calculate_interaction_zscores.R 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. update_gene_names <- function(df, sgd_gene_list) {
  146. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  147. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  148. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  149. df <- df %>%
  150. mutate(
  151. mapped_genes = gene_map[ORF],
  152. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  153. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  154. )
  155. return(df)
  156. }
  157. calculate_summary_stats <- function(df, variables, group_vars) {
  158. summary_stats <- df %>%
  159. group_by(across(all_of(group_vars))) %>%
  160. summarise(
  161. N = n(),
  162. across(all_of(variables),
  163. list(
  164. mean = ~ mean(.x, na.rm = TRUE),
  165. median = ~ median(.x, na.rm = TRUE),
  166. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  167. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  168. sd = ~ sd(.x, na.rm = TRUE),
  169. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  170. ),
  171. .names = "{.fn}_{.col}"
  172. ),
  173. .groups = "drop"
  174. )
  175. # Create a cleaned version of df that doesn't overlap with summary_stats
  176. df_cleaned <- df %>%
  177. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  178. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  179. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  180. }
  181. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  182. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  183. total_conc_num <- length(unique(df$conc_num))
  184. # Calculate WT statistics from df_bg
  185. wt_stats <- df_bg %>%
  186. filter(conc_num == 0) %>% # use the zero drug concentration background
  187. summarise(
  188. WT_L = mean(mean_L, na.rm = TRUE),
  189. WT_sd_L = mean(sd_L, na.rm = TRUE),
  190. WT_K = mean(mean_K, na.rm = TRUE),
  191. WT_sd_K = mean(sd_K, na.rm = TRUE),
  192. WT_r = mean(mean_r, na.rm = TRUE),
  193. WT_sd_r = mean(sd_r, na.rm = TRUE),
  194. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  195. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  196. )
  197. # Add WT statistics to df
  198. df <- df %>%
  199. mutate(
  200. WT_L = wt_stats$WT_L,
  201. WT_sd_L = wt_stats$WT_sd_L,
  202. WT_K = wt_stats$WT_K,
  203. WT_sd_K = wt_stats$WT_sd_K,
  204. WT_r = wt_stats$WT_r,
  205. WT_sd_r = wt_stats$WT_sd_r,
  206. WT_AUC = wt_stats$WT_AUC,
  207. WT_sd_AUC = wt_stats$WT_sd_AUC
  208. )
  209. # Compute mean values at zero concentration
  210. mean_L_zero_df <- df %>%
  211. filter(conc_num == 0) %>%
  212. group_by(across(all_of(group_vars))) %>%
  213. summarise(
  214. mean_L_zero = mean(mean_L, na.rm = TRUE),
  215. mean_K_zero = mean(mean_K, na.rm = TRUE),
  216. mean_r_zero = mean(mean_r, na.rm = TRUE),
  217. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  218. .groups = "drop"
  219. )
  220. # Join mean_L_zero_df to df
  221. df <- df %>%
  222. left_join(mean_L_zero_df, by = group_vars)
  223. # Calculate Raw Shifts and Z Shifts
  224. df <- df %>%
  225. mutate(
  226. Raw_Shift_L = mean_L_zero - WT_L,
  227. Raw_Shift_K = mean_K_zero - WT_K,
  228. Raw_Shift_r = mean_r_zero - WT_r,
  229. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  230. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  231. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  232. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  233. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  234. )
  235. calculations <- df %>%
  236. group_by(across(all_of(group_vars))) %>%
  237. mutate(
  238. NG_sum = sum(NG, na.rm = TRUE),
  239. DB_sum = sum(DB, na.rm = TRUE),
  240. SM_sum = sum(SM, na.rm = TRUE),
  241. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  242. # Expected values
  243. Exp_L = WT_L + Raw_Shift_L,
  244. Exp_K = WT_K + Raw_Shift_K,
  245. Exp_r = WT_r + Raw_Shift_r,
  246. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  247. # Deltas
  248. Delta_L = mean_L - Exp_L,
  249. Delta_K = mean_K - Exp_K,
  250. Delta_r = mean_r - Exp_r,
  251. Delta_AUC = mean_AUC - Exp_AUC,
  252. # Adjust deltas for NG and SM
  253. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  254. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  255. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  256. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  257. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  258. # Calculate Z-scores
  259. Zscore_L = Delta_L / WT_sd_L,
  260. Zscore_K = Delta_K / WT_sd_K,
  261. Zscore_r = Delta_r / WT_sd_r,
  262. Zscore_AUC = Delta_AUC / WT_sd_AUC
  263. ) %>%
  264. group_modify(~ {
  265. # Perform linear models
  266. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  267. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  268. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  269. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  270. .x %>%
  271. mutate(
  272. lm_intercept_L = coef(lm_L)[1],
  273. lm_slope_L = coef(lm_L)[2],
  274. R_Squared_L = summary(lm_L)$r.squared,
  275. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  276. lm_intercept_K = coef(lm_K)[1],
  277. lm_slope_K = coef(lm_K)[2],
  278. R_Squared_K = summary(lm_K)$r.squared,
  279. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  280. lm_intercept_r = coef(lm_r)[1],
  281. lm_slope_r = coef(lm_r)[2],
  282. R_Squared_r = summary(lm_r)$r.squared,
  283. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  284. lm_intercept_AUC = coef(lm_AUC)[1],
  285. lm_slope_AUC = coef(lm_AUC)[2],
  286. R_Squared_AUC = summary(lm_AUC)$r.squared,
  287. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  288. )
  289. }) %>%
  290. ungroup()
  291. # Summary statistics for lm scores
  292. lm_means_sds <- calculations %>%
  293. summarise(
