calculate_interaction_zscores.R 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. update_gene_names <- function(df, sgd_gene_list) {
  146. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  147. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  148. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  149. df <- df %>%
  150. mutate(
  151. mapped_genes = gene_map[ORF],
  152. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  153. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  154. )
  155. return(df)
  156. }
  157. calculate_summary_stats <- function(df, variables, group_vars) {
  158. summary_stats <- df %>%
  159. group_by(across(all_of(group_vars))) %>%
  160. summarise(
  161. N = n(),
  162. across(all_of(variables),
  163. list(
  164. mean = ~ mean(.x, na.rm = TRUE),
  165. median = ~ median(.x, na.rm = TRUE),
  166. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  167. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  168. sd = ~ sd(.x, na.rm = TRUE),
  169. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  170. ),
  171. .names = "{.fn}_{.col}"
  172. ),
  173. .groups = "drop"
  174. )
  175. # Create a cleaned version of df that doesn't overlap with summary_stats
  176. df_cleaned <- df %>%
  177. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  178. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  179. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  180. }
  181. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  182. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  183. total_conc_num <- length(unique(df$conc_num))
  184. # Calculate WT statistics from df_bg
  185. wt_stats <- df_bg %>%
  186. filter(conc_num == 0) %>%
  187. summarise(
  188. WT_L = mean(mean_L, na.rm = TRUE),
  189. WT_sd_L = mean(sd_L, na.rm = TRUE),
  190. WT_K = mean(mean_K, na.rm = TRUE),
  191. WT_sd_K = mean(sd_K, na.rm = TRUE),
  192. WT_r = mean(mean_r, na.rm = TRUE),
  193. WT_sd_r = mean(sd_r, na.rm = TRUE),
  194. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  195. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  196. )
  197. # Add WT statistics to df
  198. df <- df %>%
  199. mutate(
  200. WT_L = wt_stats$WT_L,
  201. WT_sd_L = wt_stats$WT_sd_L,
  202. WT_K = wt_stats$WT_K,
  203. WT_sd_K = wt_stats$WT_sd_K,
  204. WT_r = wt_stats$WT_r,
  205. WT_sd_r = wt_stats$WT_sd_r,
  206. WT_AUC = wt_stats$WT_AUC,
  207. WT_sd_AUC = wt_stats$WT_sd_AUC
  208. )
  209. # Compute mean values at zero concentration
  210. mean_L_zero_df <- df %>%
  211. filter(conc_num == 0) %>%
  212. group_by(across(all_of(group_vars))) %>%
  213. summarise(
  214. mean_L_zero = mean(mean_L, na.rm = TRUE),
  215. mean_K_zero = mean(mean_K, na.rm = TRUE),
  216. mean_r_zero = mean(mean_r, na.rm = TRUE),
  217. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  218. .groups = "drop"
  219. )
  220. # Join mean_L_zero_df to df
  221. df <- df %>%
  222. left_join(mean_L_zero_df, by = group_vars)
  223. # Calculate Raw Shifts and Z Shifts
  224. df <- df %>%
  225. mutate(
  226. Raw_Shift_L = mean_L_zero - WT_L,
  227. Raw_Shift_K = mean_K_zero - WT_K,
  228. Raw_Shift_r = mean_r_zero - WT_r,
  229. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  230. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  231. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  232. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  233. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  234. )
  235. calculations <- df %>%
  236. group_by(across(all_of(group_vars))) %>%
  237. mutate(
  238. NG_sum = sum(NG, na.rm = TRUE),
  239. DB_sum = sum(DB, na.rm = TRUE),
  240. SM_sum = sum(SM, na.rm = TRUE),
  241. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  242. # Expected values
  243. Exp_L = WT_L + Raw_Shift_L,
  244. Exp_K = WT_K + Raw_Shift_K,
  245. Exp_r = WT_r + Raw_Shift_r,
  246. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  247. # Deltas
  248. Delta_L = mean_L - Exp_L,
  249. Delta_K = mean_K - Exp_K,
  250. Delta_r = mean_r - Exp_r,
  251. Delta_AUC = mean_AUC - Exp_AUC,
  252. # Adjust deltas for NG and SM
  253. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  254. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  255. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  256. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  257. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  258. # Calculate Z-scores
  259. Zscore_L = Delta_L / WT_sd_L,
  260. Zscore_K = Delta_K / WT_sd_K,
  261. Zscore_r = Delta_r / WT_sd_r,
  262. Zscore_AUC = Delta_AUC / WT_sd_AUC
  263. ) %>%
  264. group_modify(~ {
  265. # Perform linear models only if there are enough unique conc_num_factor levels
  266. if (length(unique(.x$conc_num_factor)) > 1) {
  267. # Filter and calculate each lm() separately with individual checks for NAs
  268. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  270. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  271. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  272. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  273. .x %>%
  274. mutate(
  275. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  276. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  277. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  278. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  279. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  280. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  281. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  282. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  283. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  284. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  285. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  286. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  287. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  288. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  289. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  290. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  291. )
  292. } else {
