calculate_interaction_zscores.R 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  77. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  78. theme_foundation %+replace%
  79. theme(
  80. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  81. text = element_text(),
  82. panel.background = element_rect(colour = NA),
  83. plot.background = element_rect(colour = NA),
  84. panel.border = element_rect(colour = NA),
  85. axis.title = element_text(face = "bold", size = rel(1)),
  86. axis.title.y = element_text(angle = 90, vjust = 2),
  87. axis.title.x = element_text(vjust = -0.2),
  88. axis.text = element_text(),
  89. axis.line = element_line(colour = "black"),
  90. axis.ticks = element_line(),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  96. legend.key.size = unit(0.5, "cm"),
  97. legend.spacing = unit(0, "cm"),
  98. legend.title = element_text(face = "italic"),
  99. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  100. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  101. strip.text = element_text(face = "bold")
  102. )
  103. }
  104. scale_fill_publication <- function(...) {
  105. discrete_scale("fill", "Publication", manual_pal(values = c(
  106. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  107. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  108. )), ...)
  109. }
  110. scale_colour_publication <- function(...) {
  111. discrete_scale("colour", "Publication", manual_pal(values = c(
  112. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  113. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  114. )), ...)
  115. }
  116. # Load the initial dataframe from the easy_results_file
  117. load_and_filter_data <- function(easy_results_file, sd = 3) {
  118. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  119. df <- df %>%
  120. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  121. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  122. # Rename columns
  123. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  124. mutate(
  125. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  126. delta_bg = last_bg - first_bg,
  127. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  128. NG = if_else(L == 0 & !is.na(L), 1, 0),
  129. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  130. SM = 0,
  131. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  132. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  133. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  134. conc_num_factor_num = as.numeric(conc_num_factor)
  135. )
  136. return(df)
  137. }
  138. # Update Gene names using the SGD gene list
  139. update_gene_names <- function(df, sgd_gene_list) {
  140. # Load SGD gene list
  141. genes <- read.delim(file = sgd_gene_list,
  142. quote = "", header = FALSE,
  143. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  144. # Create a named vector for mapping ORF to GeneName
  145. gene_map <- setNames(genes$V5, genes$V4)
  146. # Vectorized match to find the GeneName from gene_map
  147. mapped_genes <- gene_map[df$ORF]
  148. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  149. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  150. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  151. df <- df %>%
  152. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~mean(., na.rm = TRUE),
  163. median = ~median(., na.rm = TRUE),
  164. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  165. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  166. sd = ~sd(., na.rm = TRUE),
  167. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. cleaned_df <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  180. group_vars = c("OrfRep", "Gene", "num")) {
  181. # Calculate total concentration variables
  182. total_conc_num <- length(unique(df$conc_num))
  183. calculations <- df %>%
  184. group_by(across(all_of(group_vars))) %>%
  185. mutate(
  186. NG = sum(NG, na.rm = TRUE),
  187. DB = sum(DB, na.rm = TRUE),
  188. SM = sum(SM, na.rm = TRUE),
  189. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  190. # Calculate raw data
  191. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  192. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  193. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  194. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  195. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  196. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  197. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  198. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  199. Exp_L = WT_L + Raw_Shift_L,
  200. Exp_K = WT_K + Raw_Shift_K,
  201. Exp_r = WT_r + Raw_Shift_r,
  202. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  203. Delta_L = mean_L - Exp_L,
  204. Delta_K = mean_K - Exp_K,
  205. Delta_r = mean_r - Exp_r,
  206. Delta_AUC = mean_AUC - Exp_AUC,
  207. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  208. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  209. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  210. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  211. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  212. # Calculate Z-scores
  213. Zscore_L = Delta_L / WT_sd_L,
  214. Zscore_K = Delta_K / WT_sd_K,
  215. Zscore_r = Delta_r / WT_sd_r,
  216. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  217. # Fit linear models and store in list-columns
  218. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  219. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  220. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  221. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  222. # Extract coefficients using purrr::map_dbl
