calculate_interaction_zscores.R 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. )
  227. # Fit linear models per group
  228. lm_results <- calculations %>%
  229. nest() %>%
  230. mutate(
  231. # Fit linear models
  232. gene_lm_L = map(data, ~ lm(Delta_L ~ conc_num_factor, data = .x)),
  233. gene_lm_K = map(data, ~ lm(Delta_K ~ conc_num_factor, data = .x)),
  234. gene_lm_r = map(data, ~ lm(Delta_r ~ conc_num_factor, data = .x)),
  235. gene_lm_AUC = map(data, ~ lm(Delta_AUC ~ conc_num_factor, data = .x)),
  236. # Extract coefficients using purrr::map_dbl
  237. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  238. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  239. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  240. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  241. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  242. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  243. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  244. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  245. # Calculate R-squared values for Delta_ models
  246. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  247. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  248. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  249. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared),
  250. # Calculate lm_Score_* based on coefficients
  251. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  252. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  253. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  254. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  255. ) %>%
  256. select(-data, -starts_with("gene_lm_")) %>%
  257. ungroup()
  258. # Merge lm_results back into calculations
  259. calculations <- calculations %>%
  260. left_join(lm_results, by = group_vars)
  261. # Calculate overall mean and SD for lm_Score_* variables
  262. gene_lm_means <- lm_results %>%
  263. summarise(
  264. L = mean(lm_Score_L, na.rm = TRUE),
  265. K = mean(lm_Score_K, na.rm = TRUE),
  266. r = mean(lm_Score_r, na.rm = TRUE),
  267. AUC = mean(lm_Score_AUC, na.rm = TRUE)
  268. )
  269. gene_lm_sds <- lm_results %>%
  270. summarise(
  271. L = sd(lm_Score_L, na.rm = TRUE),
  272. K = sd(lm_Score_K, na.rm = TRUE),
  273. r = sd(lm_Score_r, na.rm = TRUE),
  274. AUC = sd(lm_Score_AUC, na.rm = TRUE)
  275. )
  276. # Calculate gene Z-scores
  277. calculations <- calculations %>%
  278. mutate(
  279. Z_lm_L = (lm_Score_L - gene_lm_means$L) / gene_lm_sds$L,
  280. Z_lm_K = (lm_Score_K - gene_lm_means$K) / gene_lm_sds$K,
  281. Z_lm_r = (lm_Score_r - gene_lm_means$r) / gene_lm_sds$r,
  282. Z_lm_AUC = (lm_Score_AUC - gene_lm_means$AUC) / gene_lm_sds$AUC
  283. )
  284. # Build summary stats (interactions)
  285. interactions <- calculations %>%
  286. group_by(across(all_of(group_vars))) %>%
  287. summarise(
  288. # Calculate average Z-scores
  289. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  290. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  291. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  292. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  293. # Interaction Z-scores
  294. Z_lm_L = first(Z_lm_L),
  295. Z_lm_K = first(Z_lm_K),
  296. Z_lm_r = first(Z_lm_r),
  297. Z_lm_AUC = first(Z_lm_AUC),
  298. # Raw Shifts
  299. Raw_Shift_L = first(Raw_Shift_L),
  300. Raw_Shift_K = first(Raw_Shift_K),
  301. Raw_Shift_r = first(Raw_Shift_r),
  302. Raw_Shift_AUC = first(Raw_Shift_AUC),
  303. # Z Shifts
  304. Z_Shift_L = first(Z_Shift_L),
  305. Z_Shift_K = first(Z_Shift_K),
  306. Z_Shift_r = first(Z_Shift_r),
  307. Z_Shift_AUC = first(Z_Shift_AUC),
  308. # Include NG, DB, SM
  309. NG = first(NG),
  310. DB = first(DB),
  311. SM = first(SM)
  312. ) %>%
  313. arrange(desc(Z_lm_L), desc(NG)) %>%
  314. ungroup()
  315. # Calculate overlap
  316. interactions <- interactions %>%
  317. mutate(
  318. Overlap = case_when(
  319. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  320. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  321. Z_lm_L >= overlap_threshold & Avg_Zscore_L < overlap_threshold ~ "Deletion Enhancer lm only",
  322. Z_lm_L < overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  323. Z_lm_L <= -overlap_threshold & Avg_Zscore_L > -overlap_threshold ~ "Deletion Suppressor lm only",
  324. Z_lm_L > -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  325. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  326. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  327. TRUE ~ "No Effect"
  328. )
  329. )
  330. # Fit correlation models between Z_lm_* and Avg_Zscore_* (same-variable)
  331. correlation_lms_same <- list(
  332. L = lm(Z_lm_L ~ Avg_Zscore_L, data = interactions),
  333. K = lm(Z_lm_K ~ Avg_Zscore_K, data = interactions),
  334. r = lm(Z_lm_r ~ Avg_Zscore_r, data = interactions),
  335. AUC = lm(Z_lm_AUC ~ Avg_Zscore_AUC, data = interactions)
  336. )
  337. # Extract correlation statistics for same-variable correlations
  338. correlation_stats_same <- map(correlation_lms_same, ~ {
  339. list(
  340. intercept = coef(.x)[1],
