calculate_interaction_zscores.R 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. summarise(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. num = first(num),
  250. conc_num = first(conc_num),
  251. conc_num_factor = first(conc_num_factor),
  252. Raw_Shift_L = first(Raw_Shift_L),
  253. Raw_Shift_K = first(Raw_Shift_K),
  254. Raw_Shift_r = first(Raw_Shift_r),
  255. Raw_Shift_AUC = first(Raw_Shift_AUC),
  256. Z_Shift_L = first(Z_Shift_L),
  257. Z_Shift_K = first(Z_Shift_K),
  258. Z_Shift_r = first(Z_Shift_r),
  259. Z_Shift_AUC = first(Z_Shift_AUC),
  260. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  261. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  262. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  263. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  264. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  265. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  266. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  267. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  268. R_Squared_L = summary(lm_L)$r.squared,
  269. R_Squared_K = summary(lm_K)$r.squared,
  270. R_Squared_r = summary(lm_r)$r.squared,
  271. R_Squared_AUC = summary(lm_AUC)$r.squared,
  272. lm_intercept_L = coef(lm_L)[1],
  273. lm_slope_L = coef(lm_L)[2],
  274. lm_intercept_K = coef(lm_K)[1],
  275. lm_slope_K = coef(lm_K)[2],
  276. lm_intercept_r = coef(lm_r)[1],
  277. lm_slope_r = coef(lm_r)[2],
  278. lm_intercept_AUC = coef(lm_AUC)[1],
  279. lm_slope_AUC = coef(lm_AUC)[2],
  280. NG = sum(NG, na.rm = TRUE),
  281. DB = sum(DB, na.rm = TRUE),
  282. SM = sum(SM, na.rm = TRUE)
  283. )
  284. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  285. interactions <- interactions %>%
  286. mutate(
  287. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  288. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  289. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  290. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  291. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  292. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  293. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  294. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  295. ) %>%
  296. arrange(desc(Z_lm_L)) %>%
  297. arrange(desc(NG))
  298. # Declare column order for output
  299. calculations <- stats %>%
  300. select(
  301. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  302. "mean_L", "mean_K", "mean_r", "mean_AUC",
  303. "median_L", "median_K", "median_r", "median_AUC",
  304. "sd_L", "sd_K", "sd_r", "sd_AUC",
  305. "se_L", "se_K", "se_r", "se_AUC",
  306. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  307. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  308. "WT_L", "WT_K", "WT_r", "WT_AUC",
  309. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  310. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  311. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  312. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  313. "NG", "SM", "DB")
  314. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  315. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  316. # # TODO for debug
  317. # df_duplicates <- df %>%
  318. # group_by(OrfRep, Gene, num) %>%
  319. # filter(n() > 1)
  320. # interactions_duplicates <- interactions %>%
  321. # group_by(OrfRep, Gene, num) %>%
  322. # filter(n() > 1)
  323. # print(df_duplicates)
  324. # print(interactions_duplicates)
  325. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  326. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  327. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  328. calculations_joined = calculations_joined))
  329. }
  330. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  331. message("Generating html and pdf plots for: ", file_name)
  332. plots <- lapply(plot_configs, function(config) {
  333. df <- config$df
  334. # Build the aesthetic mapping
  335. aes_mapping <-
  336. if (is.null(config$color_var)) {
  337. if (is.null(config$y_var)) {
  338. aes(x = !!sym(config$x_var))
  339. } else {
  340. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  341. }
  342. } else {
  343. if (is.null(config$y_var)) {
  344. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  345. } else {
  346. aes(
  347. x = !!sym(config$x_var),
  348. y = !!sym(config$y_var),
  349. color = as.factor(!!sym(config$color_var))
  350. )
  351. }
  352. }
  353. # Start building the plot
  354. plot <- ggplot(df, aes_mapping)
  355. # Generate non-interactive plot
  356. static_plot <- switch(
  357. config$plot_type,
  358. "scatter" = generate_scatter_plot(plot, config, interactive = FALSE),
  359. "box" = generate_box_plot(plot, config),
  360. "density" = plot + geom_density(),
  361. "bar" = plot + geom_bar(),
  362. plot # default case if no type matches
  363. )
