calculate_interaction_zscores.R 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_process_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  122. ) %>%
  123. mutate(
  124. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  125. )
  126. return(df)
  127. }
  128. # Update Gene names using the SGD gene list
  129. update_gene_names <- function(df, sgd_gene_list) {
  130. # Load SGD gene list
  131. genes <- read.delim(file = sgd_gene_list,
  132. quote = "", header = FALSE,
  133. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  134. # Create a named vector for mapping ORF to GeneName
  135. gene_map <- setNames(genes$V5, genes$V4)
  136. # Vectorized match to find the GeneName from gene_map
  137. mapped_genes <- gene_map[df$ORF]
  138. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  139. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  140. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  141. df <- df %>%
  142. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  143. return(df)
  144. }
  145. calculate_summary_stats <- function(df, variables, group_vars) {
  146. summary_stats <- df %>%
  147. group_by(across(all_of(group_vars))) %>%
  148. summarise(
  149. N = n(),
  150. across(all_of(variables), list(
  151. mean = ~mean(., na.rm = TRUE),
  152. median = ~median(., na.rm = TRUE),
  153. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  154. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  155. sd = ~sd(., na.rm = TRUE),
  156. se = ~sd(., na.rm = TRUE) / sqrt(N) - 1 # TODO needs comment for explanation
  157. ), .names = "{.fn}_{.col}"),
  158. .groups = "drop"
  159. )
  160. # Create a cleaned version of df that doesn't overlap with summary_stats
  161. cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
  162. df_cleaned <- df %>%
  163. select(all_of(cols_to_keep))
  164. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  165. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  166. }
  167. calculate_interaction_scores <- function(df, max_conc) {
  168. variables <- c("L", "K", "r", "AUC")
  169. group_vars <- c("OrfRep", "Gene", "num")
  170. # Calculate total concentration variables
  171. total_conc_num <- length(unique(df$conc_num))
  172. # Pull the background means and standard deviations from zero concentration
  173. bg_means <- list(
  174. L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
  175. K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
  176. r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
  177. AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
  178. )
  179. bg_sd <- list(
  180. L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
  181. K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
  182. r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
  183. AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
  184. )
  185. # Calculate per spot
  186. stats <- calculate_summary_stats(df,
  187. variables = variables,
  188. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  189. )$summary_stats
  190. stats <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. WT_L = mean_L,
  194. WT_K = mean_K,
  195. WT_r = mean_r,
  196. WT_AUC = mean_AUC,
  197. WT_sd_L = sd_L,
  198. WT_sd_K = sd_K,
  199. WT_sd_r = sd_r,
  200. WT_sd_AUC = sd_AUC
  201. )
  202. stats <- stats %>%
  203. mutate(
  204. Raw_Shift_L = first(mean_L) - bg_means$L,
  205. Raw_Shift_K = first(mean_K) - bg_means$K,
  206. Raw_Shift_r = first(mean_r) - bg_means$r,
  207. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  208. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  209. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  210. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  211. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  212. )
  213. stats <- stats %>%
  214. mutate(
  215. Exp_L = WT_L + Raw_Shift_L,
  216. Exp_K = WT_K + Raw_Shift_K,
  217. Exp_r = WT_r + Raw_Shift_r,
  218. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  219. Delta_L = mean_L - Exp_L,
  220. Delta_K = mean_K - Exp_K,
  221. Delta_r = mean_r - Exp_r,
  222. Delta_AUC = mean_AUC - Exp_AUC
  223. )
  224. stats <- stats %>%
  225. mutate(
  226. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  227. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  228. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  229. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  230. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  231. )
  232. stats <- stats %>%
  233. mutate(
  234. Zscore_L = Delta_L / WT_sd_L,
  235. Zscore_K = Delta_K / WT_sd_K,
  236. Zscore_r = Delta_r / WT_sd_r,
  237. Zscore_AUC = Delta_AUC / WT_sd_AUC
  238. )
  239. # Calculate linear models
  240. lm_L <- lm(Delta_L ~ conc_num, data = stats)
  241. lm_K <- lm(Delta_K ~ conc_num, data = stats)
  242. lm_r <- lm(Delta_r ~ conc_num, data = stats)
  243. lm_AUC <- lm(Delta_AUC ~ conc_num, data = stats)
  244. interactions <- stats %>%
  245. group_by(across(all_of(group_vars))) %>%
  246. summarise(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. num = first(num),
  250. conc_num = first(conc_num),
  251. conc_num_factor = first(conc_num_factor),
  252. Raw_Shift_L = first(Raw_Shift_L),
  253. Raw_Shift_K = first(Raw_Shift_K),
  254. Raw_Shift_r = first(Raw_Shift_r),
  255. Raw_Shift_AUC = first(Raw_Shift_AUC),
  256. Z_Shift_L = first(Z_Shift_L),