  341. slope = coef(.x)[2],
  342. r_squared = summary(.x)$r.squared
  343. )
  344. })
  345. # Fit additional correlation models between different Z_lm_* variables
  346. correlation_lms_diff <- list(
  347. L_vs_K = lm(Z_lm_K ~ Z_lm_L, data = interactions),
  348. L_vs_r = lm(Z_lm_r ~ Z_lm_L, data = interactions),
  349. L_vs_AUC = lm(Z_lm_AUC ~ Z_lm_L, data = interactions),
  350. K_vs_r = lm(Z_lm_r ~ Z_lm_K, data = interactions),
  351. K_vs_AUC = lm(Z_lm_AUC ~ Z_lm_K, data = interactions),
  352. r_vs_AUC = lm(Z_lm_AUC ~ Z_lm_r, data = interactions)
  353. )
  354. # Extract correlation statistics for different-variable correlations
  355. correlation_stats_diff <- map(correlation_lms_diff, ~ {
  356. list(
  357. intercept = coef(.x)[1],
  358. slope = coef(.x)[2],
  359. r_squared = summary(.x)$r.squared
  360. )
  361. })
  362. # Combine all correlation stats
  363. correlation_stats <- c(correlation_stats_same, correlation_stats_diff)
  364. # Prepare full_data by merging interactions back into calculations
  365. full_data <- calculations %>%
  366. left_join(interactions, by = group_vars)
  367. return(list(
  368. calculations = calculations,
  369. interactions = interactions,
  370. full_data = full_data,
  371. correlation_stats = correlation_stats
  372. ))
  373. }
  374. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  375. message("Generating ", filename, ".pdf and ", filename, ".html")
  376. # Check if we're dealing with multiple plot groups
  377. plot_groups <- if ("plots" %in% names(plot_configs)) {
  378. list(plot_configs) # Single group
  379. } else {
  380. plot_configs # Multiple groups
  381. }
  382. for (group in plot_groups) {
  383. static_plots <- list()
  384. plotly_plots <- list()
  385. grid_layout <- group$grid_layout
  386. plots <- group$plots
  387. for (i in seq_along(plots)) {
  388. config <- plots[[i]]
  389. df <- config$df
  390. if (config$plot_type == "bar") {
  391. if (!is.null(config$color_var)) {
  392. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  393. } else {
  394. aes_mapping <- aes(x = .data[[config$x_var]])
  395. }
  396. } else if (config$plot_type == "density") {
  397. if (!is.null(config$color_var)) {
  398. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  399. } else {
  400. aes_mapping <- aes(x = .data[[config$x_var]])
  401. }
  402. } else {
  403. # For other plot types
  404. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  405. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  406. } else if (!is.null(config$y_var)) {
  407. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  408. } else {
  409. aes_mapping <- aes(x = .data[[config$x_var]])
  410. }
  411. }
  412. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  413. plot <- switch(config$plot_type,
  414. "scatter" = generate_scatter_plot(plot, config),
  415. "box" = generate_boxplot(plot, config),
  416. "density" = plot + geom_density(),
  417. "bar" = plot + geom_bar(),
  418. plot # default (unused)
  419. )
  420. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  421. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  422. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  423. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  424. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  425. static_plots[[i]] <- plot
  426. plotly_plots[[i]] <- plotly_plot
  427. }
  428. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  429. if (is.null(grid_layout)) {
  430. for (plot in static_plots) {
  431. print(plot)
  432. }
  433. } else {
  434. grid.arrange(
  435. grobs = static_plots,
  436. ncol = grid_layout$ncol,
  437. nrow = grid_layout$nrow
  438. )
  439. }
  440. dev.off()
  441. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  442. message("Saving combined HTML file: ", out_html_file)
  443. htmltools::save_html(
  444. htmltools::tagList(plotly_plots),
  445. file = out_html_file
  446. )
  447. }
  448. }
  449. generate_scatter_plot <- function(plot, config) {
  450. # Define the points
  451. shape <- if (!is.null(config$shape)) config$shape else 3
  452. size <- if (!is.null(config$size)) config$size else 1.5
  453. position <-
  454. if (!is.null(config$position) && config$position == "jitter") {
  455. position_jitter(width = 0.1, height = 0)
  456. } else {
  457. "identity"
  458. }
  459. plot <- plot + geom_point(
  460. shape = shape,
  461. size = size,
  462. position = position
  463. )
  464. if (!is.null(config$cyan_points) && config$cyan_points) {
  465. plot <- plot + geom_point(
  466. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  467. color = "cyan",
  468. shape = 3,
  469. size = 0.5
  470. )
  471. }
  472. # Add Smooth Line if specified
  473. if (!is.null(config$smooth) && config$smooth) {
  474. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  475. if (!is.null(config$lm_line)) {
  476. plot <- plot +
  477. geom_abline(
  478. intercept = config$lm_line$intercept,
  479. slope = config$lm_line$slope,
  480. color = smooth_color
  481. )
  482. } else {
  483. plot <- plot +
  484. geom_smooth(