  364. # Generate interactive plot
  365. interactive_plot <- switch(
  366. config$plot_type,
  367. "scatter" = generate_scatter_plot(plot, config, interactive = TRUE),
  368. "box" = generate_box_plot(plot, config),
  369. "density" = plot + geom_density(),
  370. "bar" = plot + geom_bar(),
  371. plot # default case if no type matches
  372. )
  373. return(list(static_plot = static_plot, interactive_plot = interactive_plot, config = config))
  374. })
  375. # PDF saving logic with static plots
  376. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  377. lapply(plots, function(item) print(item$static_plot))
  378. dev.off()
  379. # HTML saving logic with interactive plots
  380. plotly_plots <- lapply(plots, function(item) {
  381. plot <- item$interactive_plot
  382. config <- item$config
  383. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  384. suppressWarnings(
  385. ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h"))
  386. )
  387. } else {
  388. ggplotly(plot, tooltip = "text")
  389. }
  390. })
  391. combined_plot <- subplot(
  392. plotly_plots,
  393. nrows = grid_layout$nrow %||% length(plots),
  394. margin = 0.05
  395. )
  396. saveWidget(
  397. combined_plot,
  398. file = file.path(output_dir, paste0(file_name, ".html")),
  399. selfcontained = TRUE
  400. )
  401. }
  402. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  403. # Check for missing or out-of-range data
  404. missing_data <- config$df %>%
  405. filter(
  406. is.na(!!sym(config$x_var)) | is.na(!!sym(config$y_var)) |
  407. !!sym(config$y_var) < min(config$ylim_vals, na.rm = TRUE) |
  408. !!sym(config$y_var) > max(config$ylim_vals, na.rm = TRUE)
  409. )
  410. # Print the rows with missing or out-of-range data if any
  411. if (nrow(missing_data) > 0) {
  412. message("Missing or out-of-range data for ", config$title, ":")
  413. print(
  414. missing_data %>% select(any_of(
  415. c(
  416. "OrfRep",
  417. "Gene",
  418. "num",
  419. "conc_num",
  420. "conc_num_factor",
  421. config$x_var,
  422. config$y_var
  423. )
  424. )),
  425. n = 100
  426. )
  427. }
  428. # Add the interactive `text` aesthetic if `interactive` is TRUE
  429. if (interactive) {
  430. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  431. plot <- plot + geom_point(
  432. aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  433. shape = config$shape %||% 3,
  434. size = config$size %||% 0.2
  435. )
  436. } else if (!is.null(config$gene_point) && config$gene_point) {
  437. plot <- plot + geom_point(
  438. aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  439. shape = config$shape %||% 3,
  440. size = config$size %||% 0.2,
  441. position = "jitter"
  442. )
  443. } else {
  444. plot <- plot + geom_point(
  445. aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  446. shape = config$shape %||% 3,
  447. size = config$size %||% 0.2
  448. )
  449. }
  450. } else {
  451. # For non-interactive plots, just add `geom_point` without `text` aesthetic
  452. plot <- plot + geom_point(
  453. shape = config$shape %||% 3,
  454. size = config$size %||% 0.2,
  455. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
  456. )
  457. }
  458. # Add smooth line if specified
  459. if (!is.null(config$add_smooth) && config$add_smooth) {
  460. plot <- if (!is.null(config$lm_line)) {
  461. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  462. } else {
  463. plot + geom_smooth(method = "lm", se = FALSE)
  464. }
  465. }
  466. # Add SD bands (iterate over sd_band only here)
  467. if (!is.null(config$sd_band)) {
  468. for (i in config$sd_band) {
  469. plot <- plot +
  470. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  471. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  472. geom_hline(yintercept = c(-i, i), color = "gray")
  473. }
  474. }
  475. # Add error bars if specified
  476. if (!is.null(config$error_bar) && config$error_bar) {
  477. y_mean_col <- paste0("mean_", config$y_var)
  478. y_sd_col <- paste0("sd_", config$y_var)
  479. plot <- plot + geom_errorbar(
  480. aes(
  481. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  482. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  483. ),
  484. alpha = 0.3
  485. )
  486. }
  487. # Add x-axis customization if specified
  488. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  489. plot <- plot + scale_x_continuous(
  490. name = config$x_label,
  491. breaks = config$x_breaks,
  492. labels = config$x_labels
  493. )
  494. }
  495. # Use coord_cartesian for zooming in without removing data outside the range
  496. if (!is.null(config$coord_cartesian)) {
  497. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  498. }
  499. # Use scale_y_continuous for setting the y-axis limits
  500. if (!is.null(config$ylim_vals)) {
  501. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  502. }
  503. return(plot)