  294. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  295. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  296. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  297. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  298. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  299. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  300. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  301. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  302. .groups = "drop"
  303. )
  304. calculations <- calculations %>%
  305. mutate(
  306. lm_mean_L = lm_means_sds$lm_mean_L,
  307. lm_sd_L = lm_means_sds$lm_sd_L,
  308. lm_mean_K = lm_means_sds$lm_mean_K,
  309. lm_sd_K = lm_means_sds$lm_sd_K,
  310. lm_mean_r = lm_means_sds$lm_mean_r,
  311. lm_sd_r = lm_means_sds$lm_sd_r,
  312. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  313. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  314. )
  315. # Continue with gene Z-scores and interactions
  316. calculations <- calculations %>%
  317. mutate(
  318. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  319. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  320. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  321. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  322. )
  323. # Build summary stats (interactions)
  324. interactions <- calculations %>%
  325. group_by(across(all_of(group_vars))) %>%
  326. summarise(
  327. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  328. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  329. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  330. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  331. # Interaction Z-scores
  332. Z_lm_L = first(Z_lm_L),
  333. Z_lm_K = first(Z_lm_K),
  334. Z_lm_r = first(Z_lm_r),
  335. Z_lm_AUC = first(Z_lm_AUC),
  336. # Raw Shifts
  337. Raw_Shift_L = first(Raw_Shift_L),
  338. Raw_Shift_K = first(Raw_Shift_K),
  339. Raw_Shift_r = first(Raw_Shift_r),
  340. Raw_Shift_AUC = first(Raw_Shift_AUC),
  341. # Z Shifts
  342. Z_Shift_L = first(Z_Shift_L),
  343. Z_Shift_K = first(Z_Shift_K),
  344. Z_Shift_r = first(Z_Shift_r),
  345. Z_Shift_AUC = first(Z_Shift_AUC),
  346. # R Squared values
  347. R_Squared_L = first(R_Squared_L),
  348. R_Squared_K = first(R_Squared_K),
  349. R_Squared_r = first(R_Squared_r),
  350. R_Squared_AUC = first(R_Squared_AUC),
  351. # NG, DB, SM values
  352. NG = first(NG),
  353. DB = first(DB),
  354. SM = first(SM),
  355. .groups = "drop"
  356. )
  357. # Creating the final calculations and interactions dataframes with only required columns for csv output
  358. calculations_df <- calculations %>%
  359. select(
  360. all_of(group_vars),
  361. conc_num, conc_num_factor, conc_num_factor_factor,
  362. N, NG, DB, SM,
  363. mean_L, median_L, sd_L, se_L,
  364. mean_K, median_K, sd_K, se_K,
  365. mean_r, median_r, sd_r, se_r,
  366. mean_AUC, median_AUC, sd_AUC, se_AUC,
  367. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  368. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  369. WT_L, WT_K, WT_r, WT_AUC,
  370. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  371. Exp_L, Exp_K, Exp_r, Exp_AUC,
  372. Delta_L, Delta_K, Delta_r, Delta_AUC,
  373. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  374. )
  375. interactions_df <- interactions %>%
  376. select(
  377. all_of(group_vars),
  378. NG, DB, SM,
  379. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  380. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  381. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  382. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  383. )
  384. calculations_no_overlap <- calculations %>%
  385. # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
  386. select(-any_of(c(
  387. "DB", "NG", "SM",
  388. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  389. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  390. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  391. )))
  392. # Use left_join to avoid dimension mismatch issues
  393. full_data <- calculations_no_overlap %>%
  394. left_join(interactions, by = group_vars)
  395. # Return full_data and the two required dataframes (calculations and interactions)
  396. return(list(
  397. calculations = calculations_df,
  398. interactions = interactions_df,
  399. full_data = full_data
  400. ))
  401. }
  402. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  403. message("Generating ", filename, ".pdf and ", filename, ".html")
  404. # Check if we're dealing with multiple plot groups
  405. plot_groups <- if ("plots" %in% names(plot_configs)) {
  406. list(plot_configs) # Single group
  407. } else {
  408. plot_configs # Multiple groups
  409. }
  410. # Open the PDF device once for all plots
  411. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  412. # Loop through each plot group
  413. for (group in plot_groups) {
  414. static_plots <- list()
  415. plotly_plots <- list()
  416. grid_layout <- group$grid_layout
  417. plots <- group$plots
  418. for (i in seq_along(plots)) {
  419. config <- plots[[i]]
  420. df <- config$df
  421. # Set up aes mapping based on plot type
  422. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  423. if (!is.null(config$color_var)) {
  424. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  425. } else {
  426. aes(x = .data[[config$x_var]])
  427. }
  428. } else {
  429. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  430. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  431. } else if (!is.null(config$y_var)) {
  432. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  433. } else {
  434. aes(x = .data[[config$x_var]])
  435. }
  436. }
  437. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  438. # Add appropriate plot layer based on plot type
  439. plot <- switch(config$plot_type,
  440. "scatter" = generate_scatter_plot(plot, config),
  441. "box" = generate_boxplot(plot, config),
  442. "density" = plot + geom_density(),
  443. "bar" = plot + geom_bar(),
  444. plot # default (unused)
  445. )
  446. # Add labels and title
  447. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  448. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  449. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  450. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  451. # Add error bars if specified