  485. method = "lm",
  486. se = FALSE,
  487. color = smooth_color
  488. )
  489. }
  490. }
  491. # Add SD Bands if specified
  492. if (!is.null(config$sd_band)) {
  493. plot <- plot +
  494. annotate(
  495. "rect",
  496. xmin = -Inf, xmax = Inf,
  497. ymin = config$sd_band, ymax = Inf,
  498. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  499. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  500. ) +
  501. annotate(
  502. "rect",
  503. xmin = -Inf, xmax = Inf,
  504. ymin = -config$sd_band, ymax = -Inf,
  505. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  506. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  507. ) +
  508. geom_hline(
  509. yintercept = c(-config$sd_band, config$sd_band),
  510. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  511. )
  512. }
  513. # Add Rectangles if specified
  514. if (!is.null(config$rectangles)) {
  515. for (rect in config$rectangles) {
  516. plot <- plot + annotate(
  517. "rect",
  518. xmin = rect$xmin,
  519. xmax = rect$xmax,
  520. ymin = rect$ymin,
  521. ymax = rect$ymax,
  522. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  523. color = ifelse(is.null(rect$color), "black", rect$color),
  524. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  525. )
  526. }
  527. }
  528. # Add error bars if specified
  529. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  530. if (!is.null(config$error_bar_params)) {
  531. plot <- plot + geom_errorbar(aes(ymin = config$error_bar_params$ymin, ymax = config$error_bar_params$ymax))
  532. } else {
  533. y_mean_col <- paste0("mean_", config$y_var)
  534. y_sd_col <- paste0("sd_", config$y_var)
  535. plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col), ymax = !!sym(y_mean_col) + !!sym(y_sd_col)))
  536. }
  537. }
  538. # Customize X-axis if specified
  539. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  540. # Check if x_var is factor or character (for discrete x-axis)
  541. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  542. plot <- plot +
  543. scale_x_discrete(
  544. name = config$x_label,
  545. breaks = config$x_breaks,
  546. labels = config$x_labels
  547. )
  548. } else {
  549. plot <- plot +
  550. scale_x_continuous(
  551. name = config$x_label,
  552. breaks = config$x_breaks,
  553. labels = config$x_labels
  554. )
  555. }
  556. }
  557. # Set Y-axis limits if specified
  558. if (!is.null(config$ylim_vals)) {
  559. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  560. }
  561. # Add annotations if specified
  562. if (!is.null(config$annotations)) {
  563. for (annotation in config$annotations) {
  564. plot <- plot +
  565. annotate(
  566. "text",
  567. x = annotation$x,
  568. y = annotation$y,
  569. label = annotation$label,
  570. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  571. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  572. size = ifelse(is.null(annotation$size), 6, annotation$size),
  573. color = ifelse(is.null(annotation$color), "black", annotation$color)
  574. )
  575. }
  576. }
  577. return(plot)
  578. }
  579. generate_boxplot <- function(plot, config) {
  580. # Convert x_var to a factor within aes mapping
  581. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  582. # Customize X-axis if specified
  583. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  584. # Check if x_var is factor or character (for discrete x-axis)
  585. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  586. plot <- plot +
  587. scale_x_discrete(
  588. name = config$x_label,
  589. breaks = config$x_breaks,
  590. labels = config$x_labels
  591. )
  592. } else {
  593. plot <- plot +
  594. scale_x_continuous(
  595. name = config$x_label,
  596. breaks = config$x_breaks,
  597. labels = config$x_labels
  598. )
  599. }
  600. }
  601. return(plot)
  602. }
  603. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  604. plot_type = "scatter", stages = c("before", "after")) {
  605. plot_configs <- list()
  606. for (var in variables) {
  607. for (stage in stages) {
  608. df_plot <- if (stage == "before") df_before else df_after
  609. # Check for non-finite values in the y-variable
  610. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  611. # Adjust settings based on plot_type
  612. plot_config <- list(
  613. df = df_plot_filtered,
  614. x_var = "scan",
  615. y_var = var,
  616. plot_type = plot_type,
  617. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  618. color_var = "conc_num_factor_factor",
  619. position = if (plot_type == "scatter") "jitter" else NULL,
  620. size = 0.2,
  621. error_bar = (plot_type == "scatter")
  622. )
  623. # Add config to plots list
  624. plot_configs <- append(plot_configs, list(plot_config))
  625. }
  626. }
  627. return(list(plots = plot_configs))
  628. }
  629. generate_interaction_plot_configs <- function(df, type) {
  630. if (type == "reference") {
  631. group_vars <- c("OrfRep", "Gene", "num")
  632. df <- df %>%
  633. mutate(OrfRepCombined = do.call(paste, c(across(all_of(group_vars)), sep = "_")))
  634. } else if (type == "deletion") {