  223. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  224. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  225. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  226. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  227. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  228. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  229. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  230. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  231. # Calculate lm_Score_* based on coefficients
  232. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  233. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  234. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  235. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  236. # Calculate R-squared values
  237. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  238. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  239. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  240. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  241. ) %>%
  242. ungroup()
  243. # Calculate overall mean and SD for lm_Score_* variables
  244. lm_means_sds <- calculations %>%
  245. summarise(
  246. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  247. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  248. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  249. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  250. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  251. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  252. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  253. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  254. )
  255. calculations <- calculations %>%
  256. mutate(
  257. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  258. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  259. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  260. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  261. )
  262. # Summarize some of the stats
  263. interactions <- calculations %>%
  264. group_by(across(all_of(group_vars))) %>%
  265. mutate(
  266. # Calculate raw shifts
  267. Raw_Shift_L = first(Raw_Shift_L),
  268. Raw_Shift_K = first(Raw_Shift_K),
  269. Raw_Shift_r = first(Raw_Shift_r),
  270. Raw_Shift_AUC = first(Raw_Shift_AUC),
  271. # Calculate Z-shifts
  272. Z_Shift_L = first(Z_Shift_L),
  273. Z_Shift_K = first(Z_Shift_K),
  274. Z_Shift_r = first(Z_Shift_r),
  275. Z_Shift_AUC = first(Z_Shift_AUC),
  276. # Sum Z-scores
  277. Sum_Z_Score_L = sum(Zscore_L),
  278. Sum_Z_Score_K = sum(Zscore_K),
  279. Sum_Z_Score_r = sum(Zscore_r),
  280. Sum_Z_Score_AUC = sum(Zscore_AUC),
  281. # Calculate Average Z-scores
  282. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  283. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  284. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  285. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  286. ) %>%
  287. arrange(desc(Z_lm_L), desc(NG)) %>%
  288. ungroup()
  289. # Declare column order for output
  290. calculations <- calculations %>%
  291. select(
  292. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  293. "mean_L", "mean_K", "mean_r", "mean_AUC",
  294. "median_L", "median_K", "median_r", "median_AUC",
  295. "sd_L", "sd_K", "sd_r", "sd_AUC",
  296. "se_L", "se_K", "se_r", "se_AUC",
  297. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  298. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  299. "WT_L", "WT_K", "WT_r", "WT_AUC",
  300. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  301. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  302. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  303. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  304. "NG", "SM", "DB")
  305. interactions <- interactions %>%
  306. select(
  307. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  308. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  309. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  310. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  311. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  312. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  313. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  314. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  315. cleaned_df <- df %>%
  316. select(-any_of(
  317. setdiff(intersect(names(df), names(interactions)),
  318. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  319. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  320. return(list(
  321. calculations = calculations,
  322. interactions = interactions,
  323. interactions_joined = interactions_joined))
  324. }
  325. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  326. message("Generating ", filename, ".pdf and ", filename, ".html")
  327. # Prepare lists to collect plots
  328. static_plots <- list()
  329. plotly_plots <- list()
  330. for (i in seq_along(plot_configs)) {
  331. config <- plot_configs[[i]]
  332. df <- config$df
  333. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  334. if (is.null(config$color_var)) {
  335. aes(x = .data[[config$x_var]])
  336. } else {
  337. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  338. }
  339. } else if (is.null(config$color_var)) {
  340. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  341. } else {
  342. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  343. }
  344. # Start building the plot with aes_mapping
  345. plot_base <- ggplot(df, aes_mapping)
  346. # Use appropriate helper function based on plot type
  347. plot <- switch(config$plot_type,
  348. "scatter" = generate_scatter_plot(plot_base, config),
  349. "box" = generate_box_plot(plot_base, config),
  350. "density" = plot_base + geom_density(),
  351. "bar" = plot_base + geom_bar(),
  352. plot_base # default case if no type matches
  353. )
  354. # Apply theme_publication with legend_position from config
  355. legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
  356. plot <- plot + theme_publication(legend_position = legend_position)
  357. # Add title and labels