  504. }
  505. generate_box_plot <- function(plot, config) {
  506. plot <- plot + geom_boxplot()
  507. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  508. plot <- plot + scale_x_discrete(
  509. name = config$x_label,
  510. breaks = config$x_breaks,
  511. labels = config$x_labels
  512. )
  513. }
  514. if (!is.null(config$coord_cartesian)) {
  515. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  516. }
  517. return(plot)
  518. }
  519. # Adjust missing values and calculate ranks
  520. adjust_missing_and_rank <- function(df, variables) {
  521. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  522. df <- df %>%
  523. mutate(across(all_of(variables), list(
  524. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  525. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  526. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  527. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  528. ), .names = "{fn}_{col}"))
  529. return(df)
  530. }
  531. generate_interaction_plot_configs <- function(df, variables) {
  532. configs <- list()
  533. # Define common y-limits and other attributes for each variable dynamically
  534. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  535. # Define annotation positions based on the variable being plotted
  536. annotation_positions <- list(
  537. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  538. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  539. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  540. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  541. )
  542. # Define which annotations to include for each plot
  543. annotation_labels <- list(
  544. ZShift = function(df, var) {
  545. val <- df[[paste0("Z_Shift_", var)]]
  546. if (is.numeric(val)) {
  547. paste("ZShift =", round(val, 2))
  548. } else {
  549. paste("ZShift =", val)
  550. }
  551. },
  552. lm_ZScore = function(df, var) {
  553. val <- df[[paste0("Z_lm_", var)]]
  554. if (is.numeric(val)) {
  555. paste("lm ZScore =", round(val, 2))
  556. } else {
  557. paste("lm ZScore =", val)
  558. }
  559. },
  560. NG = function(df, var) paste("NG =", df$NG),
  561. DB = function(df, var) paste("DB =", df$DB),
  562. SM = function(df, var) paste("SM =", df$SM)
  563. )
  564. for (variable in variables) {
  565. # Dynamically generate the names of the columns
  566. var_info <- list(
  567. ylim = limits_map[[variable]],
  568. sd_col = paste0("WT_sd_", variable)
  569. )
  570. # Extract the precomputed linear model coefficients
  571. lm_line <- list(
  572. intercept = df[[paste0("lm_intercept_", variable)]],
  573. slope = df[[paste0("lm_slope_", variable)]]
  574. )
  575. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  576. message("Processing annotation: ", annotation_name, " for variable: ", variable)
  577. y_pos <- annotation_positions[[variable]][[annotation_name]]
  578. # Check if the annotation_name exists in annotation_labels
  579. if (!is.null(annotation_labels[[annotation_name]])) {
  580. label <- annotation_labels[[annotation_name]](df, variable)
  581. list(x = 1, y = y_pos, label = label)
  582. } else {
  583. message(paste("Warning: No annotation function found for", annotation_name))
  584. NULL
  585. }
  586. })
  587. # Filter out any NULL annotations
  588. annotations <- Filter(Negate(is.null), annotations)
  589. # Add scatter plot configuration for this variable
  590. configs[[length(configs) + 1]] <- list(
  591. df = df,
  592. x_var = "conc_num_factor",
  593. y_var = variable,
  594. plot_type = "scatter",
  595. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  596. ylim_vals = var_info$ylim,
  597. annotations = annotations,
  598. lm_line = lm_line, # Precomputed linear model
  599. error_bar = TRUE,
  600. x_breaks = unique(df$conc_num_factor),
  601. x_labels = unique(as.character(df$conc_num)),
  602. x_label = unique(df$Drug[1]),
  603. position = "jitter",
  604. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  605. )
  606. # Add box plot configuration for this variable
  607. configs[[length(configs) + 1]] <- list(
  608. df = df,
  609. x_var = "conc_num_factor",
  610. y_var = variable,
  611. plot_type = "box",
  612. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  613. ylim_vals = var_info$ylim,
  614. annotations = annotations,
  615. error_bar = FALSE,
  616. x_breaks = unique(df$conc_num_factor),
  617. x_labels = unique(as.character(df$conc_num)),
  618. x_label = unique(df$Drug[1]),
  619. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  620. )
  621. }
  622. return(configs)
  623. }
  624. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  625. configs <- list()
  626. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  627. # Single config with all sd bands
  628. configs[[length(configs) + 1]] <- list(
  629. df = df,
  630. x_var = rank_var,
  631. y_var = zscore_var,