  293. # If not enough conc_num_factor levels, set lm-related values to NA
  294. .x %>%
  295. mutate(
  296. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  297. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  298. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  299. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  300. )
  301. }
  302. }) %>%
  303. ungroup()
  304. # Summary statistics for lm scores
  305. lm_means_sds <- calculations %>%
  306. summarise(
  307. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  308. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  309. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  310. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  311. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  312. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  313. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  314. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  315. .groups = "drop"
  316. )
  317. # Add lm score means and standard deviations to calculations
  318. calculations <- calculations %>%
  319. mutate(
  320. lm_mean_L = lm_means_sds$lm_mean_L,
  321. lm_sd_L = lm_means_sds$lm_sd_L,
  322. lm_mean_K = lm_means_sds$lm_mean_K,
  323. lm_sd_K = lm_means_sds$lm_sd_K,
  324. lm_mean_r = lm_means_sds$lm_mean_r,
  325. lm_sd_r = lm_means_sds$lm_sd_r,
  326. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  327. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  328. )
  329. # Calculate Z-lm scores
  330. calculations <- calculations %>%
  331. mutate(
  332. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  333. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  334. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  335. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  336. )
  337. # Build summary stats (interactions)
  338. interactions <- calculations %>%
  339. group_by(across(all_of(group_vars))) %>%
  340. summarise(
  341. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  342. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  343. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  344. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  345. # Interaction Z-scores
  346. Z_lm_L = first(Z_lm_L),
  347. Z_lm_K = first(Z_lm_K),
  348. Z_lm_r = first(Z_lm_r),
  349. Z_lm_AUC = first(Z_lm_AUC),
  350. # Raw Shifts
  351. Raw_Shift_L = first(Raw_Shift_L),
  352. Raw_Shift_K = first(Raw_Shift_K),
  353. Raw_Shift_r = first(Raw_Shift_r),
  354. Raw_Shift_AUC = first(Raw_Shift_AUC),
  355. # Z Shifts
  356. Z_Shift_L = first(Z_Shift_L),
  357. Z_Shift_K = first(Z_Shift_K),
  358. Z_Shift_r = first(Z_Shift_r),
  359. Z_Shift_AUC = first(Z_Shift_AUC),
  360. # R Squared values
  361. R_Squared_L = first(R_Squared_L),
  362. R_Squared_K = first(R_Squared_K),
  363. R_Squared_r = first(R_Squared_r),
  364. R_Squared_AUC = first(R_Squared_AUC),
  365. # NG, DB, SM values
  366. NG = first(NG),
  367. DB = first(DB),
  368. SM = first(SM),
  369. .groups = "drop"
  370. )
  371. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  372. interactions <- interactions %>%
  373. filter(!is.na(Z_lm_L)) %>%
  374. mutate(
  375. Overlap = case_when(
  376. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  377. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  378. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  379. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  380. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  381. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  382. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  383. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  384. TRUE ~ "No Effect"
  385. ),
  386. # For correlations
  387. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  388. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  389. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  390. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  391. )
  392. # Creating the final calculations and interactions dataframes with only required columns for csv output
  393. calculations_df <- calculations %>%
  394. select(
  395. all_of(group_vars),
  396. conc_num, conc_num_factor, conc_num_factor_factor, N,
  397. mean_L, median_L, sd_L, se_L,
  398. mean_K, median_K, sd_K, se_K,
  399. mean_r, median_r, sd_r, se_r,
  400. mean_AUC, median_AUC, sd_AUC, se_AUC,
  401. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  402. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  403. WT_L, WT_K, WT_r, WT_AUC,
  404. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  405. Exp_L, Exp_K, Exp_r, Exp_AUC,
  406. Delta_L, Delta_K, Delta_r, Delta_AUC,
  407. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  408. )
  409. interactions_df <- interactions %>%
  410. select(
  411. all_of(group_vars),
  412. NG, DB, SM,
  413. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  414. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  415. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  416. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  417. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  418. Overlap
  419. )
  420. # Join calculations and interactions to avoid dimension mismatch
  421. calculations_no_overlap <- calculations %>%
  422. select(-any_of(c("DB", "NG", "SM",
  423. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  424. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  425. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  426. full_data <- calculations_no_overlap %>%
  427. left_join(interactions_df, by = group_vars)
  428. # Return final dataframes
  429. return(list(
  430. calculations = calculations_df,
  431. interactions = interactions_df,
  432. full_data = full_data
  433. ))
  434. }
  435. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  436. message("Generating ", filename, ".pdf and ", filename, ".html")
  437. # Check if we're dealing with multiple plot groups
  438. plot_groups <- if ("plots" %in% names(plot_configs)) {
  439. list(plot_configs) # Single group