  452. if (!is.null(config$error_bar) && config$error_bar) {
  453. error_bar_color <- if (!is.null(config$error_bar_params$color)) {
  454. config$error_bar_params$color
  455. } else {
  456. "red"
  457. }
  458. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  459. # Check if ymin and ymax are constants or column names
  460. if (is.numeric(config$error_bar_params$ymin) && is.numeric(config$error_bar_params$ymax)) {
  461. plot <- plot + geom_errorbar(aes(x = .data[[config$x_var]]),
  462. ymin = config$error_bar_params$ymin,
  463. ymax = config$error_bar_params$ymax,
  464. color = error_bar_color)
  465. } else {
  466. plot <- plot + geom_errorbar(aes(
  467. x = .data[[config$x_var]],
  468. ymin = .data[[config$error_bar_params$ymin]],
  469. ymax = .data[[config$error_bar_params$ymax]]
  470. ), color = error_bar_color)
  471. }
  472. } else {
  473. # Ensure the mean and sd columns exist
  474. y_mean_col <- paste0("mean_", config$y_var)
  475. y_sd_col <- paste0("sd_", config$y_var)
  476. if (y_mean_col %in% colnames(df) && y_sd_col %in% colnames(df)) {
  477. plot <- plot + geom_errorbar(aes(
  478. x = .data[[config$x_var]],
  479. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  480. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  481. ), color = error_bar_color)
  482. }
  483. }
  484. }
  485. # Convert ggplot to plotly for interactive version
  486. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  487. # Store both static and interactive versions
  488. static_plots[[i]] <- plot
  489. plotly_plots[[i]] <- plotly_plot
  490. }
  491. # Print the plots in the current group to the PDF
  492. if (is.null(grid_layout)) {
  493. # Print each plot individually on separate pages if no grid layout is specified
  494. for (plot in static_plots) {
  495. print(plot)
  496. }
  497. } else {
  498. # Arrange plots in grid layout on a single page
  499. grid.arrange(
  500. grobs = static_plots,
  501. ncol = grid_layout$ncol,
  502. nrow = grid_layout$nrow
  503. )
  504. }
  505. }
  506. # Close the PDF device after all plots are done
  507. dev.off()
  508. # Save HTML file with interactive plots if needed
  509. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  510. message("Saving combined HTML file: ", out_html_file)
  511. htmltools::save_html(
  512. htmltools::tagList(plotly_plots),
  513. file = out_html_file
  514. )
  515. }
  516. generate_scatter_plot <- function(plot, config) {
  517. # Define the points
  518. shape <- if (!is.null(config$shape)) config$shape else 3
  519. size <- if (!is.null(config$size)) config$size else 1.5
  520. position <-
  521. if (!is.null(config$position) && config$position == "jitter") {
  522. position_jitter(width = 0.4, height = 0.1)
  523. } else {
  524. "identity"
  525. }
  526. plot <- plot + geom_point(
  527. shape = shape,
  528. size = size,
  529. position = position
  530. )
  531. if (!is.null(config$cyan_points) && config$cyan_points) {
  532. plot <- plot + geom_point(
  533. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  534. color = "cyan",
  535. shape = 3,
  536. size = 0.5
  537. )
  538. }
  539. # Add Smooth Line if specified
  540. if (!is.null(config$smooth) && config$smooth) {
  541. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  542. if (!is.null(config$lm_line)) {
  543. plot <- plot +
  544. geom_abline(
  545. intercept = config$lm_line$intercept,
  546. slope = config$lm_line$slope,
  547. color = smooth_color
  548. )
  549. } else {
  550. plot <- plot +
  551. geom_smooth(
  552. method = "lm",
  553. se = FALSE,
  554. color = smooth_color
  555. )
  556. }
  557. }
  558. # Add SD Bands if specified
  559. if (!is.null(config$sd_band)) {
  560. plot <- plot +
  561. annotate(
  562. "rect",
  563. xmin = -Inf, xmax = Inf,
  564. ymin = config$sd_band, ymax = Inf,
  565. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  566. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  567. ) +
  568. annotate(
  569. "rect",
  570. xmin = -Inf, xmax = Inf,
  571. ymin = -config$sd_band, ymax = -Inf,
  572. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  573. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  574. ) +
  575. geom_hline(
  576. yintercept = c(-config$sd_band, config$sd_band),
  577. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  578. )
  579. }
  580. # Add Rectangles if specified
  581. if (!is.null(config$rectangles)) {
  582. for (rect in config$rectangles) {
  583. plot <- plot + annotate(
  584. "rect",
  585. xmin = rect$xmin,
  586. xmax = rect$xmax,
  587. ymin = rect$ymin,
  588. ymax = rect$ymax,
  589. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  590. color = ifelse(is.null(rect$color), "black", rect$color),
  591. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  592. )
  593. }
  594. }
  595. # Customize X-axis if specified
  596. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  597. # Check if x_var is factor or character (for discrete x-axis)
  598. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  599. plot <- plot +
  600. scale_x_discrete(
  601. name = config$x_label,
  602. breaks = config$x_breaks,
  603. labels = config$x_labels
  604. )
  605. } else {
  606. plot <- plot +
  607. scale_x_continuous(
  608. name = config$x_label,
  609. breaks = config$x_breaks,
  610. labels = config$x_labels
  611. )
  612. }
  613. }
  614. # Set Y-axis limits if specified
  615. if (!is.null(config$ylim_vals)) {
  616. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  617. }
  618. # Add annotations if specified
  619. if (!is.null(config$annotations)) {
  620. for (annotation in config$annotations) {
  621. plot <- plot +
  622. annotate(
  623. "text",
  624. x = annotation$x,
  625. y = annotation$y,
  626. label = annotation$label,
  627. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  628. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  629. size = ifelse(is.null(annotation$size), 3, annotation$size),