  635. group_vars <- c("OrfRep", "Gene")
  636. df <- df %>%
  637. mutate(OrfRepCombined = OrfRep)
  638. }
  639. limits_map <- list(
  640. L = c(0, 130),
  641. K = c(-20, 160),
  642. r = c(0, 1),
  643. AUC = c(0, 12500)
  644. )
  645. delta_limits_map <- list(
  646. L = c(-60, 60),
  647. K = c(-60, 60),
  648. r = c(-0.6, 0.6),
  649. AUC = c(-6000, 6000)
  650. )
  651. overall_plot_configs <- list()
  652. delta_plot_configs <- list()
  653. # Overall plots with lm_line for each interaction
  654. for (var in names(limits_map)) {
  655. y_limits <- limits_map[[var]]
  656. # Use the pre-calculated lm intercept and slope from the dataframe
  657. lm_intercept_col <- paste0("lm_intercept_", var)
  658. lm_slope_col <- paste0("lm_slope_", var)
  659. plot_config <- list(
  660. df = df,
  661. plot_type = "scatter",
  662. x_var = "conc_num_factor_factor",
  663. y_var = var,
  664. x_label = unique(df$Drug)[1],
  665. title = sprintf("Scatter RF for %s with SD", var),
  666. coord_cartesian = y_limits,
  667. error_bar = TRUE,
  668. x_breaks = unique(df$conc_num_factor_factor),
  669. x_labels = as.character(unique(df$conc_num)),
  670. position = "jitter",
  671. smooth = TRUE,
  672. lm_line = list(
  673. intercept = mean(df[[lm_intercept_col]], na.rm = TRUE),
  674. slope = mean(df[[lm_slope_col]], na.rm = TRUE)
  675. )
  676. )
  677. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  678. }
  679. # Delta plots (add lm_line if necessary)
  680. unique_groups <- df %>% select(all_of(group_vars)) %>% distinct()
  681. for (i in seq_len(nrow(unique_groups))) {
  682. group <- unique_groups[i, ]
  683. group_data <- df %>% semi_join(group, by = group_vars)
  684. OrfRep <- as.character(group$OrfRep)
  685. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  686. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  687. for (var in names(delta_limits_map)) {
  688. y_limits <- delta_limits_map[[var]]
  689. y_span <- y_limits[2] - y_limits[1]
  690. # For error bars
  691. WT_sd_value <- group_data[[paste0("WT_sd_", var)]][1]
  692. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", var)]][1], 2)
  693. Z_lm_value <- round(group_data[[paste0("Z_lm_", var)]][1], 2)
  694. R_squared_value <- round(group_data[[paste0("R_squared_", var)]][1], 2)
  695. NG_value <- group_data$NG[1]
  696. DB_value <- group_data$DB[1]
  697. SM_value <- group_data$SM[1]
  698. annotations <- list(
  699. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  700. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  701. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  702. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  703. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  704. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  705. )
  706. # Delta plot configuration with lm_line if needed
  707. plot_config <- list(
  708. df = group_data,
  709. plot_type = "scatter",
  710. x_var = "conc_num_factor_factor",
  711. y_var = var,
  712. x_label = unique(group_data$Drug)[1],
  713. title = paste(OrfRepCombined, Gene, sep = " "),
  714. coord_cartesian = y_limits,
  715. annotations = annotations,
  716. error_bar = TRUE,
  717. error_bar_params = list(
  718. ymin = 0 - (2 * WT_sd_value),
  719. ymax = 0 + (2 * WT_sd_value)
  720. ),
  721. smooth = TRUE,
  722. x_breaks = unique(group_data$conc_num_factor_factor),
  723. x_labels = as.character(unique(group_data$conc_num)),
  724. ylim_vals = y_limits,
  725. lm_line = list(
  726. intercept = group_data[[lm_intercept_col]][1],
  727. slope = group_data[[lm_slope_col]][1]
  728. )
  729. )
  730. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  731. }
  732. }
  733. # Calculate dynamic grid layout based on the number of plots for the delta_L plots
  734. grid_ncol <- 4
  735. num_plots <- length(delta_plot_configs)
  736. grid_nrow <- ceiling(num_plots / grid_ncol)
  737. return(list(
  738. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  739. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  740. ))
  741. }
  742. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  743. sd_bands <- c(1, 2, 3)
  744. plot_configs <- list()
  745. variables <- c("L", "K")
  746. # Adjust (if necessary) and rank columns
  747. for (variable in variables) {
  748. if (adjust) {
  749. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  750. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  751. }
  752. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  753. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  754. }
  755. # Helper function to create a plot configuration
  756. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  757. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  758. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  759. # Default plot config
  760. plot_config <- list(
  761. df = df,
  762. x_var = rank_var,
  763. y_var = zscore_var,
  764. plot_type = "scatter",
  765. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  766. sd_band = sd_band,
  767. fill_positive = "#542788",
  768. fill_negative = "orange",
  769. alpha_positive = 0.3,