  440. } else {
  441. plot_configs # Multiple groups
  442. }
  443. # Open the PDF device once for all plots
  444. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  445. # Loop through each plot group
  446. for (group in plot_groups) {
  447. static_plots <- list()
  448. plotly_plots <- list()
  449. grid_layout <- group$grid_layout
  450. plots <- group$plots
  451. for (i in seq_along(plots)) {
  452. config <- plots[[i]]
  453. df <- config$df
  454. # Set up aes mapping based on plot type
  455. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  456. if (!is.null(config$color_var)) {
  457. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  458. } else {
  459. aes(x = .data[[config$x_var]])
  460. }
  461. } else {
  462. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  463. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  464. } else if (!is.null(config$y_var)) {
  465. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  466. } else {
  467. aes(x = .data[[config$x_var]])
  468. }
  469. }
  470. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  471. # Add appropriate plot layer based on plot type
  472. plot <- switch(config$plot_type,
  473. "scatter" = generate_scatter_plot(plot, config),
  474. "box" = generate_boxplot(plot, config),
  475. "density" = plot + geom_density(),
  476. "bar" = plot + geom_bar(),
  477. plot # default (unused)
  478. )
  479. # Add labels and title
  480. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  481. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  482. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  483. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  484. # Add error bars if specified
  485. if (!is.null(config$error_bar) && config$error_bar) {
  486. error_bar_color <- if (!is.null(config$error_bar_params$color)) {
  487. config$error_bar_params$color
  488. } else {
  489. "red"
  490. }
  491. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  492. # Check if ymin and ymax are constants or column names
  493. if (is.numeric(config$error_bar_params$ymin) && is.numeric(config$error_bar_params$ymax)) {
  494. plot <- plot + geom_errorbar(aes(x = .data[[config$x_var]]),
  495. ymin = config$error_bar_params$ymin,
  496. ymax = config$error_bar_params$ymax,
  497. color = error_bar_color)
  498. } else {
  499. plot <- plot + geom_errorbar(aes(
  500. x = .data[[config$x_var]],
  501. ymin = .data[[config$error_bar_params$ymin]],
  502. ymax = .data[[config$error_bar_params$ymax]]
  503. ), color = error_bar_color)
  504. }
  505. } else {
  506. # Ensure the mean and sd columns exist
  507. y_mean_col <- paste0("mean_", config$y_var)
  508. y_sd_col <- paste0("sd_", config$y_var)
  509. if (y_mean_col %in% colnames(df) && y_sd_col %in% colnames(df)) {
  510. plot <- plot + geom_errorbar(aes(
  511. x = .data[[config$x_var]],
  512. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  513. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  514. ), color = error_bar_color)
  515. }
  516. }
  517. }
  518. # Convert ggplot to plotly for interactive version
  519. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  520. # Store both static and interactive versions
  521. static_plots[[i]] <- plot
  522. plotly_plots[[i]] <- plotly_plot
  523. }
  524. # Print the plots in the current group to the PDF
  525. if (is.null(grid_layout)) {
  526. # Print each plot individually on separate pages if no grid layout is specified
  527. for (plot in static_plots) {
  528. print(plot)
  529. }
  530. } else {
  531. # Arrange plots in grid layout on a single page
  532. grid.arrange(
  533. grobs = static_plots,
  534. ncol = grid_layout$ncol,
  535. nrow = grid_layout$nrow
  536. )
  537. }
  538. }
  539. # Close the PDF device after all plots are done
  540. dev.off()
  541. # Save HTML file with interactive plots if needed
  542. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  543. message("Saving combined HTML file: ", out_html_file)
  544. htmltools::save_html(
  545. htmltools::tagList(plotly_plots),
  546. file = out_html_file
  547. )
  548. }
  549. generate_scatter_plot <- function(plot, config) {
  550. # Define the points
  551. shape <- if (!is.null(config$shape)) config$shape else 3
  552. size <- if (!is.null(config$size)) config$size else 1.5
  553. position <-
  554. if (!is.null(config$position) && config$position == "jitter") {
  555. position_jitter(width = 0.4, height = 0.1)
  556. } else {
  557. "identity"
  558. }
  559. plot <- plot + geom_point(
  560. shape = shape,
  561. size = size,
  562. position = position
  563. )
  564. if (!is.null(config$cyan_points) && config$cyan_points) {
  565. plot <- plot + geom_point(
  566. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  567. color = "cyan",
  568. shape = 3,
  569. size = 0.5
  570. )
  571. }
  572. # Add Smooth Line if specified
  573. if (!is.null(config$smooth) && config$smooth) {
  574. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  575. if (!is.null(config$lm_line)) {
  576. plot <- plot +
  577. geom_abline(
  578. intercept = config$lm_line$intercept,
  579. slope = config$lm_line$slope,
  580. color = smooth_color
  581. )
  582. } else {
  583. plot <- plot +
  584. geom_smooth(
  585. method = "lm",
  586. se = FALSE,
  587. color = smooth_color
  588. )
  589. }
  590. }
  591. # Add SD Bands if specified
  592. if (!is.null(config$sd_band)) {
  593. plot <- plot +
  594. annotate(
  595. "rect",
  596. xmin = -Inf, xmax = Inf,
  597. ymin = config$sd_band, ymax = Inf,
  598. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  599. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  600. ) +
  601. annotate(
  602. "rect",
  603. xmin = -Inf, xmax = Inf,
  604. ymin = -config$sd_band, ymax = -Inf,
  605. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  606. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  607. ) +
  608. geom_hline(
  609. yintercept = c(-config$sd_band, config$sd_band),
  610. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  611. )
  612. }
