y = "AUC"),
  1037. list(x = "r", y = "AUC")
  1038. )
  1039. plot_configs <- list()
  1040. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1041. highlight_cyan_options <- c(FALSE, TRUE)
  1042. for (highlight_cyan in highlight_cyan_options) {
  1043. for (rel in relationships) {
  1044. # Extract relevant variable names for Z_lm values
  1045. x_var <- paste0("Z_lm_", rel$x)
  1046. y_var <- paste0("Z_lm_", rel$y)
  1047. # Access the correlation statistics from the correlation_stats list
  1048. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1049. stats <- correlation_stats[[relationship_name]]
  1050. intercept <- stats$intercept
  1051. slope <- stats$slope
  1052. r_squared <- stats$r_squared
  1053. # Generate the label for the plot
  1054. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1055. # Construct plot config
  1056. plot_config <- list(
  1057. df = df,
  1058. x_var = x_var,
  1059. y_var = y_var,
  1060. plot_type = "scatter",
  1061. title = plot_label,
  1062. annotations = list(
  1063. list(
  1064. x = mean(df[[x_var]], na.rm = TRUE),
  1065. y = mean(df[[y_var]], na.rm = TRUE),
  1066. label = paste("R-squared =", round(r_squared, 3))
  1067. )
  1068. ),
  1069. lm_line = list(
  1070. intercept = intercept,
  1071. slope = slope,
  1072. color = "tomato3"
  1073. ),
  1074. shape = 3,
  1075. size = 0.5,
  1076. color_var = "Overlap",
  1077. cyan_points = highlight_cyan, # include cyan points or not based on the loop
  1078. gray_points = TRUE
  1079. )
  1080. plot_configs <- append(plot_configs, list(plot_config))
  1081. }
  1082. }
  1083. return(list(plots = plot_configs))
  1084. }
  1085. main <- function() {
  1086. lapply(names(args$experiments), function(exp_name) {
  1087. exp <- args$experiments[[exp_name]]
  1088. exp_path <- exp$path
  1089. exp_sd <- exp$sd
  1090. out_dir <- file.path(exp_path, "zscores")
  1091. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1092. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1093. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1094. # Each list of plots corresponds to a separate file
  1095. message("Loading and filtering data for experiment: ", exp_name)
  1096. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1097. update_gene_names(args$sgd_gene_list) %>%
  1098. as_tibble()
  1099. l_vs_k_plot_configs <- list(
  1100. plots = list(
  1101. list(
  1102. df = df,
  1103. x_var = "L",
  1104. y_var = "K",
  1105. plot_type = "scatter",
  1106. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1107. title = "Raw L vs K before quality control",
  1108. color_var = "conc_num_factor_factor",
  1109. error_bar = FALSE,
  1110. legend_position = "right"
  1111. )
  1112. )
  1113. )
  1114. message("Calculating summary statistics before quality control")
  1115. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1116. df = df,
  1117. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1118. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1119. frequency_delta_bg_plot_configs <- list(
  1120. plots = list(
  1121. list(
  1122. df = df_stats,
  1123. x_var = "delta_bg",
  1124. y_var = NULL,
  1125. plot_type = "density",
  1126. title = "Density plot for Delta Background by [Drug] (All Data)",
  1127. color_var = "conc_num_factor_factor",
  1128. x_label = "Delta Background",
  1129. y_label = "Density",
  1130. error_bar = FALSE,
  1131. legend_position = "right"
  1132. ),
  1133. list(
  1134. df = df_stats,
  1135. x_var = "delta_bg",
  1136. y_var = NULL,
  1137. plot_type = "bar",
  1138. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1139. color_var = "conc_num_factor_factor",
  1140. x_label = "Delta Background",
  1141. y_label = "Count",
  1142. error_bar = FALSE,
  1143. legend_position = "right"
  1144. )
  1145. )
  1146. )
  1147. message("Filtering rows above delta background tolerance for plotting")
  1148. df_above_tolerance <- df %>% filter(DB == 1)
  1149. above_threshold_plot_configs <- list(
  1150. plots = list(
  1151. list(
  1152. df = df_above_tolerance,
  1153. x_var = "L",
  1154. y_var = "K",
  1155. plot_type = "scatter",
  1156. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1157. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1158. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1159. color_var = "conc_num_factor_factor",
  1160. position = "jitter",
  1161. annotations = list(
  1162. list(
  1163. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1164. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1165. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1166. )
  1167. ),
  1168. error_bar = FALSE,
  1169. legend_position = "right"
  1170. )
  1171. )
  1172. )
  1173. message("Setting rows above delta background tolerance to NA")
  1174. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1175. message("Calculating summary statistics across all strains")
  1176. ss <- calculate_summary_stats(
  1177. df = df_na,
  1178. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1179. group_vars = c("conc_num", "conc_num_factor_factor"))
  1180. df_na_ss <- ss$summary_stats
  1181. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1182. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1183. # This can help bypass missing values ggplot warnings during testing
  1184. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1185. message("Calculating summary statistics excluding zero values")
  1186. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1187. df_no_zeros_stats <- calculate_summary_stats(
  1188. df = df_no_zeros,
  1189. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1190. group_vars = c("conc_num", "conc_num_factor_factor")
  1191. )$df_with_stats
  1192. message("Filtering by 2SD of K")
  1193. df_na_within_2sd_k <- df_na_stats %>%
  1194. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1195. df_na_outside_2sd_k <- df_na_stats %>%
  1196. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1197. message("Calculating summary statistics for L within 2SD of K")
  1198. # TODO We're omitting the original z_max calculation, not sure if needed?