  630. color = ifelse(is.null(annotation$color), "black", annotation$color)
  631. )
  632. }
  633. }
  634. return(plot)
  635. }
  636. generate_boxplot <- function(plot, config) {
  637. # Convert x_var to a factor within aes mapping
  638. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  639. # Customize X-axis if specified
  640. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  641. # Check if x_var is factor or character (for discrete x-axis)
  642. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  643. plot <- plot +
  644. scale_x_discrete(
  645. name = config$x_label,
  646. breaks = config$x_breaks,
  647. labels = config$x_labels
  648. )
  649. } else {
  650. plot <- plot +
  651. scale_x_continuous(
  652. name = config$x_label,
  653. breaks = config$x_breaks,
  654. labels = config$x_labels
  655. )
  656. }
  657. }
  658. return(plot)
  659. }
  660. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  661. plot_type = "scatter", stages = c("before", "after")) {
  662. plot_configs <- list()
  663. for (var in variables) {
  664. for (stage in stages) {
  665. df_plot <- if (stage == "before") df_before else df_after
  666. # Check for non-finite values in the y-variable
  667. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  668. # Adjust settings based on plot_type
  669. plot_config <- list(
  670. df = df_plot_filtered,
  671. x_var = "scan",
  672. y_var = var,
  673. plot_type = plot_type,
  674. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  675. color_var = "conc_num_factor_factor",
  676. position = if (plot_type == "scatter") "jitter" else NULL,
  677. size = 0.2,
  678. error_bar = (plot_type == "scatter")
  679. )
  680. # Add config to plots list
  681. plot_configs <- append(plot_configs, list(plot_config))
  682. }
  683. }
  684. return(list(plots = plot_configs))
  685. }
  686. generate_interaction_plot_configs <- function(df, type) {
  687. # Define the y-limits for the plots
  688. limits_map <- list(
  689. L = c(0, 130),
  690. K = c(-20, 160),
  691. r = c(0, 1),
  692. AUC = c(0, 12500)
  693. )
  694. stats_plot_configs <- list()
  695. stats_boxplot_configs <- list()
  696. delta_plot_configs <- list()
  697. # Overall statistics plots (use df)
  698. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  699. for (plot_type in c("scatter", "box")) {
  700. for (var in names(limits_map)) {
  701. y_limits <- limits_map[[var]]
  702. y_span <- y_limits[2] - y_limits[1]
  703. # Common plot configuration
  704. plot_config <- list(
  705. df = df,
  706. x_var = "conc_num_factor_factor",
  707. y_var = var,
  708. shape = 16,
  709. x_label = unique(df$Drug)[1],
  710. coord_cartesian = y_limits,
  711. x_breaks = unique(df$conc_num_factor_factor),
  712. x_labels = as.character(unique(df$conc_num))
  713. )
  714. # Add specific configurations for scatter and box plots
  715. if (plot_type == "scatter") {
  716. plot_config$plot_type <- "scatter"
  717. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  718. plot_config$error_bar <- TRUE
  719. plot_config$error_bar_params <- list(
  720. y_sd_prefix = "WT_sd_",
  721. y_mean_prefix = "mean_",
  722. color = "red",
  723. center_point = TRUE
  724. )
  725. plot_config$position <- "jitter"
  726. # Annotation labels
  727. annotations <- list(
  728. list(x = 0, y = y_limits[1] + 0.1 * y_span, label = "NG ="),
  729. list(x = 0, y = y_limits[1] + 0.05 * y_span, label = "DB ="),
  730. list(x = 0, y = y_limits[1], label = "SM =")
  731. )
  732. # Annotation values
  733. for (x_val in unique(df$conc_num_factor_factor)) {
  734. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  735. annotations <- append(annotations, list(
  736. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = sum(current_df$NG, na.rm = TRUE)),
  737. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = sum(current_df$DB, na.rm = TRUE)),
  738. list(x = x_val, y = y_limits[1], label = sum(current_df$SM, na.rm = TRUE))
  739. ))
  740. }
  741. plot_config$annotations <- annotations
  742. # Append to scatter plot configurations
  743. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  744. } else if (plot_type == "box") {
  745. plot_config$plot_type <- "box"
  746. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  747. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  748. # Append to boxplot configurations
  749. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  750. }
  751. }
  752. }
  753. if (type == "reference") {
  754. group_vars <- c("OrfRep", "Gene", "num")
  755. } else if (type == "deletion") {
  756. group_vars <- c("OrfRep", "Gene")
  757. }
  758. delta_limits_map <- list(
  759. L = c(-60, 60),
  760. K = c(-60, 60),
  761. r = c(-0.6, 0.6),
  762. AUC = c(-6000, 6000)
  763. )
  764. grouped_data <- df_calculations %>%
  765. group_by(across(all_of(group_vars))) %>%
  766. group_split()
  767. for (group_data in grouped_data) {
  768. OrfRep <- first(group_data$OrfRep)
  769. Gene <- first(group_data$Gene)
  770. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  771. if (type == "reference") {
  772. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  773. } else if (type == "deletion") {
  774. OrfRepTitle <- OrfRep
  775. }
  776. # Get corresponding interaction row
  777. interaction_row <- df_interactions %>%
  778. filter(if_all(all_of(group_vars), ~ . == first(.))) %>%
  779. slice(1)
  780. for (var in names(delta_limits_map)) {
  781. y_limits <- delta_limits_map[[var]]
  782. y_span <- y_limits[2] - y_limits[1]
  783. # Error bars
  784. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  785. # Z_Shift and lm values from interaction_row
  786. Z_Shift_value <- round(first(interaction_row[[paste0("Z_Shift_", var)]], default = 0), 2)
  787. Z_lm_value <- round(first(interaction_row[[paste0("Z_lm_", var)]], default = 0), 2)
  788. R_squared_value <- round(first(interaction_row[[paste0("R_Squared_", var)]], default = 0), 2)
  789. # NG, DB, SM values from interaction_row