  257. Z_Shift_K = first(Z_Shift_K),
  258. Z_Shift_r = first(Z_Shift_r),
  259. Z_Shift_AUC = first(Z_Shift_AUC),
  260. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  261. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  262. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  263. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  264. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  265. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  266. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  267. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  268. R_Squared_L = summary(lm_L)$r.squared,
  269. R_Squared_K = summary(lm_K)$r.squared,
  270. R_Squared_r = summary(lm_r)$r.squared,
  271. R_Squared_AUC = summary(lm_AUC)$r.squared,
  272. lm_intercept_L = coef(lm_L)[1],
  273. lm_slope_L = coef(lm_L)[2],
  274. lm_intercept_K = coef(lm_K)[1],
  275. lm_slope_K = coef(lm_K)[2],
  276. lm_intercept_r = coef(lm_r)[1],
  277. lm_slope_r = coef(lm_r)[2],
  278. lm_intercept_AUC = coef(lm_AUC)[1],
  279. lm_slope_AUC = coef(lm_AUC)[2],
  280. NG = sum(NG, na.rm = TRUE),
  281. DB = sum(DB, na.rm = TRUE),
  282. SM = sum(SM, na.rm = TRUE),
  283. .groups = "keep"
  284. )
  285. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  286. interactions <- interactions %>%
  287. mutate(
  288. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  289. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  290. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  291. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  292. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  293. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  294. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  295. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  296. ) %>%
  297. arrange(desc(Z_lm_L), desc(NG))
  298. # Declare column order for output
  299. calculations <- stats %>%
  300. select(
  301. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  302. "mean_L", "mean_K", "mean_r", "mean_AUC",
  303. "median_L", "median_K", "median_r", "median_AUC",
  304. "sd_L", "sd_K", "sd_r", "sd_AUC",
  305. "se_L", "se_K", "se_r", "se_AUC",
  306. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  307. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  308. "WT_L", "WT_K", "WT_r", "WT_AUC",
  309. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  310. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  311. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  312. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  313. "NG", "SM", "DB")
  314. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  315. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  316. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  317. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  318. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  319. calculations_joined = calculations_joined))
  320. }
  321. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  322. message("Generating ", filename, ".pdf and ", filename, ".html")
  323. # Prepare lists to collect plots
  324. static_plots <- list()
  325. plotly_plots <- list()
  326. for (i in seq_along(plot_configs)) {
  327. config <- plot_configs[[i]]
  328. df <- config$df
  329. aes_mapping <- if (is.null(config$color_var)) {
  330. if (is.null(config$y_var)) {
  331. aes(x = .data[[config$x_var]])
  332. } else {
  333. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  334. }
  335. } else {
  336. if (is.null(config$y_var)) {
  337. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  338. } else {
  339. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  340. }
  341. }
  342. # Start building the plot with aes_mapping
  343. plot_base <- ggplot(df, aes_mapping)
  344. # Use appropriate helper function based on plot type
  345. plot <- switch(config$plot_type,
  346. "scatter" = generate_scatter_plot(plot_base, config),
  347. "box" = generate_box_plot(plot_base, config),
  348. "density" = plot_base + geom_density(),
  349. "bar" = plot_base + geom_bar(),
  350. plot_base # default case if no type matches
  351. )
  352. # Apply additional settings
  353. if (!is.null(config$legend_position)) {
  354. plot <- plot + theme(legend.position = config$legend_position)
  355. }
  356. # Add title and labels
  357. if (!is.null(config$title)) {
  358. plot <- plot + ggtitle(config$title)
  359. }
  360. if (!is.null(config$x_label)) {
  361. plot <- plot + xlab(config$x_label)
  362. }
  363. if (!is.null(config$y_label)) {
  364. plot <- plot + ylab(config$y_label)
  365. }
  366. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  367. if (is.null(config$color_var)) {
  368. plot <- plot + scale_color_discrete(guide = "none")
  369. }
  370. # Add interactive tooltips for plotly
  371. tooltip_vars <- c()
  372. if (config$plot_type == "scatter") {
  373. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  374. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  375. } else if (!is.null(config$gene_point) && config$gene_point) {
  376. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  377. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  378. tooltip_vars <- c(config$x_var, config$y_var)
  379. }
  380. }
  381. # Convert to plotly object
  382. if (length(tooltip_vars) > 0) {
  383. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  384. } else {