  358. if (!is.null(config$title)) {
  359. plot <- plot + ggtitle(config$title)
  360. }
  361. if (!is.null(config$x_label)) {
  362. plot <- plot + xlab(config$x_label)
  363. }
  364. if (!is.null(config$y_label)) {
  365. plot <- plot + ylab(config$y_label)
  366. }
  367. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  368. if (is.null(config$color_var)) {
  369. plot <- plot + scale_color_discrete(guide = "none")
  370. }
  371. # Add interactive tooltips for plotly
  372. tooltip_vars <- c()
  373. if (config$plot_type == "scatter") {
  374. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  375. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  376. } else if (!is.null(config$gene_point) && config$gene_point) {
  377. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  378. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  379. tooltip_vars <- c(config$x_var, config$y_var)
  380. }
  381. }
  382. # Convert to plotly object
  383. if (length(tooltip_vars) > 0) {
  384. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  385. } else {
  386. plotly_plot <- ggplotly(plot, tooltip = "none")
  387. }
  388. # Adjust legend position if specified
  389. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  390. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  391. }
  392. # Add plots to lists
  393. static_plots[[i]] <- plot
  394. plotly_plots[[i]] <- plotly_plot
  395. }
  396. # Save static PDF plots
  397. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  398. lapply(static_plots, print)
  399. dev.off()
  400. # Combine and save interactive HTML plots
  401. combined_plot <- subplot(
  402. plotly_plots,
  403. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  404. grid_layout$nrow
  405. } else {
  406. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  407. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  408. },
  409. margin = 0.05
  410. )
  411. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  412. }
  413. generate_scatter_plot <- function(plot, config) {
  414. shape <- if (!is.null(config$shape)) config$shape else 3
  415. size <- if (!is.null(config$size)) config$size else 0.1
  416. position <-
  417. if (!is.null(config$position) && config$position == "jitter") {
  418. position_jitter(width = 0.1, height = 0)
  419. } else {
  420. "identity"
  421. }
  422. plot <- plot + geom_point(
  423. shape = shape,
  424. size = size,
  425. position = position
  426. )
  427. if (!is.null(config$cyan_points) && config$cyan_points) {
  428. plot <- plot + geom_point(
  429. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  430. color = "cyan",
  431. shape = 3,
  432. size = 0.5
  433. )
  434. }
  435. # Add Smooth Line if specified
  436. if (!is.null(config$smooth) && config$smooth) {
  437. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  438. if (!is.null(config$lm_line)) {
  439. plot <- plot +
  440. geom_abline(
  441. intercept = config$lm_line$intercept,
  442. slope = config$lm_line$slope,
  443. color = smooth_color
  444. )
  445. } else {
  446. plot <- plot +
  447. geom_smooth(
  448. method = "lm",
  449. se = FALSE,
  450. color = smooth_color
  451. )
  452. }
  453. }
  454. # Add SD Bands if specified
  455. if (!is.null(config$sd_band)) {
  456. plot <- plot +
  457. annotate(
  458. "rect",
  459. xmin = -Inf, xmax = Inf,
  460. ymin = config$sd_band, ymax = Inf,
  461. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  462. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  463. ) +
  464. annotate(
  465. "rect",
  466. xmin = -Inf, xmax = Inf,
  467. ymin = -config$sd_band, ymax = -Inf,
  468. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  469. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  470. ) +
  471. geom_hline(
  472. yintercept = c(-config$sd_band, config$sd_band),
  473. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  474. )
  475. }
  476. # Add Rectangles if specified
  477. if (!is.null(config$rectangles)) {
  478. for (rect in config$rectangles) {
  479. plot <- plot + annotate(
  480. "rect",
  481. xmin = rect$xmin,
  482. xmax = rect$xmax,
  483. ymin = rect$ymin,
  484. ymax = rect$ymax,
  485. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  486. color = ifelse(is.null(rect$color), "black", rect$color),
  487. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  488. )
  489. }
  490. }
  491. # Add Error Bars if specified
  492. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  493. y_mean_col <- paste0("mean_", config$y_var)
  494. y_sd_col <- paste0("sd_", config$y_var)
  495. plot <- plot +
  496. geom_errorbar(
  497. aes(
  498. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  499. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  500. ),
  501. alpha = 0.3
  502. )
  503. }
  504. # Customize X-axis if specified
  505. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  506. plot <- plot +
  507. scale_x_discrete(
  508. name = config$x_label,
  509. breaks = config$x_breaks,
  510. labels = config$x_labels
  511. )
  512. }
  513. # Apply coord_cartesian if specified
  514. if (!is.null(config$coord_cartesian)) {
  515. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  516. }
  517. # Set Y-axis limits if specified
  518. if (!is.null(config$ylim_vals)) {
  519. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  520. }
  521. # Add Annotations if specified
  522. if (!is.null(config$annotations)) {
  523. for (annotation in config$annotations) {
  524. plot <- plot +
  525. annotate(
  526. "text",
  527. x = annotation$x,
  528. y = annotation$y,
  529. label = annotation$label,
  530. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  531. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  532. size = ifelse(is.null(annotation$size), 4, annotation$size),
  533. color = ifelse(is.null(annotation$color), "black", annotation$color)
  534. )