  790. NG_value <- first(interaction_row$NG, default = 0)
  791. DB_value <- first(interaction_row$DB, default = 0)
  792. SM_value <- first(interaction_row$SM, default = 0)
  793. # Use the pre-calculated lm intercept and slope from group_data
  794. lm_intercept_col <- paste0("lm_intercept_", var)
  795. lm_slope_col <- paste0("lm_slope_", var)
  796. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  797. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  798. plot_config <- list(
  799. df = group_data,
  800. plot_type = "scatter",
  801. x_var = "conc_num_factor_factor",
  802. y_var = var,
  803. x_label = unique(group_data$Drug)[1],
  804. title = paste(OrfRepTitle, Gene, num, sep = " "),
  805. coord_cartesian = y_limits,
  806. annotations = list(
  807. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  808. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  809. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  810. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  811. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  812. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  813. ),
  814. error_bar = TRUE,
  815. error_bar_params = list(
  816. # Passing constants directly
  817. ymin = -2 * WT_sd_value,
  818. ymax = 2 * WT_sd_value,
  819. color = "black"
  820. ),
  821. smooth = TRUE,
  822. x_breaks = unique(group_data$conc_num_factor_factor),
  823. x_labels = as.character(unique(group_data$conc_num)),
  824. ylim_vals = y_limits,
  825. lm_line = list(
  826. intercept = lm_intercept_value,
  827. slope = lm_slope_value
  828. )
  829. )
  830. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  831. }
  832. }
  833. # Calculate dynamic grid layout
  834. grid_ncol <- 4
  835. num_plots <- length(delta_plot_configs)
  836. grid_nrow <- ceiling(num_plots / grid_ncol)
  837. return(list(
  838. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
  839. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
  840. list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = delta_plot_configs)
  841. ))
  842. }
  843. generate_rank_plot_configs <- function(df_interactions, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  844. plot_configs <- list()
  845. sd_bands <- c(1, 2, 3)
  846. # Adjust (if necessary) and rank columns
  847. variables <- c("L", "K")
  848. for (variable in variables) {
  849. if (adjust) {
  850. df_interactions[[paste0("Avg_Zscore_", variable)]] <-
  851. ifelse(is.na(df_interactions[[paste0("Avg_Zscore_", variable)]]), 0.001, df_interactions[[paste0("Avg_Zscore_", variable)]])
  852. df_interactions[[paste0("Z_lm_", variable)]] <-
  853. ifelse(is.na(df_interactions[[paste0("Z_lm_", variable)]]), 0.001, df_interactions[[paste0("Z_lm_", variable)]])
  854. }
  855. df_interactions[[paste0("Rank_", variable)]] <- rank(df_interactions[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  856. df_interactions[[paste0("Rank_lm_", variable)]] <- rank(df_interactions[[paste0("Z_lm_", variable)]], na.last = "keep")
  857. }
  858. # Helper function to create a plot configuration
  859. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  860. num_enhancers <- sum(df_interactions[[zscore_var]] >= sd_band, na.rm = TRUE)
  861. num_suppressors <- sum(df_interactions[[zscore_var]] <= -sd_band, na.rm = TRUE)
  862. # Default plot config
  863. plot_config <- list(
  864. df = df_interactions,
  865. x_var = rank_var,
  866. y_var = zscore_var,
  867. plot_type = "scatter",
  868. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  869. sd_band = sd_band,
  870. fill_positive = "#542788",
  871. fill_negative = "orange",
  872. alpha_positive = 0.3,
  873. alpha_negative = 0.3,
  874. annotations = NULL,
  875. shape = 3,
  876. size = 0.1,
  877. y_label = y_label,
  878. x_label = "Rank",
  879. legend_position = "none"
  880. )
  881. if (with_annotations) {
  882. # Add specific annotations for plots with annotations
  883. plot_config$annotations <- list(
  884. list(
  885. x = median(df_interactions[[rank_var]], na.rm = TRUE),
  886. y = max(df_interactions[[zscore_var]], na.rm = TRUE) * 0.9,
  887. label = paste("Deletion Enhancers =", num_enhancers)
  888. ),
  889. list(
  890. x = median(df_interactions[[rank_var]], na.rm = TRUE),
  891. y = min(df_interactions[[zscore_var]], na.rm = TRUE) * 0.9,
  892. label = paste("Deletion Suppressors =", num_suppressors)
  893. )
  894. )
  895. }
  896. return(plot_config)
  897. }
  898. # Generate plots for each variable
  899. for (variable in variables) {
  900. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  901. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  902. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  903. # Loop through SD bands
  904. for (sd_band in sd_bands) {
  905. # Create plot with annotations
  906. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  907. # Create plot without annotations
  908. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  909. }
  910. }
  911. # Calculate dynamic grid layout based on the number of plots
  912. grid_ncol <- 3
  913. num_plots <- length(plot_configs)
  914. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  915. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  916. }
  917. generate_correlation_plot_configs <- function(df_interactions) {
  918. # Define relationships for different-variable correlations
  919. relationships <- list(
  920. list(x = "L", y = "K"),
  921. list(x = "L", y = "r"),
  922. list(x = "L", y = "AUC"),
  923. list(x = "K", y = "r"),
  924. list(x = "K", y = "AUC"),
  925. list(x = "r", y = "AUC")
  926. )
  927. correlation_stats <- list()
  928. for (rel in relationships) {
  929. x_var <- paste0("Z_lm_", rel$x)
  930. y_var <- paste0("Z_lm_", rel$y)
  931. lm_fit <- lm(df_interactions[[y_var]] ~ df_interactions[[x_var]])
  932. intercept <- coef(lm_fit)[1]
  933. slope <- coef(lm_fit)[2]
  934. r_squared <- summary(lm_fit)$r.squared
  935. relationship_name <- paste0(rel$x, "_vs_", rel$y)
  936. correlation_stats[[relationship_name]] <- list(