  613. # Add Rectangles if specified
  614. if (!is.null(config$rectangles)) {
  615. for (rect in config$rectangles) {
  616. plot <- plot + annotate(
  617. "rect",
  618. xmin = rect$xmin,
  619. xmax = rect$xmax,
  620. ymin = rect$ymin,
  621. ymax = rect$ymax,
  622. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  623. color = ifelse(is.null(rect$color), "black", rect$color),
  624. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  625. )
  626. }
  627. }
  628. # Customize X-axis if specified
  629. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  630. # Check if x_var is factor or character (for discrete x-axis)
  631. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  632. plot <- plot +
  633. scale_x_discrete(
  634. name = config$x_label,
  635. breaks = config$x_breaks,
  636. labels = config$x_labels
  637. )
  638. } else {
  639. plot <- plot +
  640. scale_x_continuous(
  641. name = config$x_label,
  642. breaks = config$x_breaks,
  643. labels = config$x_labels
  644. )
  645. }
  646. }
  647. # Set Y-axis limits if specified
  648. if (!is.null(config$ylim_vals)) {
  649. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  650. }
  651. # Add annotations if specified
  652. if (!is.null(config$annotations)) {
  653. for (annotation in config$annotations) {
  654. plot <- plot +
  655. annotate(
  656. "text",
  657. x = annotation$x,
  658. y = annotation$y,
  659. label = annotation$label,
  660. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  661. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  662. size = ifelse(is.null(annotation$size), 3, annotation$size),
  663. color = ifelse(is.null(annotation$color), "black", annotation$color)
  664. )
  665. }
  666. }
  667. return(plot)
  668. }
  669. generate_boxplot <- function(plot, config) {
  670. # Convert x_var to a factor within aes mapping
  671. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  672. # Customize X-axis if specified
  673. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  674. # Check if x_var is factor or character (for discrete x-axis)
  675. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  676. plot <- plot +
  677. scale_x_discrete(
  678. name = config$x_label,
  679. breaks = config$x_breaks,
  680. labels = config$x_labels
  681. )
  682. } else {
  683. plot <- plot +
  684. scale_x_continuous(
  685. name = config$x_label,
  686. breaks = config$x_breaks,
  687. labels = config$x_labels
  688. )
  689. }
  690. }
  691. return(plot)
  692. }
  693. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  694. plot_type = "scatter", stages = c("before", "after")) {
  695. plot_configs <- list()
  696. for (var in variables) {
  697. for (stage in stages) {
  698. df_plot <- if (stage == "before") df_before else df_after
  699. # Check for non-finite values in the y-variable
  700. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  701. # Adjust settings based on plot_type
  702. plot_config <- list(
  703. df = df_plot_filtered,
  704. x_var = "scan",
  705. y_var = var,
  706. plot_type = plot_type,
  707. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  708. color_var = "conc_num_factor_factor",
  709. position = if (plot_type == "scatter") "jitter" else NULL,
  710. size = 0.2,
  711. error_bar = (plot_type == "scatter")
  712. )
  713. # Add config to plots list
  714. plot_configs <- append(plot_configs, list(plot_config))
  715. }
  716. }
  717. return(list(plots = plot_configs))
  718. }
  719. generate_interaction_plot_configs <- function(df, type) {
  720. # Define the y-limits for the plots
  721. limits_map <- list(
  722. L = c(0, 130),
  723. K = c(-20, 160),
  724. r = c(0, 1),
  725. AUC = c(0, 12500)
  726. )
  727. stats_plot_configs <- list()
  728. stats_boxplot_configs <- list()
  729. delta_plot_configs <- list()
  730. # Overall statistics plots
  731. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  732. for (plot_type in c("scatter", "box")) {
  733. for (var in names(limits_map)) {
  734. y_limits <- limits_map[[var]]
  735. y_span <- y_limits[2] - y_limits[1]
  736. # Common plot configuration
  737. plot_config <- list(
  738. df = df,
  739. x_var = "conc_num_factor_factor",
  740. y_var = var,
  741. shape = 16,
  742. x_label = unique(df$Drug)[1],
  743. coord_cartesian = y_limits,
  744. x_breaks = unique(df$conc_num_factor_factor),
  745. x_labels = as.character(unique(df$conc_num))
  746. )
  747. # Add specific configurations for scatter and box plots
  748. if (plot_type == "scatter") {
  749. plot_config$plot_type <- "scatter"
  750. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  751. plot_config$error_bar <- TRUE
  752. plot_config$error_bar_params <- list(
  753. y_sd_prefix = "WT_sd_",
  754. y_mean_prefix = "mean_",
  755. color = "red",
  756. center_point = TRUE
  757. )
  758. plot_config$position <- "jitter"
  759. annotations <- list(
  760. list(x = 0.25, y = y_limits[1] + 0.1 * y_span, label = " NG ="), # Slightly above y-min
  761. list(x = 0.25, y = y_limits[1] + 0.05 * y_span, label = " DB ="),
  762. list(x = 0.25, y = y_limits[1], label = " SM =")
  763. )
  764. # Loop over unique x values and add NG, DB, SM values at calculated y positions
  765. for (x_val in unique(df$conc_num_factor_factor)) {
  766. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  767. annotations <- append(annotations, list(
  768. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
  769. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
  770. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
  771. ))
  772. }
  773. plot_config$annotations <- annotations
  774. # Append to scatter plot configurations
  775. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  776. } else if (plot_type == "box") {
  777. plot_config$plot_type <- "box"
  778. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  779. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  780. # Append to boxplot configurations
  781. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  782. }
  783. }
  784. }
  785. # Delta interaction plots