  770. alpha_negative = 0.3,
  771. annotations = NULL,
  772. shape = 3,
  773. size = 0.1,
  774. y_label = y_label,
  775. x_label = "Rank",
  776. legend_position = "none"
  777. )
  778. if (with_annotations) {
  779. # Add specific annotations for plots with annotations
  780. plot_config$annotations <- list(
  781. list(
  782. x = median(df[[rank_var]], na.rm = TRUE),
  783. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  784. label = paste("Deletion Enhancers =", num_enhancers)
  785. ),
  786. list(
  787. x = median(df[[rank_var]], na.rm = TRUE),
  788. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  789. label = paste("Deletion Suppressors =", num_suppressors)
  790. )
  791. )
  792. }
  793. return(plot_config)
  794. }
  795. # Generate plots for each variable
  796. for (variable in variables) {
  797. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  798. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  799. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  800. # Loop through SD bands
  801. for (sd_band in sd_bands) {
  802. # Create plot with annotations
  803. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  804. # Create plot without annotations
  805. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  806. }
  807. }
  808. # Calculate dynamic grid layout based on the number of plots
  809. grid_ncol <- 3
  810. num_plots <- length(plot_configs)
  811. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  812. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  813. }
  814. generate_correlation_plot_configs <- function(df, correlation_stats) {
  815. # Define relationships for different-variable correlations
  816. relationships <- list(
  817. list(x = "L", y = "K"),
  818. list(x = "L", y = "r"),
  819. list(x = "L", y = "AUC"),
  820. list(x = "K", y = "r"),
  821. list(x = "K", y = "AUC"),
  822. list(x = "r", y = "AUC")
  823. )
  824. plot_configs <- list()
  825. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  826. highlight_cyan_options <- c(FALSE, TRUE)
  827. for (highlight_cyan in highlight_cyan_options) {
  828. for (rel in relationships) {
  829. # Extract relevant variable names for Z_lm values
  830. x_var <- paste0("Z_lm_", rel$x)
  831. y_var <- paste0("Z_lm_", rel$y)
  832. # Access the correlation statistics from the correlation_stats list
  833. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  834. stats <- correlation_stats[[relationship_name]]
  835. intercept <- stats$intercept
  836. slope <- stats$slope
  837. r_squared <- stats$r_squared
  838. # Generate the label for the plot
  839. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  840. # Construct plot config
  841. plot_config <- list(
  842. df = df,
  843. x_var = x_var,
  844. y_var = y_var,
  845. plot_type = "scatter",
  846. title = plot_label,
  847. annotations = list(
  848. list(
  849. x = mean(df[[x_var]], na.rm = TRUE),
  850. y = mean(df[[y_var]], na.rm = TRUE),
  851. label = paste("R-squared =", round(r_squared, 3))
  852. )
  853. ),
  854. smooth = TRUE,
  855. smooth_color = "tomato3",
  856. lm_line = list(
  857. intercept = intercept,
  858. slope = slope
  859. ),
  860. shape = 3,
  861. size = 0.5,
  862. color_var = "Overlap",
  863. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  864. )
  865. plot_configs <- append(plot_configs, list(plot_config))
  866. }
  867. }
  868. return(list(plots = plot_configs))
  869. }
  870. main <- function() {
  871. lapply(names(args$experiments), function(exp_name) {
  872. exp <- args$experiments[[exp_name]]
  873. exp_path <- exp$path
  874. exp_sd <- exp$sd
  875. out_dir <- file.path(exp_path, "zscores")
  876. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  877. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  878. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  879. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  880. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  881. message("Loading and filtering data for experiment: ", exp_name)
  882. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  883. update_gene_names(args$sgd_gene_list) %>%
  884. as_tibble()
  885. # Filter rows above delta background tolerance
  886. df_above_tolerance <- df %>% filter(DB == 1)
  887. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  888. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  889. # Save some constants
  890. max_conc <- max(df$conc_num_factor)
  891. message("Calculating summary statistics before quality control")
  892. df_stats <- calculate_summary_stats(
  893. df = df,
  894. variables = summary_vars,
  895. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  896. message("Calculating summary statistics after quality control")
  897. ss <- calculate_summary_stats(
  898. df = df_na,
  899. variables = summary_vars,
  900. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  901. df_na_ss <- ss$summary_stats
  902. df_na_stats <- ss$df_with_stats
  903. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  904. # For plotting (ggplot warns on NAs)