  1199. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1200. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1201. write.csv(ss,
  1202. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1203. row.names = FALSE)
  1204. message("Calculating summary statistics for L outside 2SD of K")
  1205. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1206. group_vars = c("conc_num", "conc_num_factor_factor"))
  1207. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1208. write.csv(ss$summary_stats,
  1209. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1210. row.names = FALSE)
  1211. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1212. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1213. df_before = df_stats,
  1214. df_after = df_na_stats_filtered
  1215. )
  1216. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1217. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1218. df_before = df_stats,
  1219. df_after = df_na_stats_filtered,
  1220. plot_type = "box"
  1221. )
  1222. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1223. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1224. stages = c("after"), # Only after QC
  1225. df_after = df_no_zeros_stats
  1226. )
  1227. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1228. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1229. stages = c("after"), # Only after QC
  1230. df_after = df_no_zeros_stats,
  1231. plot_type = "box"
  1232. )
  1233. l_outside_2sd_k_plot_configs <- list(
  1234. plots = list(
  1235. list(
  1236. df = df_na_l_outside_2sd_k_stats,
  1237. x_var = "L",
  1238. y_var = "K",
  1239. plot_type = "scatter",
  1240. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1241. color_var = "conc_num_factor_factor",
  1242. position = "jitter",
  1243. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1244. annotations = list(
  1245. list(
  1246. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1247. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1248. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1249. )
  1250. ),
  1251. error_bar = FALSE,
  1252. legend_position = "right"
  1253. )
  1254. )
  1255. )
  1256. delta_bg_outside_2sd_k_plot_configs <- list(
  1257. plots = list(
  1258. list(
  1259. df = df_na_l_outside_2sd_k_stats,
  1260. x_var = "delta_bg",
  1261. x_label = "Delta Background",
  1262. y_var = "K",
  1263. plot_type = "scatter",
  1264. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1265. color_var = "conc_num_factor_factor",
  1266. position = "jitter",
  1267. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1268. annotations = list(
  1269. list(
  1270. x = 0.05,
  1271. y = 0.95,
  1272. hjust = 0,
  1273. vjust = 1,
  1274. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1275. size = 5
  1276. )
  1277. ),
  1278. error_bar = FALSE,
  1279. legend_position = "right"
  1280. )
  1281. )
  1282. )
  1283. message("Generating quality control plots in parallel")
  1284. # future::plan(future::multicore, workers = parallel::detectCores())
  1285. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1286. plot_configs <- list(
  1287. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1288. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1289. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1290. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1291. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1292. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1293. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1294. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1295. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1296. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1297. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1298. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1299. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1300. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1301. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1302. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1303. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1304. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1305. )
  1306. # Parallelize background and quality control plot generation
  1307. # furrr::future_map(plot_configs, function(config) {
  1308. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1309. # page_width = config$page_width, page_height = config$page_height)
  1310. # }, .options = furrr_options(seed = TRUE))
  1311. # Loop over background strains
  1312. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1313. # have to rename or group the output files by dir or something so they don't get clobbered
  1314. bg_strains <- c("YDL227C")
  1315. lapply(bg_strains, function(strain) {
  1316. message("Processing background strain: ", strain)
  1317. # Handle missing data by setting zero values to NA
  1318. # and then removing any rows with NA in L col
  1319. df_bg <- df_na %>%
  1320. filter(OrfRep == strain) %>%
  1321. mutate(
  1322. L = if_else(L == 0, NA, L),
  1323. K = if_else(K == 0, NA, K),
  1324. r = if_else(r == 0, NA, r),
  1325. AUC = if_else(AUC == 0, NA, AUC)
  1326. ) %>%
  1327. filter(!is.na(L))
  1328. message("Calculating background strain summary statistics")
  1329. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1330. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1331. summary_stats_bg <- ss_bg$summary_stats
  1332. df_bg_stats <- ss_bg$df_with_stats
  1333. write.csv(
  1334. summary_stats_bg,
  1335. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1336. row.names = FALSE)
  1337. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1338. df_reference <- df_na_stats %>% # formerly X2_RF
  1339. filter(OrfRep == strain) %>%
  1340. filter(!is.na(L)) %>%
  1341. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1342. mutate(
  1343. max_l_theoretical = max(max_L, na.rm = TRUE),
  1344. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1345. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1346. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1347. ungroup()
  1348. message("Calculating reference strain summary statistics")