  535. }
  536. }
  537. # Add Title if specified
  538. if (!is.null(config$title)) {
  539. plot <- plot + ggtitle(config$title)
  540. }
  541. return(plot)
  542. }
  543. generate_box_plot <- function(plot, config) {
  544. plot <- plot + geom_boxplot()
  545. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  546. plot <- plot + scale_x_discrete(
  547. name = config$x_label,
  548. breaks = config$x_breaks,
  549. labels = config$x_labels
  550. )
  551. }
  552. if (!is.null(config$coord_cartesian)) {
  553. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  554. }
  555. return(plot)
  556. }
  557. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  558. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  559. plots <- list()
  560. for (var in variables) {
  561. for (stage in stages) {
  562. df_plot <- if (stage == "before") df_before else df_after
  563. # Check for non-finite values in the y-variable
  564. df_plot_filtered <- df_plot %>%
  565. filter(is.finite(!!sym(var)))
  566. # Count removed rows
  567. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  568. if (removed_rows > 0) {
  569. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  570. }
  571. # Adjust settings based on plot_type
  572. if (plot_type == "scatter") {
  573. error_bar <- TRUE
  574. position <- "jitter"
  575. } else if (plot_type == "box") {
  576. error_bar <- FALSE
  577. position <- NULL
  578. }
  579. config <- list(
  580. df = df_plot,
  581. x_var = "scan",
  582. y_var = var,
  583. plot_type = plot_type,
  584. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  585. error_bar = error_bar,
  586. color_var = "conc_num_factor",
  587. position = position
  588. )
  589. plots <- append(plots, list(config))
  590. }
  591. }
  592. return(plots)
  593. }
  594. generate_interaction_plot_configs <- function(df, limits_map = NULL) {
  595. # Default limits_map if not provided
  596. if (is.null(limits_map)) {
  597. limits_map <- list(
  598. L = c(-65, 65),
  599. K = c(-65, 65),
  600. r = c(-0.65, 0.65),
  601. AUC = c(-6500, 6500)
  602. )
  603. }
  604. # Filter data
  605. df_filtered <- df
  606. for (var in names(limits_map)) {
  607. df_filtered <- df_filtered %>%
  608. filter(!is.na(!!sym(var)) &
  609. !!sym(var) >= limits_map[[var]][1] &
  610. !!sym(var) <= limits_map[[var]][2])
  611. }
  612. configs <- list()
  613. for (var in names(limits_map)) {
  614. y_range <- limits_map[[var]]
  615. # Calculate annotation positions
  616. y_min <- min(y_range)
  617. y_max <- max(y_range)
  618. y_span <- y_max - y_min
  619. annotation_positions <- list(
  620. ZShift = y_max - 0.1 * y_span,
  621. lm_ZScore = y_max - 0.2 * y_span,
  622. NG = y_min + 0.2 * y_span,
  623. DB = y_min + 0.1 * y_span,
  624. SM = y_min + 0.05 * y_span
  625. )
  626. # Prepare linear model line
  627. lm_line <- list(
  628. intercept = df_filtered[[paste0("lm_intercept_", var)]],
  629. slope = df_filtered[[paste0("lm_slope_", var)]]
  630. )
  631. # Calculate x-axis position for annotations
  632. num_levels <- length(levels(df_filtered$conc_num_factor))
  633. x_pos <- (1 + num_levels) / 2
  634. # Generate annotations
  635. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  636. label <- switch(annotation_name,
  637. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
  638. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
  639. NG = paste("NG =", df_filtered$NG),
  640. DB = paste("DB =", df_filtered$DB),
  641. SM = paste("SM =", df_filtered$SM),
  642. NULL
  643. )
  644. if (!is.null(label)) {
  645. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  646. } else {
  647. NULL
  648. }
  649. })
  650. annotations <- Filter(Negate(is.null), annotations)
  651. # Shared plot settings
  652. plot_settings <- list(
  653. df = df_filtered,
  654. x_var = "conc_num_factor",
  655. y_var = var,
  656. ylim_vals = y_range,
  657. annotations = annotations,
  658. lm_line = lm_line,
  659. x_breaks = levels(df_filtered$conc_num_factor),
  660. x_labels = levels(df_filtered$conc_num_factor),
  661. x_label = unique(df_filtered$Drug[1]),
  662. coord_cartesian = y_range
  663. )
  664. # Scatter plot config
  665. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  666. plot_type = "scatter",
  667. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  668. error_bar = TRUE,
  669. position = "jitter"
  670. ))
  671. # Box plot config
  672. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  673. plot_type = "box",
  674. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  675. error_bar = FALSE
  676. ))
  677. }
  678. return(configs)
  679. }
  680. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  681. sd_bands <- c(1, 2, 3)
  682. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  683. z_lm_cols <- paste0("Z_lm_", variables)
  684. rank_avg_zscore_cols <- paste0("Rank_", variables)
  685. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  686. configs <- list()
  687. if (adjust) {
  688. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  689. df <- df %>%
  690. mutate(
  691. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  692. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  693. )
  694. }
  695. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  696. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  697. df_ranked <- df %>%
  698. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  699. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  700. df_ranked <- df_ranked %>%
  701. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  702. # SD-based plots for L and K
  703. for (variable in c("L", "K")) {
  704. if (is_lm) {
  705. rank_var <- paste0("Rank_lm_", variable)
  706. zscore_var <- paste0("Z_lm_", variable)
  707. y_label <- paste("Int Z score", variable)
  708. } else {
  709. rank_var <- paste0("Rank_", variable)