  786. if (type == "reference") {
  787. group_vars <- c("OrfRep", "Gene", "num")
  788. } else if (type == "deletion") {
  789. group_vars <- c("OrfRep", "Gene")
  790. }
  791. delta_limits_map <- list(
  792. L = c(-60, 60),
  793. K = c(-60, 60),
  794. r = c(-0.6, 0.6),
  795. AUC = c(-6000, 6000)
  796. )
  797. grouped_data <- df %>%
  798. group_by(across(all_of(group_vars))) %>%
  799. group_split()
  800. for (group_data in grouped_data) {
  801. OrfRep <- first(group_data$OrfRep)
  802. Gene <- first(group_data$Gene)
  803. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  804. if (type == "reference") {
  805. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  806. } else if (type == "deletion") {
  807. OrfRepTitle <- OrfRep
  808. }
  809. for (var in names(delta_limits_map)) {
  810. y_limits <- delta_limits_map[[var]]
  811. y_span <- y_limits[2] - y_limits[1]
  812. # Error bars
  813. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  814. # Z_Shift and lm values
  815. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  816. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  817. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  818. # NG, DB, SM values
  819. NG_value <- first(group_data$NG, default = 0)
  820. DB_value <- first(group_data$DB, default = 0)
  821. SM_value <- first(group_data$SM, default = 0)
  822. # Use the pre-calculated lm intercept and slope from the dataframe
  823. lm_intercept_col <- paste0("lm_intercept_", var)
  824. lm_slope_col <- paste0("lm_slope_", var)
  825. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  826. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  827. plot_config <- list(
  828. df = group_data,
  829. plot_type = "scatter",
  830. x_var = "conc_num_factor_factor",
  831. y_var = var,
  832. x_label = unique(group_data$Drug)[1],
  833. title = paste(OrfRepTitle, Gene, num, sep = " "),
  834. coord_cartesian = y_limits,
  835. annotations = list(
  836. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  837. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  838. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  839. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  840. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  841. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  842. ),
  843. error_bar = TRUE,
  844. error_bar_params = list(
  845. ymin = 0 - (2 * WT_sd_value),
  846. ymax = 0 + (2 * WT_sd_value),
  847. color = "black"
  848. ),
  849. smooth = TRUE,
  850. x_breaks = unique(group_data$conc_num_factor_factor),
  851. x_labels = as.character(unique(group_data$conc_num)),
  852. ylim_vals = y_limits,
  853. lm_line = list(
  854. intercept = lm_intercept_value,
  855. slope = lm_slope_value
  856. )
  857. )
  858. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  859. }
  860. }
  861. # Calculate dynamic grid layout
  862. grid_ncol <- 4
  863. num_plots <- length(delta_plot_configs)
  864. grid_nrow <- ceiling(num_plots / grid_ncol)
  865. return(list(
  866. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
  867. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
  868. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  869. ))
  870. }
  871. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  872. sd_bands <- c(1, 2, 3)
  873. plot_configs <- list()
  874. variables <- c("L", "K")
  875. # Adjust (if necessary) and rank columns
  876. for (variable in variables) {
  877. if (adjust) {
  878. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  879. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  880. }
  881. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  882. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  883. }
  884. # Helper function to create a plot configuration
  885. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  886. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  887. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  888. # Default plot config
  889. plot_config <- list(
  890. df = df,
  891. x_var = rank_var,
  892. y_var = zscore_var,
  893. plot_type = "scatter",
  894. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  895. sd_band = sd_band,
  896. fill_positive = "#542788",
  897. fill_negative = "orange",
  898. alpha_positive = 0.3,
  899. alpha_negative = 0.3,
  900. annotations = NULL,
  901. shape = 3,
  902. size = 0.1,
  903. y_label = y_label,
  904. x_label = "Rank",
  905. legend_position = "none"
  906. )
  907. if (with_annotations) {
  908. # Add specific annotations for plots with annotations
  909. plot_config$annotations <- list(
  910. list(
  911. x = median(df[[rank_var]], na.rm = TRUE),
  912. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  913. label = paste("Deletion Enhancers =", num_enhancers)
  914. ),
  915. list(
  916. x = median(df[[rank_var]], na.rm = TRUE),
  917. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  918. label = paste("Deletion Suppressors =", num_suppressors)
  919. )
  920. )
  921. }
  922. return(plot_config)
  923. }
  924. # Generate plots for each variable
  925. for (variable in variables) {
  926. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  927. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  928. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  929. # Loop through SD bands
  930. for (sd_band in sd_bands) {
  931. # Create plot with annotations
  932. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  933. # Create plot without annotations
  934. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  935. }
  936. }
  937. # Calculate dynamic grid layout based on the number of plots
  938. grid_ncol <- 3
  939. num_plots <- length(plot_configs)
  940. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  941. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  942. }
  943. generate_correlation_plot_configs <- function(df, correlation_stats) {
  944. # Define relationships for different-variable correlations
  945. relationships <- list(
  946. list(x = "L", y = "K"),
  947. list(x = "L", y = "r"),