  905. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  906. df_na_stats <- df_na_stats %>%
  907. mutate(
  908. WT_L = mean_L,
  909. WT_K = mean_K,
  910. WT_r = mean_r,
  911. WT_AUC = mean_AUC,
  912. WT_sd_L = sd_L,
  913. WT_sd_K = sd_K,
  914. WT_sd_r = sd_r,
  915. WT_sd_AUC = sd_AUC
  916. )
  917. # Pull the background means and standard deviations from zero concentration for interactions
  918. bg_stats <- df_na_stats %>%
  919. filter(conc_num == 0) %>%
  920. summarise(
  921. mean_L = first(mean_L),
  922. mean_K = first(mean_K),
  923. mean_r = first(mean_r),
  924. mean_AUC = first(mean_AUC),
  925. sd_L = first(sd_L),
  926. sd_K = first(sd_K),
  927. sd_r = first(sd_r),
  928. sd_AUC = first(sd_AUC)
  929. )
  930. message("Calculating summary statistics after quality control excluding zero values")
  931. df_no_zeros_stats <- calculate_summary_stats(
  932. df = df_no_zeros,
  933. variables = summary_vars,
  934. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  935. )$df_with_stats
  936. message("Filtering by 2SD of K")
  937. df_na_within_2sd_k <- df_na_stats %>%
  938. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  939. df_na_outside_2sd_k <- df_na_stats %>%
  940. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  941. message("Calculating summary statistics for L within 2SD of K")
  942. # TODO We're omitting the original z_max calculation, not sure if needed?
  943. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  944. write.csv(ss,
  945. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  946. row.names = FALSE)
  947. message("Calculating summary statistics for L outside 2SD of K")
  948. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  949. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  950. write.csv(ss$summary_stats,
  951. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  952. row.names = FALSE)
  953. # Each list of plots corresponds to a file
  954. l_vs_k_plot_configs <- list(
  955. plots = list(
  956. list(
  957. df = df,
  958. x_var = "L",
  959. y_var = "K",
  960. plot_type = "scatter",
  961. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  962. title = "Raw L vs K before quality control",
  963. color_var = "conc_num_factor_factor",
  964. error_bar = FALSE,
  965. legend_position = "right"
  966. )
  967. )
  968. )
  969. frequency_delta_bg_plot_configs <- list(
  970. plots = list(
  971. list(
  972. df = df_stats,
  973. x_var = "delta_bg",
  974. y_var = NULL,
  975. plot_type = "density",
  976. title = "Density plot for Delta Background by [Drug] (All Data)",
  977. color_var = "conc_num_factor_factor",
  978. x_label = "Delta Background",
  979. y_label = "Density",
  980. error_bar = FALSE,
  981. legend_position = "right"
  982. ),
  983. list(
  984. df = df_stats,
  985. x_var = "delta_bg",
  986. y_var = NULL,
  987. plot_type = "bar",
  988. title = "Bar plot for Delta Background by [Drug] (All Data)",
  989. color_var = "conc_num_factor_factor",
  990. x_label = "Delta Background",
  991. y_label = "Count",
  992. error_bar = FALSE,
  993. legend_position = "right"
  994. )
  995. )
  996. )
  997. above_threshold_plot_configs <- list(
  998. plots = list(
  999. list(
  1000. df = df_above_tolerance,
  1001. x_var = "L",
  1002. y_var = "K",
  1003. plot_type = "scatter",
  1004. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1005. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1006. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1007. color_var = "conc_num_factor_factor",
  1008. position = "jitter",
  1009. annotations = list(
  1010. list(
  1011. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1012. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1013. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1014. )
  1015. ),
  1016. error_bar = FALSE,
  1017. legend_position = "right"
  1018. )
  1019. )
  1020. )
  1021. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1022. variables = summary_vars,
  1023. df_before = df_stats,
  1024. df_after = df_na_stats_filtered
  1025. )
  1026. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1027. variables = summary_vars,
  1028. df_before = df_stats,
  1029. df_after = df_na_stats_filtered,
  1030. plot_type = "box"
  1031. )
  1032. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1033. variables = summary_vars,
  1034. stages = c("after"), # Only after QC
  1035. df_after = df_no_zeros_stats
  1036. )
  1037. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1038. variables = summary_vars,
  1039. stages = c("after"), # Only after QC
  1040. df_after = df_no_zeros_stats,
  1041. plot_type = "box"
  1042. )
  1043. l_outside_2sd_k_plot_configs <- list(
  1044. plots = list(
  1045. list(
  1046. df = df_na_l_outside_2sd_k_stats,
  1047. x_var = "L",
  1048. y_var = "K",
  1049. plot_type = "scatter",
  1050. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1051. color_var = "conc_num_factor_factor",
  1052. position = "jitter",
  1053. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1054. annotations = list(
  1055. list(