  385. plotly_plot <- ggplotly(plot, tooltip = "none")
  386. }
  387. # Adjust legend position if specified
  388. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  389. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  390. }
  391. # Add plots to lists
  392. static_plots[[i]] <- plot
  393. plotly_plots[[i]] <- plotly_plot
  394. }
  395. # Save static PDF plots
  396. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  397. lapply(static_plots, print)
  398. dev.off()
  399. # Combine and save interactive HTML plots
  400. combined_plot <- subplot(
  401. plotly_plots,
  402. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  403. grid_layout$nrow
  404. } else {
  405. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  406. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  407. },
  408. margin = 0.05
  409. )
  410. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  411. }
  412. generate_scatter_plot <- function(plot, config) {
  413. shape <- if (!is.null(config$shape)) config$shape else 3
  414. size <- if (!is.null(config$size)) config$size else 0.1
  415. position <-
  416. if (!is.null(config$position) && config$position == "jitter") {
  417. position_jitter(width = 0.1, height = 0)
  418. } else {
  419. "identity"
  420. }
  421. plot <- plot + geom_point(
  422. shape = shape,
  423. size = size,
  424. position = position
  425. )
  426. if (!is.null(config$cyan_points) && config$cyan_points) {
  427. plot <- plot + geom_point(
  428. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  429. color = "cyan",
  430. shape = 3,
  431. size = 0.5
  432. )
  433. }
  434. # Add Smooth Line if specified
  435. if (!is.null(config$add_smooth) && config$add_smooth) {
  436. if (!is.null(config$lm_line)) {
  437. plot <- plot +
  438. geom_abline(
  439. intercept = config$lm_line$intercept,
  440. slope = config$lm_line$slope,
  441. color = "blue"
  442. )
  443. } else {
  444. plot <- plot +
  445. geom_smooth(
  446. method = "lm",
  447. se = FALSE,
  448. color = "blue"
  449. )
  450. }
  451. }
  452. # Add SD Bands if specified
  453. if (!is.null(config$sd_band)) {
  454. plot <- plot +
  455. annotate(
  456. "rect",
  457. xmin = -Inf, xmax = Inf,
  458. ymin = config$sd_band, ymax = Inf,
  459. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  460. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  461. ) +
  462. annotate(
  463. "rect",
  464. xmin = -Inf, xmax = Inf,
  465. ymin = -config$sd_band, ymax = -Inf,
  466. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  467. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  468. ) +
  469. geom_hline(
  470. yintercept = c(-config$sd_band, config$sd_band),
  471. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  472. )
  473. }
  474. # Add Rectangles if specified
  475. if (!is.null(config$rectangles)) {
  476. for (rect in config$rectangles) {
  477. plot <- plot + annotate(
  478. "rect",
  479. xmin = rect$xmin,
  480. xmax = rect$xmax,
  481. ymin = rect$ymin,
  482. ymax = rect$ymax,
  483. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  484. color = ifelse(is.null(rect$color), "black", rect$color),
  485. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  486. )
  487. }
  488. }
  489. # Add Error Bars if specified
  490. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  491. y_mean_col <- paste0("mean_", config$y_var)
  492. y_sd_col <- paste0("sd_", config$y_var)
  493. plot <- plot +
  494. geom_errorbar(
  495. aes(
  496. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  497. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  498. ),
  499. alpha = 0.3
  500. )
  501. }
  502. # Customize X-axis if specified
  503. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  504. plot <- plot +
  505. scale_x_discrete(
  506. name = config$x_label,
  507. breaks = config$x_breaks,
  508. labels = config$x_labels
  509. )
  510. }
  511. # Apply coord_cartesian if specified
  512. if (!is.null(config$coord_cartesian)) {
  513. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  514. }
  515. # Set Y-axis limits if specified
  516. if (!is.null(config$ylim_vals)) {
  517. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  518. }
  519. # Add Annotations if specified
  520. if (!is.null(config$annotations)) {
  521. for (annotation in config$annotations) {
  522. plot <- plot +
  523. annotate(
  524. "text",
  525. x = annotation$x,
  526. y = annotation$y,
  527. label = annotation$label,
  528. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  529. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  530. size = ifelse(is.null(annotation$size), 4, annotation$size),
  531. color = ifelse(is.null(annotation$color), "black", annotation$color)
  532. )
  533. }
  534. }
  535. # Add Title if specified
  536. if (!is.null(config$title)) {
  537. plot <- plot + ggtitle(config$title)
  538. }
  539. # Adjust Legend Position if specified
  540. if (!is.null(config$legend_position)) {
  541. plot <- plot + theme(legend.position = config$legend_position)
  542. }
  543. return(plot)
  544. }
  545. generate_box_plot <- function(plot, config) {
  546. plot <- plot + geom_boxplot()
  547. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  548. plot <- plot + scale_x_discrete(
  549. name = config$x_label,
  550. breaks = config$x_breaks,