  948. list(x = "L", y = "AUC"),
  949. list(x = "K", y = "r"),
  950. list(x = "K", y = "AUC"),
  951. list(x = "r", y = "AUC")
  952. )
  953. plot_configs <- list()
  954. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  955. highlight_cyan_options <- c(FALSE, TRUE)
  956. for (highlight_cyan in highlight_cyan_options) {
  957. for (rel in relationships) {
  958. # Extract relevant variable names for Z_lm values
  959. x_var <- paste0("Z_lm_", rel$x)
  960. y_var <- paste0("Z_lm_", rel$y)
  961. # Access the correlation statistics from the correlation_stats list
  962. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  963. stats <- correlation_stats[[relationship_name]]
  964. intercept <- stats$intercept
  965. slope <- stats$slope
  966. r_squared <- stats$r_squared
  967. # Generate the label for the plot
  968. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  969. # Construct plot config
  970. plot_config <- list(
  971. df = df,
  972. x_var = x_var,
  973. y_var = y_var,
  974. plot_type = "scatter",
  975. title = plot_label,
  976. annotations = list(
  977. list(
  978. x = mean(df[[x_var]], na.rm = TRUE),
  979. y = mean(df[[y_var]], na.rm = TRUE),
  980. label = paste("R-squared =", round(r_squared, 3))
  981. )
  982. ),
  983. smooth = TRUE,
  984. smooth_color = "tomato3",
  985. lm_line = list(
  986. intercept = intercept,
  987. slope = slope
  988. ),
  989. shape = 3,
  990. size = 0.5,
  991. color_var = "Overlap",
  992. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  993. )
  994. plot_configs <- append(plot_configs, list(plot_config))
  995. }
  996. }
  997. return(list(plots = plot_configs))
  998. }
  999. main <- function() {
  1000. lapply(names(args$experiments), function(exp_name) {
  1001. exp <- args$experiments[[exp_name]]
  1002. exp_path <- exp$path
  1003. exp_sd <- exp$sd
  1004. out_dir <- file.path(exp_path, "zscores")
  1005. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1006. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1007. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1008. # Each list of plots corresponds to a separate file
  1009. message("Loading and filtering data for experiment: ", exp_name)
  1010. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1011. update_gene_names(args$sgd_gene_list) %>%
  1012. as_tibble()
  1013. l_vs_k_plot_configs <- list(
  1014. plots = list(
  1015. list(
  1016. df = df,
  1017. x_var = "L",
  1018. y_var = "K",
  1019. plot_type = "scatter",
  1020. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1021. title = "Raw L vs K before quality control",
  1022. color_var = "conc_num_factor_factor",
  1023. error_bar = FALSE,
  1024. legend_position = "right"
  1025. )
  1026. )
  1027. )
  1028. message("Calculating summary statistics before quality control")
  1029. df_stats <- calculate_summary_stats(
  1030. df = df,
  1031. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1032. group_vars = c("conc_num"))$df_with_stats
  1033. frequency_delta_bg_plot_configs <- list(
  1034. plots = list(
  1035. list(
  1036. df = df_stats,
  1037. x_var = "delta_bg",
  1038. y_var = NULL,
  1039. plot_type = "density",
  1040. title = "Density plot for Delta Background by [Drug] (All Data)",
  1041. color_var = "conc_num_factor_factor",
  1042. x_label = "Delta Background",
  1043. y_label = "Density",
  1044. error_bar = FALSE,
  1045. legend_position = "right"
  1046. ),
  1047. list(
  1048. df = df_stats,
  1049. x_var = "delta_bg",
  1050. y_var = NULL,
  1051. plot_type = "bar",
  1052. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1053. color_var = "conc_num_factor_factor",
  1054. x_label = "Delta Background",
  1055. y_label = "Count",
  1056. error_bar = FALSE,
  1057. legend_position = "right"
  1058. )
  1059. )
  1060. )
  1061. message("Filtering rows above delta background tolerance for plotting")
  1062. df_above_tolerance <- df %>% filter(DB == 1)
  1063. above_threshold_plot_configs <- list(
  1064. plots = list(
  1065. list(
  1066. df = df_above_tolerance,
  1067. x_var = "L",
  1068. y_var = "K",
  1069. plot_type = "scatter",
  1070. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1071. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1072. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1073. color_var = "conc_num_factor_factor",
  1074. position = "jitter",
  1075. annotations = list(
  1076. list(
  1077. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1078. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1079. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1080. )
  1081. ),
  1082. error_bar = FALSE,
  1083. legend_position = "right"
  1084. )
  1085. )
  1086. )
  1087. message("Setting rows above delta background tolerance to NA")
  1088. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1089. message("Calculating summary statistics across all strains")
  1090. ss <- calculate_summary_stats(
  1091. df = df_na,
  1092. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1093. group_vars = c("conc_num"))
  1094. df_na_ss <- ss$summary_stats
  1095. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1096. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1097. # This can help bypass missing values ggplot warnings during testing
  1098. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1099. message("Calculating summary statistics excluding zero values")
  1100. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1101. df_no_zeros_stats <- calculate_summary_stats(
  1102. df = df_no_zeros,
  1103. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1104. group_vars = c("conc_num")
  1105. )$df_with_stats
  1106. message("Filtering by 2SD of K")
  1107. df_na_within_2sd_k <- df_na_stats %>%
  1108. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1109. df_na_outside_2sd_k <- df_na_stats %>%
  1110. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1111. message("Calculating summary statistics for L within 2SD of K")
  1112. # TODO We're omitting the original z_max calculation, not sure if needed?