  710. zscore_var <- paste0("Avg_Zscore_", variable)
  711. y_label <- paste("Avg Z score", variable)
  712. }
  713. for (sd_band in sd_bands) {
  714. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  715. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  716. # Annotated plot configuration
  717. configs[[length(configs) + 1]] <- list(
  718. df = df_ranked,
  719. x_var = rank_var,
  720. y_var = zscore_var,
  721. plot_type = "scatter",
  722. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  723. sd_band = sd_band,
  724. fill_positive = "#542788",
  725. fill_negative = "orange",
  726. alpha_positive = 0.3,
  727. alpha_negative = 0.3,
  728. annotations = list(
  729. list(
  730. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  731. y = 10,
  732. label = paste("Deletion Enhancers =", num_enhancers),
  733. hjust = 0.5,
  734. vjust = 1
  735. ),
  736. list(
  737. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  738. y = -10,
  739. label = paste("Deletion Suppressors =", num_suppressors),
  740. hjust = 0.5,
  741. vjust = 0
  742. )
  743. ),
  744. shape = 3,
  745. size = 0.1,
  746. y_label = y_label,
  747. x_label = "Rank",
  748. legend_position = "none"
  749. )
  750. # Non-Annotated Plot Configuration
  751. configs[[length(configs) + 1]] <- list(
  752. df = df_ranked,
  753. x_var = rank_var,
  754. y_var = zscore_var,
  755. plot_type = "scatter",
  756. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  757. sd_band = sd_band,
  758. fill_positive = "#542788",
  759. fill_negative = "orange",
  760. alpha_positive = 0.3,
  761. alpha_negative = 0.3,
  762. annotations = NULL,
  763. shape = 3,
  764. size = 0.1,
  765. y_label = y_label,
  766. x_label = "Rank",
  767. legend_position = "none"
  768. )
  769. }
  770. }
  771. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  772. for (variable in variables) {
  773. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  774. title <- paste(plot_type, variable)
  775. # Define specific variables based on plot type
  776. if (plot_type == "Avg Zscore vs lm") {
  777. x_var <- paste0("Avg_Zscore_", variable)
  778. y_var <- paste0("Z_lm_", variable)
  779. rectangles <- list(
  780. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  781. fill = NA, color = "grey20", alpha = 0.1
  782. )
  783. )
  784. } else if (plot_type == "Rank Avg Zscore vs lm") {
  785. x_var <- paste0("Rank_", variable)
  786. y_var <- paste0("Rank_lm_", variable)
  787. rectangles <- NULL
  788. }
  789. # Fit the linear model
  790. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  791. # Extract intercept and slope from the model coefficients
  792. intercept <- coef(lm_model)[1]
  793. slope <- coef(lm_model)[2]
  794. configs[[length(configs) + 1]] <- list(
  795. df = df_ranked,
  796. x_var = x_var,
  797. y_var = y_var,
  798. plot_type = "scatter",
  799. title = title,
  800. annotations = list(
  801. list(
  802. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  803. y = 10,
  804. label = paste("Deletion Enhancers =", num_enhancers),
  805. hjust = 0.5,
  806. vjust = 1
  807. ),
  808. list(
  809. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  810. y = -10,
  811. label = paste("Deletion Suppressors =", num_suppressors),
  812. hjust = 0.5,
  813. vjust = 0
  814. )
  815. ),
  816. shape = 3,
  817. size = 0.1,
  818. smooth = TRUE,
  819. smooth_color = "black",
  820. lm_line = list(intercept = intercept, slope = slope),
  821. legend_position = "right",
  822. color_var = if (overlap_color) "Overlap" else NULL,
  823. x_label = x_var,
  824. y_label = y_var,
  825. rectangles = rectangles
  826. )
  827. }
  828. }
  829. return(configs)
  830. }
  831. generate_correlation_plot_configs <- function(df) {
  832. # Define relationships for plotting
  833. relationships <- list(
  834. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  835. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  836. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  837. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  838. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  839. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  840. )
  841. configs <- list()
  842. for (rel in relationships) {
  843. # Fit linear model
  844. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  845. lm_summary <- summary(lm_model)
  846. # Construct plot configuration
  847. config <- list(
  848. df = df,
  849. x_var = rel$x,
  850. y_var = rel$y,
  851. plot_type = "scatter",
  852. title = rel$label,
  853. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  854. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  855. annotations = list(
  856. list(
  857. x = Inf,
  858. y = Inf,
  859. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  860. hjust = 1.1,
  861. vjust = 2,
  862. size = 4,
  863. color = "black"
  864. )
  865. ),
  866. smooth = TRUE,
  867. smooth_color = "tomato3",
  868. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  869. legend_position = "right",
  870. shape = 3,
  871. size = 0.5,
  872. color_var = "Overlap",
  873. rectangles = list(
  874. list(
  875. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  876. fill = NA, color = "grey20", alpha = 0.1
  877. )
  878. ),
  879. cyan_points = TRUE
  880. )
  881. configs[[length(configs) + 1]] <- config
  882. }
  883. return(configs)
  884. }
  885. main <- function() {
  886. lapply(names(args$experiments), function(exp_name) {
  887. exp <- args$experiments[[exp_name]]
  888. exp_path <- exp$path
  889. exp_sd <- exp$sd
  890. out_dir <- file.path(exp_path, "zscores")
  891. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  892. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  893. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  894. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  895. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  896. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  897. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  898. message("Loading and filtering data for experiment: ", exp_name)