  1056. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1057. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1058. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1059. )
  1060. ),
  1061. error_bar = FALSE,
  1062. legend_position = "right"
  1063. )
  1064. )
  1065. )
  1066. delta_bg_outside_2sd_k_plot_configs <- list(
  1067. plots = list(
  1068. list(
  1069. df = df_na_l_outside_2sd_k_stats,
  1070. x_var = "delta_bg",
  1071. y_var = "K",
  1072. plot_type = "scatter",
  1073. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1074. color_var = "conc_num_factor_factor",
  1075. position = "jitter",
  1076. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1077. annotations = list(
  1078. list(
  1079. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1080. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1081. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1082. )
  1083. ),
  1084. error_bar = FALSE,
  1085. legend_position = "right"
  1086. )
  1087. )
  1088. )
  1089. message("Generating quality control plots in parallel")
  1090. # future::plan(future::multicore, workers = parallel::detectCores())
  1091. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1092. plot_configs <- list(
  1093. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1094. plot_configs = l_vs_k_plot_configs),
  1095. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1096. plot_configs = frequency_delta_bg_plot_configs),
  1097. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1098. plot_configs = above_threshold_plot_configs),
  1099. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1100. plot_configs = plate_analysis_plot_configs),
  1101. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1102. plot_configs = plate_analysis_boxplot_configs),
  1103. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1104. plot_configs = plate_analysis_no_zeros_plot_configs),
  1105. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1106. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1107. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1108. plot_configs = l_outside_2sd_k_plot_configs),
  1109. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1110. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1111. )
  1112. # Generating quality control plots in parallel
  1113. furrr::future_map(plot_configs, function(config) {
  1114. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1115. }, .options = furrr_options(seed = TRUE))
  1116. # Process background strains
  1117. bg_strains <- c("YDL227C")
  1118. lapply(bg_strains, function(strain) {
  1119. message("Processing background strain: ", strain)
  1120. # Handle missing data by setting zero values to NA
  1121. # and then removing any rows with NA in L col
  1122. df_bg <- df_na %>%
  1123. filter(OrfRep == strain) %>%
  1124. mutate(
  1125. L = if_else(L == 0, NA, L),
  1126. K = if_else(K == 0, NA, K),
  1127. r = if_else(r == 0, NA, r),
  1128. AUC = if_else(AUC == 0, NA, AUC)
  1129. ) %>%
  1130. filter(!is.na(L))
  1131. # Recalculate summary statistics for the background strain
  1132. message("Calculating summary statistics for background strain")
  1133. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1134. summary_stats_bg <- ss_bg$summary_stats
  1135. write.csv(summary_stats_bg,
  1136. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1137. row.names = FALSE)
  1138. # Set the missing values to the highest theoretical value at each drug conc for L
  1139. # Leave other values as 0 for the max/min
  1140. df_reference <- df_na_stats %>% # formerly X2_RF
  1141. filter(OrfRep == strain) %>%
  1142. filter(!is.na(L)) %>%
  1143. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1144. mutate(
  1145. max_l_theoretical = max(max_L, na.rm = TRUE),
  1146. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1147. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1148. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1149. ungroup()
  1150. # Ditto for deletion strains
  1151. df_deletion <- df_na_stats %>% # formerly X2
  1152. filter(OrfRep != strain) %>%
  1153. filter(!is.na(L)) %>%
  1154. mutate(SM = 0) %>%
  1155. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1156. mutate(
  1157. max_l_theoretical = max(max_L, na.rm = TRUE),
  1158. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1159. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1160. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1161. ungroup()
  1162. message("Calculating reference strain interaction scores")
  1163. df_reference_stats <- calculate_summary_stats(
  1164. df = df_reference,
  1165. variables = interaction_vars,
  1166. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1167. )$df_with_stats
  1168. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1169. zscore_calculations_reference <- reference_results$calculations
  1170. zscore_interactions_reference <- reference_results$interactions
  1171. zscore_interactions_reference_joined <- reference_results$full_data
  1172. message("Calculating deletion strain(s) interactions scores")
  1173. df_deletion_stats <- calculate_summary_stats(