  632. plot_type = "scatter",
  633. title = paste(plot_title_prefix, var, "Rank Plot"),
  634. sd_band = c(1, 2, 3), # Pass all sd bands at once
  635. enhancer_label = list(
  636. x = nrow(df) / 2, y = 10,
  637. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= 1, ])) # Example for the first SD band
  638. ),
  639. suppressor_label = list(
  640. x = nrow(df) / 2, y = -10,
  641. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -1, ]))
  642. ),
  643. shape = 3,
  644. size = 0.1
  645. )
  646. # Non-annotated version
  647. configs[[length(configs) + 1]] <- list(
  648. df = df,
  649. x_var = rank_var,
  650. y_var = zscore_var,
  651. plot_type = "scatter",
  652. title = paste(plot_title_prefix, var, "Rank Plot No Annotations"),
  653. sd_band = c(1, 2, 3),
  654. enhancer_label = NULL,
  655. suppressor_label = NULL,
  656. shape = 3,
  657. size = 0.1,
  658. position = "jitter"
  659. )
  660. return(configs)
  661. }
  662. generate_correlation_plot_configs <- function(df, variables) {
  663. configs <- list()
  664. for (variable in variables) {
  665. z_lm_var <- paste0("Z_lm_", variable)
  666. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  667. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  668. configs[[length(configs) + 1]] <- list(
  669. df = df,
  670. x_var = avg_zscore_var,
  671. y_var = z_lm_var,
  672. plot_type = "scatter",
  673. title = paste("Avg Zscore vs lm", variable),
  674. color_var = "Overlap",
  675. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  676. shape = 3,
  677. geom_smooth = TRUE,
  678. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  679. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  680. legend_position = "right"
  681. )
  682. }
  683. return(configs)
  684. }
  685. main <- function() {
  686. lapply(names(args$experiments), function(exp_name) {
  687. exp <- args$experiments[[exp_name]]
  688. exp_path <- exp$path
  689. exp_sd <- exp$sd
  690. out_dir <- file.path(exp_path, "zscores")
  691. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  692. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  693. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  694. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  695. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  696. orf_group_vars <- c("OrfRep", "Gene", "num")
  697. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  698. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  699. message("Loading and filtering data")
  700. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  701. df <- update_gene_names(df, args$sgd_gene_list)
  702. df <- as_tibble(df)
  703. # Filter rows that are above tolerance for quality control plots
  704. df_above_tolerance <- df %>% filter(DB == 1)
  705. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  706. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  707. # Remove rows with 0 values in L
  708. df_no_zeros <- df_na %>% filter(L > 0)
  709. # Save some constants
  710. max_conc <- max(df$conc_num_factor)
  711. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  712. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  713. message("Calculating summary statistics before quality control")
  714. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  715. # df_ss <- ss$summary_stats
  716. df_stats <- ss$df_with_stats
  717. df_filtered_stats <- df_stats %>%
  718. {
  719. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  720. if (nrow(non_finite_rows) > 0) {
  721. message("Filtering out the following non-finite rows:")
  722. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  723. }
  724. filter(., if_all(c(L), is.finite))
  725. }
  726. message("Calculating summary statistics after quality control")
  727. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  728. df_na_ss <- ss$summary_stats
  729. df_na_stats <- ss$df_with_stats
  730. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  731. # Filter out non-finite rows for plotting
  732. df_na_filtered_stats <- df_na_stats %>%
  733. {
  734. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  735. if (nrow(non_finite_rows) > 0) {
  736. message("Removed the following non-finite rows:")
  737. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  738. }
  739. filter(., if_all(c(L), is.finite))
  740. }
  741. message("Calculating summary statistics after quality control excluding zero values")
  742. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  743. df_no_zeros_stats <- ss$df_with_stats
  744. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  745. {
  746. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  747. if (nrow(non_finite_rows) > 0) {
  748. message("Removed the following non-finite rows:")
  749. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  750. }
  751. filter(., if_all(c(L), is.finite))