  899. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  900. update_gene_names(args$sgd_gene_list) %>%
  901. as_tibble()
  902. # Filter rows above delta background tolerance
  903. df_above_tolerance <- df %>% filter(DB == 1)
  904. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  905. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  906. # Save some constants
  907. max_conc <- max(df$conc_num_factor_num)
  908. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  909. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  910. message("Calculating summary statistics before quality control")
  911. df_stats <- calculate_summary_stats(
  912. df = df,
  913. variables = summary_vars,
  914. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  915. message("Calculating summary statistics after quality control")
  916. ss <- calculate_summary_stats(
  917. df = df_na,
  918. variables = summary_vars,
  919. group_vars = c("conc_num", "conc_num_factor"))
  920. df_na_ss <- ss$summary_stats
  921. df_na_stats <- ss$df_with_stats
  922. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  923. # For plotting (ggplot warns on NAs)
  924. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  925. df_na_stats <- df_na_stats %>%
  926. mutate(
  927. WT_L = mean_L,
  928. WT_K = mean_K,
  929. WT_r = mean_r,
  930. WT_AUC = mean_AUC,
  931. WT_sd_L = sd_L,
  932. WT_sd_K = sd_K,
  933. WT_sd_r = sd_r,
  934. WT_sd_AUC = sd_AUC
  935. )
  936. # Pull the background means and standard deviations from zero concentration for interactions
  937. bg_stats <- df_na_stats %>%
  938. filter(conc_num == 0) %>%
  939. summarise(
  940. mean_L = first(mean_L),
  941. mean_K = first(mean_K),
  942. mean_r = first(mean_r),
  943. mean_AUC = first(mean_AUC),
  944. sd_L = first(sd_L),
  945. sd_K = first(sd_K),
  946. sd_r = first(sd_r),
  947. sd_AUC = first(sd_AUC)
  948. )
  949. message("Calculating summary statistics after quality control excluding zero values")
  950. df_no_zeros_stats <- calculate_summary_stats(
  951. df = df_no_zeros,
  952. variables = summary_vars,
  953. group_vars = c("conc_num", "conc_num_factor")
  954. )$df_with_stats
  955. message("Filtering by 2SD of K")
  956. df_na_within_2sd_k <- df_na_stats %>%
  957. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  958. df_na_outside_2sd_k <- df_na_stats %>%
  959. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  960. message("Calculating summary statistics for L within 2SD of K")
  961. # TODO We're omitting the original z_max calculation, not sure if needed?
  962. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  963. write.csv(ss,
  964. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  965. row.names = FALSE)
  966. message("Calculating summary statistics for L outside 2SD of K")
  967. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  968. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  969. write.csv(ss$summary_stats,
  970. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  971. row.names = FALSE)
  972. # Each plots list corresponds to a file
  973. l_vs_k_plot_configs <- list(
  974. list(
  975. df = df,
  976. x_var = "L",
  977. y_var = "K",
  978. plot_type = "scatter",
  979. delta_bg_point = TRUE,
  980. title = "Raw L vs K before quality control",
  981. color_var = "conc_num_factor",
  982. error_bar = FALSE,
  983. legend_position = "right"
  984. )
  985. )
  986. frequency_delta_bg_plot_configs <- list(
  987. list(
  988. df = df_stats,
  989. x_var = "delta_bg",
  990. y_var = NULL,
  991. plot_type = "density",
  992. title = "Density plot for Delta Background by Conc All Data",
  993. color_var = "conc_num_factor",
  994. x_label = "Delta Background",
  995. y_label = "Density",
  996. error_bar = FALSE,
  997. legend_position = "right"),
  998. list(
  999. df = df_stats,
  1000. x_var = "delta_bg",
  1001. y_var = NULL,
  1002. plot_type = "bar",
  1003. title = "Bar plot for Delta Background by Conc All Data",
  1004. color_var = "conc_num_factor",
  1005. x_label = "Delta Background",
  1006. y_label = "Count",
  1007. error_bar = FALSE,
  1008. legend_position = "right")
  1009. )
  1010. above_threshold_plot_configs <- list(
  1011. list(
  1012. df = df_above_tolerance,
  1013. x_var = "L",
  1014. y_var = "K",
  1015. plot_type = "scatter",
  1016. delta_bg_point = TRUE,
  1017. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1018. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1019. color_var = "conc_num_factor",
  1020. position = "jitter",
  1021. annotations = list(
  1022. list(
  1023. x = l_half_median,
  1024. y = k_half_median,
  1025. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1026. )
  1027. ),
  1028. error_bar = FALSE,
  1029. legend_position = "right"
  1030. )
  1031. )
  1032. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1033. variables = summary_vars,
  1034. df_before = df_stats,
  1035. df_after = df_na_stats_filtered
  1036. )
  1037. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1038. variables = summary_vars,
  1039. df_before = df_stats,
  1040. df_after = df_na_stats_filtered,
  1041. plot_type = "box"
  1042. )
  1043. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1044. variables = summary_vars,
  1045. stages = c("after"), # Only after QC
  1046. df_after = df_no_zeros_stats
  1047. )
  1048. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1049. variables = summary_vars,
  1050. stages = c("after"), # Only after QC
  1051. df_after = df_no_zeros_stats,
  1052. plot_type = "box"
  1053. )
  1054. l_outside_2sd_k_plot_configs <- list(
  1055. list(
  1056. df = df_na_l_outside_2sd_k_stats,