  937. intercept = intercept,
  938. slope = slope,
  939. r_squared = r_squared
  940. )
  941. }
  942. plot_configs <- list()
  943. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  944. highlight_cyan_options <- c(FALSE, TRUE)
  945. for (highlight_cyan in highlight_cyan_options) {
  946. for (rel in relationships) {
  947. # Extract relevant variable names for Z_lm values
  948. x_var <- paste0("Z_lm_", rel$x)
  949. y_var <- paste0("Z_lm_", rel$y)
  950. # Access the correlation statistics from the correlation_stats list
  951. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  952. stats <- correlation_stats[[relationship_name]]
  953. intercept <- stats$intercept
  954. slope <- stats$slope
  955. r_squared <- stats$r_squared
  956. # Generate the label for the plot
  957. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  958. # Construct plot config
  959. plot_config <- list(
  960. df = df_interactions,
  961. x_var = x_var,
  962. y_var = y_var,
  963. plot_type = "scatter",
  964. title = plot_label,
  965. annotations = list(
  966. list(
  967. x = mean(df_interactions[[x_var]], na.rm = TRUE),
  968. y = mean(df_interactions[[y_var]], na.rm = TRUE),
  969. label = paste("R-squared =", round(r_squared, 3))
  970. )
  971. ),
  972. smooth = TRUE,
  973. smooth_color = "tomato3",
  974. lm_line = list(
  975. intercept = intercept,
  976. slope = slope
  977. ),
  978. shape = 3,
  979. size = 0.5,
  980. color_var = "Overlap",
  981. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  982. )
  983. plot_configs <- append(plot_configs, list(plot_config))
  984. }
  985. }
  986. return(list(plots = plot_configs))
  987. }
  988. main <- function() {
  989. lapply(names(args$experiments), function(exp_name) {
  990. exp <- args$experiments[[exp_name]]
  991. exp_path <- exp$path
  992. exp_sd <- exp$sd
  993. out_dir <- file.path(exp_path, "zscores")
  994. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  995. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  996. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  997. # Each list of plots corresponds to a separate file
  998. message("Loading and filtering data for experiment: ", exp_name)
  999. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1000. update_gene_names(args$sgd_gene_list) %>%
  1001. as_tibble()
  1002. l_vs_k_plot_configs <- list(
  1003. plots = list(
  1004. list(
  1005. df = df,
  1006. x_var = "L",
  1007. y_var = "K",
  1008. plot_type = "scatter",
  1009. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1010. title = "Raw L vs K before quality control",
  1011. color_var = "conc_num_factor_factor",
  1012. error_bar = FALSE,
  1013. legend_position = "right"
  1014. )
  1015. )
  1016. )
  1017. message("Calculating summary statistics before quality control")
  1018. df_stats <- calculate_summary_stats(
  1019. df = df,
  1020. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1021. group_vars = c("conc_num"))$df_with_stats
  1022. frequency_delta_bg_plot_configs <- list(
  1023. plots = list(
  1024. list(
  1025. df = df_stats,
  1026. x_var = "delta_bg",
  1027. y_var = NULL,
  1028. plot_type = "density",
  1029. title = "Density plot for Delta Background by [Drug] (All Data)",
  1030. color_var = "conc_num_factor_factor",
  1031. x_label = "Delta Background",
  1032. y_label = "Density",
  1033. error_bar = FALSE,
  1034. legend_position = "right"
  1035. ),
  1036. list(
  1037. df = df_stats,
  1038. x_var = "delta_bg",
  1039. y_var = NULL,
  1040. plot_type = "bar",
  1041. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1042. color_var = "conc_num_factor_factor",
  1043. x_label = "Delta Background",
  1044. y_label = "Count",
  1045. error_bar = FALSE,
  1046. legend_position = "right"
  1047. )
  1048. )
  1049. )
  1050. message("Filtering rows above delta background tolerance for plotting")
  1051. df_above_tolerance <- df %>% filter(DB == 1)
  1052. above_threshold_plot_configs <- list(
  1053. plots = list(
  1054. list(
  1055. df = df_above_tolerance,
  1056. x_var = "L",
  1057. y_var = "K",
  1058. plot_type = "scatter",
  1059. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1060. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1061. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1062. color_var = "conc_num_factor_factor",
  1063. position = "jitter",
  1064. annotations = list(
  1065. list(
  1066. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1067. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1068. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1069. )
  1070. ),
  1071. error_bar = FALSE,
  1072. legend_position = "right"
  1073. )
  1074. )
  1075. )
  1076. message("Setting rows above delta background tolerance to NA")
  1077. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1078. message("Calculating summary statistics across all strains")
  1079. ss <- calculate_summary_stats(
  1080. df = df_na,
  1081. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1082. group_vars = c("conc_num"))
  1083. df_na_ss <- ss$summary_stats
  1084. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1085. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1086. # This can help bypass missing values ggplot warnings during testing
  1087. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1088. message("Calculating summary statistics excluding zero values")
  1089. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1090. df_no_zeros_stats <- calculate_summary_stats(
  1091. df = df_no_zeros,
  1092. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1093. group_vars = c("conc_num")
  1094. )$df_with_stats
  1095. message("Filtering by 2SD of K")
  1096. df_na_within_2sd_k <- df_na_stats %>%
  1097. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1098. df_na_outside_2sd_k <- df_na_stats %>%
  1099. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1100. message("Calculating summary statistics for L within 2SD of K")
  1101. # TODO We're omitting the original z_max calculation, not sure if needed?