  551. labels = config$x_labels
  552. )
  553. }
  554. if (!is.null(config$coord_cartesian)) {
  555. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  556. }
  557. return(plot)
  558. }
  559. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  560. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  561. plots <- list()
  562. for (var in variables) {
  563. for (stage in stages) {
  564. df_plot <- if (stage == "before") df_before else df_after
  565. # Adjust settings based on plot_type
  566. if (plot_type == "scatter") {
  567. error_bar <- TRUE
  568. position <- "jitter"
  569. } else if (plot_type == "box") {
  570. error_bar <- FALSE
  571. position <- NULL
  572. }
  573. config <- list(
  574. df = df_plot,
  575. x_var = "scan",
  576. y_var = var,
  577. plot_type = plot_type,
  578. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  579. error_bar = error_bar,
  580. color_var = "conc_num_factor",
  581. position = position
  582. )
  583. plots <- append(plots, list(config))
  584. }
  585. }
  586. return(plots)
  587. }
  588. generate_interaction_plot_configs <- function(df, variables) {
  589. configs <- list()
  590. limits_map <- list(
  591. L = c(-65, 65),
  592. K = c(-65, 65),
  593. r = c(-0.65, 0.65),
  594. AUC = c(-6500, 6500)
  595. )
  596. df_filtered <- process_data(df, variables, filter_na = TRUE, limits_map = limits_map)
  597. # Define annotation label functions
  598. generate_annotation_labels <- function(df, var, annotation_name) {
  599. switch(annotation_name,
  600. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  601. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  602. NG = paste("NG =", df$NG),
  603. DB = paste("DB =", df$DB),
  604. SM = paste("SM =", df$SM),
  605. NULL # Default case for unrecognized annotation names
  606. )
  607. }
  608. # Define annotation positions relative to the y-axis range
  609. calculate_annotation_positions <- function(y_range) {
  610. y_min <- min(y_range)
  611. y_max <- max(y_range)
  612. y_span <- y_max - y_min
  613. list(
  614. ZShift = y_max - 0.1 * y_span,
  615. lm_ZScore = y_max - 0.2 * y_span,
  616. NG = y_min + 0.2 * y_span,
  617. DB = y_min + 0.1 * y_span,
  618. SM = y_min + 0.05 * y_span
  619. )
  620. }
  621. # Create configurations for each variable
  622. for (variable in variables) {
  623. y_range <- limits_map[[variable]]
  624. annotation_positions <- calculate_annotation_positions(y_range)
  625. lm_line <- list(
  626. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  627. slope = df_filtered[[paste0("lm_slope_", variable)]]
  628. )
  629. # Determine x-axis midpoint
  630. num_levels <- length(levels(df_filtered$conc_num_factor))
  631. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  632. # Generate annotations
  633. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  634. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  635. y_pos <- annotation_positions[[annotation_name]]
  636. if (!is.null(label)) {
  637. list(x = x_pos, y = y_pos, label = label)
  638. } else {
  639. message(paste("Warning: No annotation found for", annotation_name))
  640. NULL
  641. }
  642. })
  643. # Remove NULL annotations
  644. annotations <- Filter(Negate(is.null), annotations)
  645. # Shared plot settings
  646. plot_settings <- list(
  647. df = df_filtered,
  648. x_var = "conc_num_factor",
  649. y_var = variable,
  650. ylim_vals = y_range,
  651. annotations = annotations,
  652. lm_line = lm_line,
  653. x_breaks = levels(df_filtered$conc_num_factor),
  654. x_labels = levels(df_filtered$conc_num_factor),
  655. x_label = unique(df_filtered$Drug[1]),
  656. coord_cartesian = y_range # Use the actual y-limits
  657. )
  658. # Scatter plot config
  659. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  660. plot_type = "scatter",
  661. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  662. error_bar = TRUE,
  663. position = "jitter"
  664. ))
  665. # Box plot config
  666. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  667. plot_type = "box",
  668. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  669. error_bar = FALSE
  670. ))
  671. }
  672. return(configs)
  673. }
  674. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE) {
  675. sd_bands <- c(1, 2, 3)
  676. configs <- list()
  677. # SD-based plots for L and K
  678. for (variable in c("L", "K")) {
  679. if (is_lm) {
  680. rank_var <- paste0("Rank_lm_", variable)
  681. zscore_var <- paste0("Z_lm_", variable)
  682. y_label <- paste("Int Z score", variable)
  683. } else {
  684. rank_var <- paste0("Rank_", variable)
  685. zscore_var <- paste0("Avg_Zscore_", variable)
  686. y_label <- paste("Avg Z score", variable)
  687. }
  688. for (sd_band in sd_bands) {
  689. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  690. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  691. # Annotated plot configuration
  692. configs[[length(configs) + 1]] <- list(
  693. df = df_filtered,
  694. x_var = rank_var,
  695. y_var = zscore_var,
  696. plot_type = "scatter",
  697. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  698. sd_band = sd_band,
  699. fill_positive = "#542788",
  700. fill_negative = "orange",
  701. alpha_positive = 0.3,
  702. alpha_negative = 0.3,
  703. annotations = list(
  704. list(
  705. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  706. y = 10,