  1349. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1350. df = df_reference,
  1351. variables = c("L", "K", "r", "AUC"),
  1352. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1353. )$df_with_stats
  1354. # Summarise statistics for error bars
  1355. df_reference_summary_stats <- df_reference_summary_stats %>%
  1356. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1357. mutate(
  1358. mean_mean_L = first(mean_L),
  1359. mean_sd_L = first(sd_L),
  1360. mean_mean_K = first(mean_K),
  1361. mean_sd_K = first(sd_K),
  1362. mean_mean_r = first(mean_r),
  1363. mean_sd_r = first(sd_r),
  1364. mean_mean_AUC = first(mean_AUC),
  1365. mean_sd_AUC = first(sd_AUC),
  1366. .groups = "drop"
  1367. )
  1368. # message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1369. # df_reference_interaction_stats <- calculate_summary_stats(
  1370. # df = df_reference,
  1371. # variables = c("L", "K", "r", "AUC"),
  1372. # group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1373. # )$df_with_stats
  1374. # # message("Calculating reference strain interaction scores")
  1375. # reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1376. # df_reference_interactions_joined <- reference_results$full_data
  1377. # write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1378. # write.csv(reference_results$interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1379. # # message("Generating reference interaction plots")
  1380. # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1381. # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1382. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1383. df_deletion <- df_na_stats %>% # formerly X2
  1384. filter(OrfRep != strain) %>%
  1385. filter(!is.na(L)) %>%
  1386. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1387. mutate(
  1388. max_l_theoretical = max(max_L, na.rm = TRUE),
  1389. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1390. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1391. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1392. ungroup()
  1393. message("Calculating deletion strain(s) interaction summary statistics")
  1394. df_deletion_stats <- calculate_summary_stats(
  1395. df = df_deletion,
  1396. variables = c("L", "K", "r", "AUC"),
  1397. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1398. )$df_with_stats
  1399. message("Calculating deletion strain(s) interactions scores")
  1400. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1401. df_interactions <- deletion_results$interactions
  1402. df_interactions_joined <- deletion_results$full_data
  1403. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1404. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1405. print(df_interactions_joined, n = 20, width = 100000)
  1406. message("Generating deletion interaction plots")
  1407. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1408. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1409. message("Writing enhancer/suppressor csv files")
  1410. interaction_threshold <- 2 # TODO add to study config?
  1411. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1412. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1413. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1414. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1415. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1416. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1417. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1418. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1419. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1420. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1421. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1422. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1423. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1424. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1425. write.csv(enhancers_and_suppressors_L,
  1426. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1427. write.csv(enhancers_and_suppressors_K,
  1428. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1429. message("Writing linear model enhancer/suppressor csv files")
  1430. lm_interaction_threshold <- 2 # TODO add to study config?
  1431. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1432. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1433. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1434. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1435. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1436. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1437. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1438. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1439. message("Generating rank plots")
  1440. rank_plot_configs <- generate_rank_plot_configs(
  1441. df_interactions_joined,
  1442. is_lm = FALSE,
  1443. adjust = TRUE
  1444. )
  1445. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1446. page_width = 18, page_height = 12)
  1447. message("Generating ranked linear model plots")
  1448. rank_lm_plot_configs <- generate_rank_plot_configs(
  1449. df_interactions_joined,
  1450. is_lm = TRUE,
  1451. adjust = TRUE
  1452. )
  1453. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1454. page_width = 18, page_height = 12)
  1455. message("Generating filtered ranked plots")
  1456. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1457. df_interactions_joined,
  1458. is_lm = FALSE,
  1459. adjust = FALSE,
  1460. overlap_color = TRUE
  1461. )
  1462. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1463. page_width = 18, page_height = 12)
  1464. message("Generating filtered ranked linear model plots")
  1465. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1466. df_interactions_joined,
  1467. is_lm = TRUE,
  1468. adjust = FALSE,
  1469. overlap_color = TRUE
  1470. )
  1471. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1472. page_width = 18, page_height = 12)
  1473. message("Generating correlation curve parameter pair plots")
  1474. correlation_plot_configs <- generate_correlation_plot_configs(
  1475. df_interactions_joined
  1476. )
  1477. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1478. page_width = 10, page_height = 7)
  1479. })
  1480. })
  1481. }
  1482. main()