  752. }
  753. message("Filtering by 2SD of K")
  754. df_na_within_2sd_k <- df_na_stats %>%
  755. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  756. df_na_outside_2sd_k <- df_na_stats %>%
  757. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  758. message("Calculating summary statistics for L within 2SD of K")
  759. # TODO We're omitting the original z_max calculation, not sure if needed?
  760. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  761. l_within_2sd_k_ss <- ss$summary_stats
  762. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  763. write.csv(l_within_2sd_k_ss,
  764. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  765. message("Calculating summary statistics for L outside 2SD of K")
  766. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  767. l_outside_2sd_k_ss <- ss$summary_stats
  768. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  769. write.csv(l_outside_2sd_k_ss,
  770. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  771. # Each plots list corresponds to a file
  772. message("Generating quality control plot configurations")
  773. l_vs_k_plots <- list(
  774. list(
  775. df = df,
  776. x_var = "L",
  777. y_var = "K",
  778. plot_type = "scatter",
  779. delta_bg_point = TRUE,
  780. title = "Raw L vs K before quality control",
  781. color_var = "conc_num",
  782. error_bar = FALSE,
  783. legend_position = "right"
  784. )
  785. )
  786. frequency_delta_bg_plots <- list(
  787. list(
  788. df = df_filtered_stats,
  789. x_var = "delta_bg",
  790. y_var = NULL,
  791. plot_type = "density",
  792. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  793. color_var = "conc_num",
  794. x_label = "Delta Background",
  795. y_label = "Density",
  796. error_bar = FALSE,
  797. legend_position = "right"),
  798. list(
  799. df = df_filtered_stats,
  800. x_var = "delta_bg",
  801. y_var = NULL,
  802. plot_type = "bar",
  803. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  804. color_var = "conc_num",
  805. x_label = "Delta Background",
  806. y_label = "Count",
  807. error_bar = FALSE,
  808. legend_position = "right")
  809. )
  810. above_threshold_plots <- list(
  811. list(
  812. df = df_above_tolerance,
  813. x_var = "L",
  814. y_var = "K",
  815. plot_type = "scatter",
  816. delta_bg_point = TRUE,
  817. title = paste("Raw L vs K for strains above Delta Background threshold of",
  818. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  819. color_var = "conc_num",
  820. position = "jitter",
  821. annotations = list(
  822. x = l_half_median,
  823. y = k_half_median,
  824. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  825. ),
  826. error_bar = FALSE,
  827. legend_position = "right"
  828. )
  829. )
  830. plate_analysis_plots <- list()
  831. for (var in summary_vars) {
  832. for (stage in c("before", "after")) {
  833. if (stage == "before") {
  834. df_plot <- df_filtered_stats
  835. } else {
  836. df_plot <- df_na_filtered_stats
  837. }
  838. config <- list(
  839. df = df_plot,
  840. x_var = "scan",
  841. y_var = var,
  842. plot_type = "scatter",
  843. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  844. error_bar = TRUE,
  845. color_var = "conc_num",
  846. position = "jitter")
  847. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  848. }
  849. }
  850. plate_analysis_boxplots <- list()
  851. for (var in summary_vars) {
  852. for (stage in c("before", "after")) {
  853. if (stage == "before") {
  854. df_plot <- df_filtered_stats
  855. } else {
  856. df_plot <- df_na_filtered_stats
  857. }
  858. config <- list(
  859. df = df_plot,
  860. x_var = "scan",
  861. y_var = var,
  862. plot_type = "box",
  863. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  864. error_bar = FALSE,
  865. color_var = "conc_num")
  866. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  867. }
  868. }
  869. plate_analysis_no_zeros_plots <- list()
  870. for (var in summary_vars) {
  871. config <- list(
  872. df = df_no_zeros_filtered_stats,
  873. x_var = "scan",
  874. y_var = var,
  875. plot_type = "scatter",
  876. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  877. error_bar = TRUE,
  878. color_var = "conc_num",
  879. position = "jitter")
  880. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  881. }
  882. plate_analysis_no_zeros_boxplots <- list()
  883. for (var in summary_vars) {
  884. config <- list(
  885. df = df_no_zeros_filtered_stats,
  886. x_var = "scan",
  887. y_var = var,
  888. plot_type = "box",
  889. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  890. error_bar = FALSE,
  891. color_var = "conc_num"
  892. )
  893. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  894. }
  895. l_outside_2sd_k_plots <- list(
  896. list(
  897. df = df_na_l_outside_2sd_k_stats,
  898. x_var = "L",
  899. y_var = "K",
  900. plot_type = "scatter",