  1057. x_var = "L",
  1058. y_var = "K",
  1059. plot_type = "scatter",
  1060. delta_bg_point = TRUE,
  1061. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1062. color_var = "conc_num_factor",
  1063. position = "jitter",
  1064. legend_position = "right"
  1065. )
  1066. )
  1067. delta_bg_outside_2sd_k_plot_configs <- list(
  1068. list(
  1069. df = df_na_l_outside_2sd_k_stats,
  1070. x_var = "delta_bg",
  1071. y_var = "K",
  1072. plot_type = "scatter",
  1073. gene_point = TRUE,
  1074. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1075. color_var = "conc_num_factor",
  1076. position = "jitter",
  1077. legend_position = "right"
  1078. )
  1079. )
  1080. message("Generating quality control plots in parallel")
  1081. # future::plan(future::multicore, workers = parallel::detectCores())
  1082. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1083. plot_configs <- list(
  1084. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1085. plot_configs = l_vs_k_plot_configs),
  1086. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1087. plot_configs = frequency_delta_bg_plot_configs),
  1088. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1089. plot_configs = above_threshold_plot_configs),
  1090. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1091. plot_configs = plate_analysis_plot_configs),
  1092. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1093. plot_configs = plate_analysis_boxplot_configs),
  1094. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1095. plot_configs = plate_analysis_no_zeros_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1097. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1098. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1099. plot_configs = l_outside_2sd_k_plot_configs),
  1100. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1101. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1102. )
  1103. # Generating quality control plots in parallel
  1104. furrr::future_map(plot_configs, function(config) {
  1105. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1106. }, .options = furrr_options(seed = TRUE))
  1107. # Process background strains
  1108. bg_strains <- c("YDL227C")
  1109. lapply(bg_strains, function(strain) {
  1110. message("Processing background strain: ", strain)
  1111. # Handle missing data by setting zero values to NA
  1112. # and then removing any rows with NA in L col
  1113. df_bg <- df_na %>%
  1114. filter(OrfRep == strain) %>%
  1115. mutate(
  1116. L = if_else(L == 0, NA, L),
  1117. K = if_else(K == 0, NA, K),
  1118. r = if_else(r == 0, NA, r),
  1119. AUC = if_else(AUC == 0, NA, AUC)
  1120. ) %>%
  1121. filter(!is.na(L))
  1122. # Recalculate summary statistics for the background strain
  1123. message("Calculating summary statistics for background strain")
  1124. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1125. summary_stats_bg <- ss_bg$summary_stats
  1126. write.csv(summary_stats_bg,
  1127. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1128. row.names = FALSE)
  1129. # Set the missing values to the highest theoretical value at each drug conc for L
  1130. # Leave other values as 0 for the max/min
  1131. df_reference <- df_na_stats %>% # formerly X2_RF
  1132. filter(OrfRep == strain) %>%
  1133. filter(!is.na(L)) %>%
  1134. group_by(conc_num, conc_num_factor) %>%
  1135. mutate(
  1136. max_l_theoretical = max(max_L, na.rm = TRUE),
  1137. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1138. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1139. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1140. ungroup()
  1141. # Ditto for deletion strains
  1142. df_deletion <- df_na_stats %>% # formerly X2
  1143. filter(OrfRep != strain) %>%
  1144. filter(!is.na(L)) %>%
  1145. mutate(SM = 0) %>%
  1146. group_by(conc_num, conc_num_factor) %>%
  1147. mutate(
  1148. max_l_theoretical = max(max_L, na.rm = TRUE),
  1149. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1150. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1151. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1152. ungroup()
  1153. message("Calculating reference strain interaction scores")
  1154. df_reference_stats <- calculate_summary_stats(
  1155. df = df_reference,
  1156. variables = interaction_vars,
  1157. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1158. )$df_with_stats
  1159. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1160. zscore_calculations_reference <- reference_results$calculations
  1161. zscore_interactions_reference <- reference_results$interactions
  1162. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1163. message("Calculating deletion strain(s) interactions scores")
  1164. df_deletion_stats <- calculate_summary_stats(
  1165. df = df_deletion,
  1166. variables = interaction_vars,
  1167. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1168. )$df_with_stats
  1169. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1170. zscore_calculations <- deletion_results$calculations
  1171. zscore_interactions <- deletion_results$interactions
  1172. zscore_interactions_joined <- deletion_results$interactions_joined
  1173. # Writing Z-Scores to file
  1174. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1175. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1176. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1177. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1178. # Create interaction plots
  1179. message("Generating reference interaction plots")
  1180. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1181. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1182. message("Generating deletion interaction plots")
  1183. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1184. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1185. # Define conditions for enhancers and suppressors
  1186. # TODO Add to study config?