  707. label = paste("Deletion Enhancers =", num_enhancers),
  708. hjust = 0.5,
  709. vjust = 1
  710. ),
  711. list(
  712. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  713. y = -10,
  714. label = paste("Deletion Suppressors =", num_suppressors),
  715. hjust = 0.5,
  716. vjust = 0
  717. )
  718. ),
  719. shape = 3,
  720. size = 0.1,
  721. y_label = y_label,
  722. x_label = "Rank",
  723. legend_position = "none"
  724. )
  725. # Non-Annotated Plot Configuration
  726. configs[[length(configs) + 1]] <- list(
  727. df = df_filtered,
  728. x_var = rank_var,
  729. y_var = zscore_var,
  730. plot_type = "scatter",
  731. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  732. sd_band = sd_band,
  733. fill_positive = "#542788",
  734. fill_negative = "orange",
  735. alpha_positive = 0.3,
  736. alpha_negative = 0.3,
  737. annotations = NULL,
  738. shape = 3,
  739. size = 0.1,
  740. y_label = y_label,
  741. x_label = "Rank",
  742. legend_position = "none"
  743. )
  744. }
  745. }
  746. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  747. for (variable in variables) {
  748. for (plot_type in c("Avg_Zscore_vs_lm", "Rank_Avg_Zscore_vs_lm")) {
  749. # Define specific variables based on plot type
  750. if (plot_type == "Avg_Zscore_vs_lm") {
  751. x_var <- paste0("Avg_Zscore_", variable)
  752. y_var <- paste0("Z_lm_", variable)
  753. title <- paste("Avg Zscore vs lm", variable)
  754. rectangles <- list(
  755. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  756. fill = NA, color = "grey20", alpha = 0.1
  757. )
  758. )
  759. } else {
  760. x_var <- paste0("Rank_", variable)
  761. y_var <- paste0("Rank_lm_", variable)
  762. title <- paste("Rank Avg Zscore vs lm", variable)
  763. rectangles <- NULL
  764. }
  765. print(summary(df_filtered[[x_var]]))
  766. print(summary(df_filtered[[y_var]]))
  767. # Fit linear model
  768. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_filtered)
  769. lm_summary <- summary(lm_model)
  770. # Extract intercept and slope from the model coefficients
  771. intercept <- coef(lm_model)[1]
  772. slope <- coef(lm_model)[2]
  773. configs[[length(configs) + 1]] <- list(
  774. df = df_filtered,
  775. x_var = x_var,
  776. y_var = y_var,
  777. plot_type = "scatter",
  778. title = title,
  779. annotations = list(
  780. list(
  781. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  782. y = 10,
  783. label = paste("Deletion Enhancers =", num_enhancers),
  784. hjust = 0.5,
  785. vjust = 1
  786. ),
  787. list(
  788. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  789. y = -10,
  790. label = paste("Deletion Suppressors =", num_suppressors),
  791. hjust = 0.5,
  792. vjust = 0
  793. )
  794. ),
  795. shape = 3,
  796. size = 0.1,
  797. add_smooth = TRUE,
  798. lm_line = list(intercept = intercept, slope = slope),
  799. legend_position = "right",
  800. color_var = "Overlap",
  801. x_label = x_var,
  802. y_label = y_var,
  803. rectangles = rectangles
  804. )
  805. }
  806. }
  807. return(configs)
  808. }
  809. generate_correlation_plot_configs <- function(df) {
  810. # Define relationships for plotting
  811. relationships <- list(
  812. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  813. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  814. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  815. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  816. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  817. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  818. )
  819. configs <- list()
  820. for (rel in relationships) {
  821. # Fit linear model
  822. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  823. lm_summary <- summary(lm_model)
  824. # Construct plot configuration
  825. config <- list(
  826. df = df,
  827. x_var = rel$x,
  828. y_var = rel$y,
  829. plot_type = "scatter",
  830. title = rel$label,
  831. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  832. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  833. annotations = list(
  834. list(
  835. x = Inf,
  836. y = Inf,
  837. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  838. hjust = 1.1,
  839. vjust = 2,
  840. size = 4,
  841. color = "black"
  842. )
  843. ),
  844. add_smooth = TRUE, # Add regression line
  845. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  846. legend_position = "right",
  847. shape = 3,
  848. size = 0.5,
  849. color_var = "Overlap",
  850. rectangles = list(
  851. list(
  852. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  853. fill = NA, color = "grey20", alpha = 0.1
  854. )
  855. ),
  856. cyan_points = TRUE
  857. )
  858. configs[[length(configs) + 1]] <- config
  859. }
  860. return(configs)
  861. }
  862. process_data <- function(df, variables, filter_nf = FALSE, filter_na = FALSE, adjust = FALSE,
  863. rank = FALSE, limits_map = NULL) {
  864. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  865. z_lm_cols <- paste0("Z_lm_", variables)
  866. rank_avg_zscore_cols <- paste0("Rank_", variables)
  867. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  868. if (filter_nf) {
  869. message("Filtering non-finite values")
  870. df <- df %>%
  871. filter(if_all(all_of(variables), ~ is.finite(.)))
  872. }
  873. if (filter_na) {
  874. message("Filtering NA values")
  875. df <- df %>%
  876. filter(if_all(all_of(variables), ~ !is.na(.)))