  1102. ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
  1103. group_vars = c("conc_num"))$summary_stats
  1104. write.csv(ss,
  1105. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1106. row.names = FALSE)
  1107. message("Calculating summary statistics for L outside 2SD of K")
  1108. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
  1109. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1110. write.csv(ss$summary_stats,
  1111. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1112. row.names = FALSE)
  1113. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1114. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1115. df_before = df_stats,
  1116. df_after = df_na_stats_filtered
  1117. )
  1118. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1119. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1120. df_before = df_stats,
  1121. df_after = df_na_stats_filtered,
  1122. plot_type = "box"
  1123. )
  1124. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1125. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1126. stages = c("after"), # Only after QC
  1127. df_after = df_no_zeros_stats
  1128. )
  1129. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1130. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1131. stages = c("after"), # Only after QC
  1132. df_after = df_no_zeros_stats,
  1133. plot_type = "box"
  1134. )
  1135. l_outside_2sd_k_plot_configs <- list(
  1136. plots = list(
  1137. list(
  1138. df = df_na_l_outside_2sd_k_stats,
  1139. x_var = "L",
  1140. y_var = "K",
  1141. plot_type = "scatter",
  1142. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1143. color_var = "conc_num_factor_factor",
  1144. position = "jitter",
  1145. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1146. annotations = list(
  1147. list(
  1148. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1149. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1150. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1151. )
  1152. ),
  1153. error_bar = FALSE,
  1154. legend_position = "right"
  1155. )
  1156. )
  1157. )
  1158. delta_bg_outside_2sd_k_plot_configs <- list(
  1159. plots = list(
  1160. list(
  1161. df = df_na_l_outside_2sd_k_stats,
  1162. x_var = "delta_bg",
  1163. y_var = "K",
  1164. plot_type = "scatter",
  1165. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1166. color_var = "conc_num_factor_factor",
  1167. position = "jitter",
  1168. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1169. annotations = list(
  1170. list(
  1171. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1172. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1173. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1174. )
  1175. ),
  1176. error_bar = FALSE,
  1177. legend_position = "right"
  1178. )
  1179. )
  1180. )
  1181. message("Generating quality control plots in parallel")
  1182. # future::plan(future::multicore, workers = parallel::detectCores())
  1183. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1184. plot_configs <- list(
  1185. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1186. plot_configs = l_vs_k_plot_configs),
  1187. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1188. plot_configs = frequency_delta_bg_plot_configs),
  1189. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1190. plot_configs = above_threshold_plot_configs),
  1191. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1192. plot_configs = plate_analysis_plot_configs),
  1193. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1194. plot_configs = plate_analysis_boxplot_configs),
  1195. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1196. plot_configs = plate_analysis_no_zeros_plot_configs),
  1197. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1198. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1199. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1200. plot_configs = l_outside_2sd_k_plot_configs),
  1201. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1202. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1203. )
  1204. # furrr::future_map(plot_configs, function(config) {
  1205. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1206. # }, .options = furrr_options(seed = TRUE))
  1207. bg_strains <- c("YDL227C")
  1208. lapply(bg_strains, function(strain) {
  1209. message("Processing background strain: ", strain)
  1210. # Handle missing data by setting zero values to NA
  1211. # and then removing any rows with NA in L col
  1212. df_bg <- df_na %>%
  1213. filter(OrfRep == strain) %>%
  1214. mutate(
  1215. L = if_else(L == 0, NA, L),
  1216. K = if_else(K == 0, NA, K),
  1217. r = if_else(r == 0, NA, r),
  1218. AUC = if_else(AUC == 0, NA, AUC)
  1219. ) %>%
  1220. filter(!is.na(L))
  1221. message("Calculating background strain summary statistics")
  1222. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
  1223. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1224. summary_stats_bg <- ss_bg$summary_stats
  1225. df_bg_stats <- ss_bg$df_with_stats
  1226. write.csv(
  1227. summary_stats_bg,
  1228. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1229. row.names = FALSE)
  1230. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1231. df_reference <- df_na_stats %>% # formerly X2_RF
  1232. filter(OrfRep == strain) %>%
  1233. filter(!is.na(L)) %>%
  1234. group_by(OrfRep, Drug, conc_num) %>%
  1235. mutate(
  1236. max_l_theoretical = max(max_L, na.rm = TRUE),
  1237. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1238. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1239. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1240. ungroup()
  1241. message("Calculating reference strain summary statistics")
  1242. df_reference_stats <- calculate_summary_stats(
  1243. df = df_reference,
  1244. variables = c("L", "K", "r", "AUC"),
  1245. group_vars = c("OrfRep", "Gene", "Drug", "num", "conc_num", "conc_num_factor_factor")
  1246. )$df_with_stats
  1247. message("Calculating reference strain interaction scores")
  1248. results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug", "num"))
  1249. df_calculations_reference <- results$calculations
  1250. df_interactions_reference <- results$interactions
  1251. df_interactions_reference_joined <- results$full_data