  1113. ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
  1114. group_vars = c("conc_num"))$summary_stats
  1115. write.csv(ss,
  1116. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1117. row.names = FALSE)
  1118. message("Calculating summary statistics for L outside 2SD of K")
  1119. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
  1120. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1121. write.csv(ss$summary_stats,
  1122. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1123. row.names = FALSE)
  1124. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1125. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1126. df_before = df_stats,
  1127. df_after = df_na_stats_filtered
  1128. )
  1129. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1130. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1131. df_before = df_stats,
  1132. df_after = df_na_stats_filtered,
  1133. plot_type = "box"
  1134. )
  1135. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1136. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1137. stages = c("after"), # Only after QC
  1138. df_after = df_no_zeros_stats
  1139. )
  1140. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1141. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1142. stages = c("after"), # Only after QC
  1143. df_after = df_no_zeros_stats,
  1144. plot_type = "box"
  1145. )
  1146. l_outside_2sd_k_plot_configs <- list(
  1147. plots = list(
  1148. list(
  1149. df = df_na_l_outside_2sd_k_stats,
  1150. x_var = "L",
  1151. y_var = "K",
  1152. plot_type = "scatter",
  1153. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1154. color_var = "conc_num_factor_factor",
  1155. position = "jitter",
  1156. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1157. annotations = list(
  1158. list(
  1159. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1160. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1161. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1162. )
  1163. ),
  1164. error_bar = FALSE,
  1165. legend_position = "right"
  1166. )
  1167. )
  1168. )
  1169. delta_bg_outside_2sd_k_plot_configs <- list(
  1170. plots = list(
  1171. list(
  1172. df = df_na_l_outside_2sd_k_stats,
  1173. x_var = "delta_bg",
  1174. y_var = "K",
  1175. plot_type = "scatter",
  1176. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1177. color_var = "conc_num_factor_factor",
  1178. position = "jitter",
  1179. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1180. annotations = list(
  1181. list(
  1182. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1183. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1184. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1185. )
  1186. ),
  1187. error_bar = FALSE,
  1188. legend_position = "right"
  1189. )
  1190. )
  1191. )
  1192. message("Generating quality control plots in parallel")
  1193. # future::plan(future::multicore, workers = parallel::detectCores())
  1194. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1195. plot_configs <- list(
  1196. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1197. plot_configs = l_vs_k_plot_configs),
  1198. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1199. plot_configs = frequency_delta_bg_plot_configs),
  1200. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1201. plot_configs = above_threshold_plot_configs),
  1202. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1203. plot_configs = plate_analysis_plot_configs),
  1204. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1205. plot_configs = plate_analysis_boxplot_configs),
  1206. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1207. plot_configs = plate_analysis_no_zeros_plot_configs),
  1208. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1209. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1210. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1211. plot_configs = l_outside_2sd_k_plot_configs),
  1212. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1213. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1214. )
  1215. # furrr::future_map(plot_configs, function(config) {
  1216. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1217. # }, .options = furrr_options(seed = TRUE))
  1218. bg_strains <- c("YDL227C")
  1219. lapply(bg_strains, function(strain) {
  1220. message("Processing background strain: ", strain)
  1221. # Handle missing data by setting zero values to NA
  1222. # and then removing any rows with NA in L col
  1223. df_bg <- df_na %>%
  1224. filter(OrfRep == strain) %>%
  1225. mutate(
  1226. L = if_else(L == 0, NA, L),
  1227. K = if_else(K == 0, NA, K),
  1228. r = if_else(r == 0, NA, r),
  1229. AUC = if_else(AUC == 0, NA, AUC)
  1230. ) %>%
  1231. filter(!is.na(L))
  1232. message("Calculating background strain summary statistics")
  1233. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
  1234. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1235. summary_stats_bg <- ss_bg$summary_stats
  1236. df_bg_stats <- ss_bg$df_with_stats
  1237. write.csv(
  1238. summary_stats_bg,
  1239. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1240. row.names = FALSE)
  1241. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1242. df_reference <- df_na_stats %>% # formerly X2_RF
  1243. filter(OrfRep == strain) %>%
  1244. filter(!is.na(L)) %>%
  1245. group_by(OrfRep, Drug, conc_num) %>%
  1246. mutate(
  1247. max_l_theoretical = max(max_L, na.rm = TRUE),
  1248. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1249. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1250. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1251. ungroup()
  1252. message("Calculating reference strain summary statistics")
  1253. df_reference_stats <- calculate_summary_stats(
  1254. df = df_reference,
  1255. variables = c("L", "K", "r", "AUC"),