  877. }
  878. if (!is.null(limits_map)) {
  879. message("Filtering data outside y-limits (for plotting)")
  880. for (variable in names(limits_map)) {
  881. if (variable %in% variables) {
  882. ylim_vals <- limits_map[[variable]]
  883. df <- df %>%
  884. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  885. }
  886. }
  887. }
  888. if (adjust) {
  889. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  890. df <- df %>%
  891. mutate(
  892. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  893. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  894. )
  895. }
  896. # Calculate and add rank columns
  897. # TODO probably should be moved to separate function
  898. if (rank) {
  899. message("Calculating ranks for Avg_Zscore_ and Z_lm_ columns")
  900. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  901. df <- df %>%
  902. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  903. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  904. df <- df %>%
  905. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  906. }
  907. return(df)
  908. }
  909. main <- function() {
  910. lapply(names(args$experiments), function(exp_name) {
  911. exp <- args$experiments[[exp_name]]
  912. exp_path <- exp$path
  913. exp_sd <- exp$sd
  914. out_dir <- file.path(exp_path, "zscores")
  915. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  916. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  917. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  918. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  919. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  920. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  921. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  922. message("Loading and filtering data for experiment: ", exp_name)
  923. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  924. update_gene_names(args$sgd_gene_list) %>%
  925. as_tibble()
  926. # Filter rows above delta background tolerance
  927. df_above_tolerance <- df %>% filter(DB == 1)
  928. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  929. df_no_zeros <- df_na %>% filter(L > 0)
  930. # Save some constants
  931. max_conc <- max(df$conc_num)
  932. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  933. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  934. message("Calculating summary statistics before quality control")
  935. ss <- calculate_summary_stats(
  936. df = df,
  937. variables = summary_vars,
  938. group_vars = c("conc_num", "conc_num_factor"))
  939. df_stats <- ss$df_with_stats
  940. message("Filtering non-finite data")
  941. df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
  942. message("Calculating summary statistics after quality control")
  943. ss <- calculate_summary_stats(
  944. df = df_na,
  945. variables = summary_vars,
  946. group_vars = c("conc_num", "conc_num_factor"))
  947. df_na_ss <- ss$summary_stats
  948. df_na_stats <- ss$df_with_stats
  949. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  950. df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
  951. message("Calculating summary statistics after quality control excluding zero values")
  952. ss <- calculate_summary_stats(
  953. df = df_no_zeros,
  954. variables = summary_vars,
  955. group_vars = c("conc_num", "conc_num_factor"))
  956. df_no_zeros_stats <- ss$df_with_stats
  957. df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
  958. message("Filtering by 2SD of K")
  959. df_na_within_2sd_k <- df_na_stats %>%
  960. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  961. df_na_outside_2sd_k <- df_na_stats %>%
  962. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  963. message("Calculating summary statistics for L within 2SD of K")
  964. # TODO We're omitting the original z_max calculation, not sure if needed?
  965. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  966. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  967. write.csv(ss$summary_stats,
  968. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  969. row.names = FALSE)
  970. message("Calculating summary statistics for L outside 2SD of K")
  971. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  972. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  973. write.csv(ss$summary_stats,
  974. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  975. row.names = FALSE)
  976. # Each plots list corresponds to a file
  977. l_vs_k_plot_configs <- list(
  978. list(
  979. df = df,
  980. x_var = "L",
  981. y_var = "K",
  982. plot_type = "scatter",
  983. delta_bg_point = TRUE,
  984. title = "Raw L vs K before quality control",
  985. color_var = "conc_num_factor",
  986. error_bar = FALSE,
  987. legend_position = "right"
  988. )
  989. )
  990. frequency_delta_bg_plot_configs <- list(
  991. list(
  992. df = df_filtered_stats,
  993. x_var = "delta_bg",
  994. y_var = NULL,
  995. plot_type = "density",
  996. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  997. color_var = "conc_num_factor",
  998. x_label = "Delta Background",
  999. y_label = "Density",
  1000. error_bar = FALSE,
  1001. legend_position = "right"),
  1002. list(
  1003. df = df_filtered_stats,
  1004. x_var = "delta_bg",
  1005. y_var = NULL,
  1006. plot_type = "bar",
  1007. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1008. color_var = "conc_num_factor",
  1009. x_label = "Delta Background",
  1010. y_label = "Count",
  1011. error_bar = FALSE,
  1012. legend_position = "right")
  1013. )
  1014. above_threshold_plot_configs <- list(
  1015. list(
  1016. df = df_above_tolerance,
  1017. x_var = "L",
  1018. y_var = "K",
  1019. plot_type = "scatter",
  1020. delta_bg_point = TRUE,
  1021. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1022. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1023. color_var = "conc_num_factor",
  1024. position = "jitter",
  1025. annotations = list(
  1026. list(
  1027. x = l_half_median,
  1028. y = k_half_median,
  1029. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1030. )
  1031. ),
  1032. error_bar = FALSE,
  1033. legend_position = "right"
  1034. )
  1035. )
  1036. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1037. variables = summary_vars,
  1038. df_before = df_filtered_stats,
  1039. df_after = df_na_filtered_stats,
  1040. )
  1041. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1042. variables = summary_vars,
  1043. df_before = df_filtered_stats,
  1044. df_after = df_na_filtered_stats,
  1045. plot_type = "box"
  1046. )
  1047. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1048. variables = summary_vars,
  1049. stages = c("after"), # Only after QC
  1050. df_after = df_no_zeros_filtered_stats,
  1051. )