  1174. df = df_deletion,
  1175. variables = interaction_vars,
  1176. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  1177. )$df_with_stats
  1178. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1179. zscore_calculations <- deletion_results$calculations
  1180. zscore_interactions <- deletion_results$interactions
  1181. zscore_interactions_joined <- deletion_results$full_data
  1182. # Writing Z-Scores to file
  1183. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1184. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1185. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1186. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1187. # Create interaction plots
  1188. message("Generating reference interaction plots")
  1189. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1190. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1191. message("Generating deletion interaction plots")
  1192. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1193. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1194. # Define conditions for enhancers and suppressors
  1195. # TODO Add to study config?
  1196. threshold <- 2
  1197. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1198. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1199. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1200. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1201. # Subset data
  1202. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1203. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1204. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1205. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1206. # Save enhancers and suppressors
  1207. message("Writing enhancer/suppressor csv files")
  1208. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1209. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1210. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1211. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1212. # Combine conditions for enhancers and suppressors
  1213. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1214. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1215. # Save combined enhancers and suppressors
  1216. write.csv(enhancers_and_suppressors_L,
  1217. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1218. write.csv(enhancers_and_suppressors_K,
  1219. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1220. # Handle linear model based enhancers and suppressors
  1221. lm_threshold <- 2 # TODO add to study config?
  1222. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1223. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1224. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1225. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1226. # Save linear model based enhancers and suppressors
  1227. message("Writing linear model enhancer/suppressor csv files")
  1228. write.csv(enhancers_lm_L,
  1229. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1230. write.csv(suppressors_lm_L,
  1231. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1232. write.csv(enhancers_lm_K,
  1233. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1234. write.csv(suppressors_lm_K,
  1235. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1236. message("Generating rank plots")
  1237. rank_plot_configs <- generate_rank_plot_configs(
  1238. df = zscore_interactions_joined,
  1239. is_lm = FALSE,
  1240. adjust = TRUE
  1241. )
  1242. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1243. plot_configs = rank_plot_configs)
  1244. message("Generating ranked linear model plots")
  1245. rank_lm_plot_configs <- generate_rank_plot_configs(
  1246. df = zscore_interactions_joined,
  1247. is_lm = TRUE,
  1248. adjust = TRUE
  1249. )
  1250. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1251. plot_configs = rank_lm_plot_configs)
  1252. message("Generating filtered ranked plots")
  1253. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1254. df = zscore_interactions_filtered,
  1255. is_lm = FALSE,
  1256. adjust = FALSE,
  1257. overlap_color = TRUE
  1258. )
  1259. generate_and_save_plots(
  1260. out_dir = out_dir,
  1261. filename = "RankPlots_na_rm",
  1262. plot_configs = rank_plot_filtered_configs)
  1263. message("Generating filtered ranked linear model plots")
  1264. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1265. df = zscore_interactions_filtered,
  1266. is_lm = TRUE,
  1267. adjust = FALSE,
  1268. overlap_color = TRUE
  1269. )
  1270. generate_and_save_plots(
  1271. out_dir = out_dir,
  1272. filename = "rank_plots_lm_na_rm",
  1273. plot_configs = rank_plot_lm_filtered_configs)
  1274. message("Generating correlation curve parameter pair plots")
  1275. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1276. generate_and_save_plots(
  1277. out_dir = out_dir,
  1278. filename = "correlation_cpps",
  1279. plot_configs = correlation_plot_configs,
  1280. )
  1281. })
  1282. })
  1283. }
  1284. main()
  1285. # For future simplification of joined dataframes
  1286. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))