  901. delta_bg_point = TRUE,
  902. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  903. color_var = "conc_num",
  904. position = "jitter",
  905. legend_position = "right"
  906. )
  907. )
  908. delta_bg_outside_2sd_k_plots <- list(
  909. list(
  910. df = df_na_l_outside_2sd_k_stats,
  911. x_var = "delta_bg",
  912. y_var = "K",
  913. plot_type = "scatter",
  914. gene_point = TRUE,
  915. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  916. color_var = "conc_num",
  917. position = "jitter",
  918. legend_position = "right"
  919. )
  920. )
  921. # message("Generating quality control plots")
  922. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  923. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  924. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  925. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  926. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  927. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  928. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  929. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  930. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  931. # Clean up
  932. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  933. gc()
  934. # TODO: Originally this filtered L NA's
  935. # Let's try to avoid for now since stats have already been calculated
  936. # Process background strains
  937. bg_strains <- c("YDL227C")
  938. lapply(bg_strains, function(strain) {
  939. message("Processing background strain: ", strain)
  940. # Handle missing data by setting zero values to NA
  941. # and then removing any rows with NA in L col
  942. df_bg <- df_na %>%
  943. filter(OrfRep == strain) %>%
  944. mutate(
  945. L = if_else(L == 0, NA, L),
  946. K = if_else(K == 0, NA, K),
  947. r = if_else(r == 0, NA, r),
  948. AUC = if_else(AUC == 0, NA, AUC)
  949. ) %>%
  950. filter(!is.na(L))
  951. # Recalculate summary statistics for the background strain
  952. message("Calculating summary statistics for background strain")
  953. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  954. summary_stats_bg <- ss_bg$summary_stats
  955. # df_bg_stats <- ss_bg$df_with_stats
  956. write.csv(summary_stats_bg,
  957. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  958. row.names = FALSE)
  959. # Filter reference and deletion strains
  960. # Formerly X2_RF (reference strains)
  961. df_reference <- df_na_stats %>%
  962. filter(OrfRep == strain) %>%
  963. mutate(SM = 0)
  964. # Formerly X2 (deletion strains)
  965. df_deletion <- df_na_stats %>%
  966. filter(OrfRep != strain) %>%
  967. mutate(SM = 0)
  968. # Set the missing values to the highest theoretical value at each drug conc for L
  969. # Leave other values as 0 for the max/min
  970. reference_strain <- df_reference %>%
  971. group_by(conc_num) %>%
  972. mutate(
  973. max_l_theoretical = max(max_L, na.rm = TRUE),
  974. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  975. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  976. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  977. ungroup()
  978. # Ditto for deletion strains
  979. deletion_strains <- df_deletion %>%
  980. group_by(conc_num) %>%
  981. mutate(
  982. max_l_theoretical = max(max_L, na.rm = TRUE),
  983. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  984. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  985. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  986. ungroup()
  987. message("Calculating interaction scores")
  988. interaction_vars <- c("L", "K", "r", "AUC")
  989. message("Calculating reference strain(s)")
  990. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  991. zscores_calculations_reference <- reference_results$calculations
  992. zscores_interactions_reference <- reference_results$interactions
  993. zscores_calculations_reference_joined <- reference_results$calculations_joined
  994. zscores_interactions_reference_joined <- reference_results$interactions_joined
  995. message("Calculating deletion strain(s)")
  996. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  997. zscores_calculations <- deletion_results$calculations
  998. zscores_interactions <- deletion_results$interactions
  999. zscores_calculations_joined <- deletion_results$calculations_joined
  1000. zscores_interactions_joined <- deletion_results$interactions_joined
  1001. # Writing Z-Scores to file
  1002. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1003. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1004. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1005. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1006. # Create interaction plots
  1007. message("Generating interaction plot configurations")
  1008. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1009. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1010. message("Generating interaction plots")