  1052. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1053. variables = summary_vars,
  1054. stages = c("after"), # Only after QC
  1055. df_after = df_no_zeros_filtered_stats,
  1056. plot_type = "box"
  1057. )
  1058. l_outside_2sd_k_plot_configs <- list(
  1059. list(
  1060. df = df_na_l_outside_2sd_k_stats,
  1061. x_var = "L",
  1062. y_var = "K",
  1063. plot_type = "scatter",
  1064. delta_bg_point = TRUE,
  1065. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1066. color_var = "conc_num_factor",
  1067. position = "jitter",
  1068. legend_position = "right"
  1069. )
  1070. )
  1071. delta_bg_outside_2sd_k_plot_configs <- list(
  1072. list(
  1073. df = df_na_l_outside_2sd_k_stats,
  1074. x_var = "delta_bg",
  1075. y_var = "K",
  1076. plot_type = "scatter",
  1077. gene_point = TRUE,
  1078. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1079. color_var = "conc_num_factor",
  1080. position = "jitter",
  1081. legend_position = "right"
  1082. )
  1083. )
  1084. message("Generating quality control plots")
  1085. # TODO trying out some parallelization
  1086. # future::plan(future::multicore, workers = parallel::detectCores())
  1087. future::plan(future::multicore, workers = 3)
  1088. plot_configs <- list(
  1089. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1090. plot_configs = l_vs_k_plot_configs),
  1091. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1092. plot_configs = frequency_delta_bg_plot_configs),
  1093. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1094. plot_configs = above_threshold_plot_configs),
  1095. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1096. plot_configs = plate_analysis_plot_configs),
  1097. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1098. plot_configs = plate_analysis_boxplot_configs),
  1099. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1100. plot_configs = plate_analysis_no_zeros_plot_configs),
  1101. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1102. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1103. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1104. plot_configs = l_outside_2sd_k_plot_configs),
  1105. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1106. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1107. )
  1108. furrr::future_map(plot_configs, function(config) {
  1109. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1110. }, .options = furrr_options(seed = TRUE))
  1111. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  1112. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  1113. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  1114. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plot_configs)
  1115. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplot_configs)
  1116. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plot_configs)
  1117. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplot_configs)
  1118. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  1119. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  1120. # Process background strains
  1121. bg_strains <- c("YDL227C")
  1122. lapply(bg_strains, function(strain) {
  1123. message("Processing background strain: ", strain)
  1124. # Handle missing data by setting zero values to NA
  1125. # and then removing any rows with NA in L col
  1126. df_bg <- df_na %>%
  1127. filter(OrfRep == strain) %>%
  1128. mutate(
  1129. L = if_else(L == 0, NA, L),
  1130. K = if_else(K == 0, NA, K),
  1131. r = if_else(r == 0, NA, r),
  1132. AUC = if_else(AUC == 0, NA, AUC)
  1133. ) %>%
  1134. filter(!is.na(L))
  1135. # Recalculate summary statistics for the background strain
  1136. message("Calculating summary statistics for background strain")
  1137. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1138. summary_stats_bg <- ss_bg$summary_stats
  1139. # df_bg_stats <- ss_bg$df_with_stats
  1140. write.csv(summary_stats_bg,
  1141. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1142. row.names = FALSE)
  1143. # Filter reference and deletion strains
  1144. # Formerly X2_RF (reference strains)
  1145. df_reference <- df_na_stats %>%
  1146. filter(OrfRep == strain) %>%
  1147. mutate(SM = 0)
  1148. # Formerly X2 (deletion strains)
  1149. df_deletion <- df_na_stats %>%
  1150. filter(OrfRep != strain) %>%
  1151. mutate(SM = 0)
  1152. # Set the missing values to the highest theoretical value at each drug conc for L
  1153. # Leave other values as 0 for the max/min
  1154. reference_strain <- df_reference %>%
  1155. group_by(conc_num, conc_num_factor) %>%
  1156. mutate(
  1157. max_l_theoretical = max(max_L, na.rm = TRUE),
  1158. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1159. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1160. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1161. ungroup()
  1162. # Ditto for deletion strains
  1163. deletion_strains <- df_deletion %>%
  1164. group_by(conc_num, conc_num_factor) %>%
  1165. mutate(
  1166. max_l_theoretical = max(max_L, na.rm = TRUE),
  1167. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1168. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1169. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1170. ungroup()
  1171. message("Calculating reference strain interaction scores")
  1172. reference_results <- calculate_interaction_scores(reference_strain, max_conc)
  1173. zscores_calculations_reference <- reference_results$calculations
  1174. zscores_interactions_reference <- reference_results$interactions
  1175. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1176. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1177. message("Calculating deletion strain(s) interactions scores")
  1178. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc)
  1179. zscores_calculations <- deletion_results$calculations
  1180. zscores_interactions <- deletion_results$interactions
  1181. zscores_calculations_joined <- deletion_results$calculations_joined
  1182. zscores_interactions_joined <- deletion_results$interactions_joined
  1183. # Writing Z-Scores to file
  1184. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1185. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1186. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1187. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1188. # Create interaction plots
  1189. message("Generating reference interaction plots")
  1190. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1191. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1192. message("Generating deletion interaction plots")
  1193. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1194. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1195. # Define conditions for enhancers and suppressors
  1196. # TODO Add to study config file?