  1187. threshold <- 2
  1188. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1189. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1190. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1191. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1192. # Subset data
  1193. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1194. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1195. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1196. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1197. # Save enhancers and suppressors
  1198. message("Writing enhancer/suppressor csv files")
  1199. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1200. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1201. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1202. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1203. # Combine conditions for enhancers and suppressors
  1204. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1205. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1206. # Save combined enhancers and suppressors
  1207. write.csv(enhancers_and_suppressors_L,
  1208. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1209. write.csv(enhancers_and_suppressors_K,
  1210. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1211. # Handle linear model based enhancers and suppressors
  1212. lm_threshold <- 2 # TODO add to study config?
  1213. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1214. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1215. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1216. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1217. # Save linear model based enhancers and suppressors
  1218. message("Writing linear model enhancer/suppressor csv files")
  1219. write.csv(enhancers_lm_L,
  1220. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1221. write.csv(suppressors_lm_L,
  1222. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1223. write.csv(enhancers_lm_K,
  1224. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1225. write.csv(suppressors_lm_K,
  1226. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1227. message("Generating rank plots")
  1228. rank_plot_configs <- generate_rank_plot_configs(
  1229. df = zscore_interactions_joined,
  1230. variables = interaction_vars,
  1231. is_lm = FALSE,
  1232. adjust = TRUE
  1233. )
  1234. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1235. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1236. message("Generating ranked linear model plots")
  1237. rank_lm_plot_configs <- generate_rank_plot_configs(
  1238. df = zscore_interactions_joined,
  1239. variables = interaction_vars,
  1240. is_lm = TRUE,
  1241. adjust = TRUE
  1242. )
  1243. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1244. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1245. message("Filtering and reranking plots")
  1246. interaction_threshold <- 2 # TODO add to study config?
  1247. # Formerly X_NArm
  1248. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1249. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1250. mutate(
  1251. Overlap = case_when(
  1252. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1253. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1254. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1255. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1256. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1257. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1258. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1259. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1260. TRUE ~ "No Effect"
  1261. ),
  1262. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1263. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1264. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1265. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1266. )
  1267. message("Generating filtered ranked plots")
  1268. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1269. df = zscore_interactions_filtered,
  1270. variables = interaction_vars,
  1271. is_lm = FALSE,
  1272. adjust = FALSE,
  1273. overlap_color = TRUE
  1274. )
  1275. generate_and_save_plots(
  1276. out_dir = out_dir,
  1277. filename = "RankPlots_na_rm",
  1278. plot_configs = rank_plot_filtered_configs,
  1279. grid_layout = list(ncol = 3, nrow = 2))
  1280. message("Generating filtered ranked linear model plots")
  1281. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1282. df = zscore_interactions_filtered,
  1283. variables = interaction_vars,
  1284. is_lm = TRUE,
  1285. adjust = FALSE,
  1286. overlap_color = TRUE
  1287. )
  1288. generate_and_save_plots(
  1289. out_dir = out_dir,
  1290. filename = "rank_plots_lm_na_rm",
  1291. plot_configs = rank_plot_lm_filtered_configs,
  1292. grid_layout = list(ncol = 3, nrow = 2))
  1293. message("Generating correlation curve parameter pair plots")
  1294. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1295. generate_and_save_plots(
  1296. out_dir = out_dir,
  1297. filename = "correlation_cpps",
  1298. plot_configs = correlation_plot_configs,
  1299. grid_layout = list(ncol = 2, nrow = 2))
  1300. })
  1301. })
  1302. }
  1303. main()