  1011. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1012. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1013. # Define conditions for enhancers and suppressors
  1014. # TODO Add to study config file?
  1015. threshold <- 2
  1016. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1017. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1018. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1019. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1020. # Subset data
  1021. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1022. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1023. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1024. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1025. # Save enhancers and suppressors
  1026. message("Writing enhancer/suppressor csv files")
  1027. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1028. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1029. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1030. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1031. # Combine conditions for enhancers and suppressors
  1032. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1033. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1034. # Save combined enhancers and suppressors
  1035. write.csv(enhancers_and_suppressors_L,
  1036. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1037. write.csv(enhancers_and_suppressors_K,
  1038. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1039. # Handle linear model based enhancers and suppressors
  1040. lm_threshold <- 2
  1041. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1042. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1043. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1044. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1045. # Save linear model based enhancers and suppressors
  1046. message("Writing linear model enhancer/suppressor csv files")
  1047. write.csv(enhancers_lm_L,
  1048. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1049. write.csv(suppressors_lm_L,
  1050. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1051. write.csv(enhancers_lm_K,
  1052. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1053. write.csv(suppressors_lm_K,
  1054. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1055. # TODO needs explanation
  1056. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1057. rank_plot_configs <- c(
  1058. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1059. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1060. )
  1061. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1062. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1063. rank_lm_plot_config <- c(
  1064. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1065. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1066. )
  1067. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1068. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1069. # Formerly X_NArm
  1070. zscores_interactions_filtered <- zscores_interactions %>%
  1071. group_by(across(all_of(orf_group_vars))) %>%
  1072. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1073. # Final filtered correlation calculations and plots
  1074. lm_results <- zscores_interactions_filtered %>%
  1075. summarise(
  1076. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1077. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1078. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1079. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1080. )
  1081. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1082. left_join(lm_results, by = orf_group_vars) %>%
  1083. mutate(
  1084. Overlap = case_when(
  1085. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1086. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1087. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1088. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1089. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1090. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1091. TRUE ~ "No Effect"
  1092. )
  1093. ) %>%
  1094. ungroup()
  1095. rank_plot_configs <- c(
  1096. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1097. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1098. )
  1099. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1100. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1101. rank_lm_plot_configs <- c(
  1102. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1103. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1104. )
  1105. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1106. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1107. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1108. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1109. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1110. })
  1111. })
  1112. }
  1113. main()