  1252. write.csv(df_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1253. write.csv(df_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1254. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1255. df_deletion <- df_na_stats %>% # formerly X2
  1256. filter(OrfRep != strain) %>%
  1257. filter(!is.na(L)) %>%
  1258. group_by(OrfRep, Gene, conc_num) %>%
  1259. mutate(
  1260. max_l_theoretical = max(max_L, na.rm = TRUE),
  1261. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1262. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1263. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1264. ungroup()
  1265. message("Calculating deletion strain(s) summary statistics")
  1266. df_deletion_stats <- calculate_summary_stats(
  1267. df = df_deletion,
  1268. variables = c("L", "K", "r", "AUC"),
  1269. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1270. )$df_with_stats
  1271. message("Calculating deletion strain(s) interactions scores")
  1272. results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1273. df_calculations <- results$calculations
  1274. df_interactions <- results$interactions
  1275. df_interactions_joined <- results$full_data
  1276. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1277. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1278. # Create interaction plots
  1279. message("Generating reference interaction plots")
  1280. reference_plot_configs <- generate_interaction_plot_configs(df_interactions_reference_joined, df_bg_stats, "reference")
  1281. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1282. message("Generating deletion interaction plots")
  1283. deletion_plot_configs <- generate_interaction_plot_configs(df_interactions_joined, df_bg_stats, "deletion")
  1284. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1285. message("Writing enhancer/suppressor csv files")
  1286. interaction_threshold <- 2 # TODO add to study config?
  1287. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1288. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1289. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1290. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1291. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1292. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1293. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1294. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1295. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1296. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1297. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1298. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1299. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1300. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1301. write.csv(enhancers_and_suppressors_L,
  1302. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1303. write.csv(enhancers_and_suppressors_K,
  1304. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1305. message("Writing linear model enhancer/suppressor csv files")
  1306. lm_interaction_threshold <- 2 # TODO add to study config?
  1307. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1308. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1309. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1310. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1311. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1312. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1313. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1314. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1315. message("Generating rank plots")
  1316. rank_plot_configs <- generate_rank_plot_configs(
  1317. df_interactions,
  1318. is_lm = FALSE,
  1319. adjust = TRUE
  1320. )
  1321. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1322. plot_configs = rank_plot_configs)
  1323. message("Generating ranked linear model plots")
  1324. rank_lm_plot_configs <- generate_rank_plot_configs(
  1325. df_interactions,
  1326. is_lm = TRUE,
  1327. adjust = TRUE
  1328. )
  1329. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1330. plot_configs = rank_lm_plot_configs)
  1331. overlap_threshold <- 2 # TODO add to study config?
  1332. df_interactions_filtered <- df_interactions %>%
  1333. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1334. mutate(
  1335. Overlap = case_when(
  1336. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  1337. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  1338. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  1339. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  1340. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  1341. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  1342. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1343. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1344. TRUE ~ "No Effect"
  1345. ),
  1346. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1347. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1348. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1349. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1350. )
  1351. message("Generating filtered ranked plots")
  1352. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1353. df_interactions_filtered,
  1354. is_lm = FALSE,
  1355. adjust = FALSE,
  1356. overlap_color = TRUE
  1357. )
  1358. generate_and_save_plots(
  1359. out_dir = out_dir,
  1360. filename = "RankPlots_na_rm",
  1361. plot_configs = rank_plot_filtered_configs)
  1362. message("Generating filtered ranked linear model plots")
  1363. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1364. df_interactions_filtered,
  1365. is_lm = TRUE,
  1366. adjust = FALSE,
  1367. overlap_color = TRUE
  1368. )
  1369. generate_and_save_plots(
  1370. out_dir = out_dir,
  1371. filename = "rank_plots_lm_na_rm",
  1372. plot_configs = rank_plot_lm_filtered_configs)
  1373. message("Generating correlation curve parameter pair plots")
  1374. correlation_plot_configs <- generate_correlation_plot_configs(
  1375. df_interactions_filtered
  1376. )
  1377. generate_and_save_plots(
  1378. out_dir = out_dir,
  1379. filename = "correlation_cpps",
  1380. plot_configs = correlation_plot_configs,
  1381. )
  1382. })
  1383. })
  1384. }
  1385. main()
  1386. # For future simplification of joined dataframes
  1387. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))