  1256. group_vars = c("OrfRep", "Gene", "Drug", "num", "conc_num", "conc_num_factor_factor")
  1257. )$df_with_stats
  1258. message("Calculating reference strain interaction scores")
  1259. results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug", "num"))
  1260. df_calculations_reference <- results$calculations
  1261. df_interactions_reference <- results$interactions
  1262. df_interactions_reference_joined <- results$full_data
  1263. write.csv(df_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1264. write.csv(df_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1265. # message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1266. # df_deletion <- df_na_stats %>% # formerly X2
  1267. # filter(OrfRep != strain) %>%
  1268. # filter(!is.na(L)) %>%
  1269. # group_by(OrfRep, Gene, conc_num) %>%
  1270. # mutate(
  1271. # max_l_theoretical = max(max_L, na.rm = TRUE),
  1272. # L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1273. # SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1274. # L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1275. # ungroup()
  1276. # message("Calculating deletion strain(s) summary statistics")
  1277. # df_deletion_stats <- calculate_summary_stats(
  1278. # df = df_deletion,
  1279. # variables = c("L", "K", "r", "AUC"),
  1280. # group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1281. # )$df_with_stats
  1282. # message("Calculating deletion strain(s) interactions scores")
  1283. # results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1284. # df_calculations <- results$calculations
  1285. # df_interactions <- results$interactions
  1286. # df_interactions_joined <- results$full_data
  1287. # write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1288. # write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1289. message("Generating reference interaction plots")
  1290. reference_plot_configs <- generate_interaction_plot_configs(df_interactions_reference_joined, "reference")
  1291. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1292. message("Generating deletion interaction plots")
  1293. deletion_plot_configs <- generate_interaction_plot_configs(df_interactions_joined, "deletion")
  1294. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1295. message("Writing enhancer/suppressor csv files")
  1296. interaction_threshold <- 2 # TODO add to study config?
  1297. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1298. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1299. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1300. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1301. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1302. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1303. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1304. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1305. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1306. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1307. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1308. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1309. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1310. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1311. write.csv(enhancers_and_suppressors_L,
  1312. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1313. write.csv(enhancers_and_suppressors_K,
  1314. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1315. message("Writing linear model enhancer/suppressor csv files")
  1316. lm_interaction_threshold <- 2 # TODO add to study config?
  1317. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1318. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1319. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1320. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1321. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1322. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1323. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1324. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1325. message("Generating rank plots")
  1326. rank_plot_configs <- generate_rank_plot_configs(
  1327. df_interactions_joined,
  1328. is_lm = FALSE,
  1329. adjust = TRUE
  1330. )
  1331. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1332. plot_configs = rank_plot_configs)
  1333. message("Generating ranked linear model plots")
  1334. rank_lm_plot_configs <- generate_rank_plot_configs(
  1335. df_interactions_joined,
  1336. is_lm = TRUE,
  1337. adjust = TRUE
  1338. )
  1339. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1340. plot_configs = rank_lm_plot_configs)
  1341. message("Generating filtered ranked plots")
  1342. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1343. df_interactions_joined,
  1344. is_lm = FALSE,
  1345. adjust = FALSE,
  1346. overlap_color = TRUE
  1347. )
  1348. generate_and_save_plots(
  1349. out_dir = out_dir,
  1350. filename = "RankPlots_na_rm",
  1351. plot_configs = rank_plot_filtered_configs)
  1352. message("Generating filtered ranked linear model plots")
  1353. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1354. df_interactions_joined,
  1355. is_lm = TRUE,
  1356. adjust = FALSE,
  1357. overlap_color = TRUE
  1358. )
  1359. generate_and_save_plots(
  1360. out_dir = out_dir,
  1361. filename = "rank_plots_lm_na_rm",
  1362. plot_configs = rank_plot_lm_filtered_configs)
  1363. message("Generating correlation curve parameter pair plots")
  1364. correlation_plot_configs <- generate_correlation_plot_configs(
  1365. df_interactions_joined
  1366. )
  1367. generate_and_save_plots(
  1368. out_dir = out_dir,
  1369. filename = "correlation_cpps",
  1370. plot_configs = correlation_plot_configs,
  1371. )
  1372. })
  1373. })
  1374. }
  1375. main()
  1376. # For future simplification of joined dataframes
  1377. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))