  1197. threshold <- 2
  1198. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1199. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1200. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1201. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1202. # Subset data
  1203. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1204. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1205. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1206. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1207. # Save enhancers and suppressors
  1208. message("Writing enhancer/suppressor csv files")
  1209. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1210. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1211. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1212. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1213. # Combine conditions for enhancers and suppressors
  1214. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1215. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1216. # Save combined enhancers and suppressors
  1217. write.csv(enhancers_and_suppressors_L,
  1218. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1219. write.csv(enhancers_and_suppressors_K,
  1220. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1221. # Handle linear model based enhancers and suppressors
  1222. lm_threshold <- 2
  1223. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1224. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1225. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1226. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1227. # Save linear model based enhancers and suppressors
  1228. message("Writing linear model enhancer/suppressor csv files")
  1229. write.csv(enhancers_lm_L,
  1230. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1231. write.csv(suppressors_lm_L,
  1232. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1233. write.csv(enhancers_lm_K,
  1234. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1235. write.csv(suppressors_lm_K,
  1236. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1237. message("Generating rank plots")
  1238. # Formerly InteractionScores_AdjustMissing
  1239. zscores_interactions_joined_ranked <- process_data(
  1240. df = zscores_interactions_joined,
  1241. variables = interaction_vars,
  1242. adjust = TRUE,
  1243. rank = TRUE)
  1244. rank_plot_configs <- generate_rank_plot_configs(
  1245. df = zscores_interactions_joined_ranked,
  1246. variables = interaction_vars,
  1247. is_lm = FALSE
  1248. )
  1249. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots",
  1250. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1251. message("Generating ranked linear model plots")
  1252. rank_lm_plot_configs <- generate_rank_plot_configs(
  1253. df = zscores_interactions_joined_ranked,
  1254. variables = interaction_vars,
  1255. is_lm = TRUE
  1256. )
  1257. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots_lm",
  1258. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1259. message("Filtering and reranking plots")
  1260. # Formerly X_NArm
  1261. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1262. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  1263. mutate(
  1264. Overlap = case_when(
  1265. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1266. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1267. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1268. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1269. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1270. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1271. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1272. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1273. TRUE ~ "No Effect"
  1274. ),
  1275. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1276. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1277. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1278. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1279. )
  1280. # Re-rank
  1281. zscores_interactions_filtered_ranked <- process_data(
  1282. df = zscores_interactions_filtered,
  1283. variables = interaction_vars,
  1284. rank = TRUE
  1285. )
  1286. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1287. df = zscores_interactions_filtered_ranked,
  1288. variables = interaction_vars,
  1289. is_lm = FALSE
  1290. )
  1291. message("Generating filtered ranked plots")
  1292. generate_and_save_plots(
  1293. out_dir = out_dir,
  1294. filename = "RankPlots_na_rm",
  1295. plot_configs = rank_plot_filtered_configs,
  1296. grid_layout = list(ncol = 3, nrow = 2))
  1297. message("Generating filtered ranked linear model plots")
  1298. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1299. df = zscores_interactions_filtered_ranked,
  1300. variables = interaction_vars,
  1301. is_lm = TRUE
  1302. )
  1303. generate_and_save_plots(
  1304. out_dir = out_dir,
  1305. filename = "RankPlots_lm_na_rm",
  1306. plot_configs = rank_plot_lm_filtered_configs,
  1307. grid_layout = list(ncol = 3, nrow = 2))
  1308. message("Generating correlation plots")
  1309. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1310. generate_and_save_plots(
  1311. out_dir = out_dir,
  1312. filename = "Avg_Zscore_vs_lm_NA_rm",
  1313. plot_configs = correlation_plot_configs,
  1314. grid_layout = list(ncol = 2, nrow = 2))
  1315. })
  1316. })
  1317. }
  1318. main()