calculate_interaction_zscores.R 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # Calculate WT statistics from df_bg
  190. wt_stats <- df_bg %>%
  191. group_by(across(all_of(bg_group_vars))) %>%
  192. summarise(
  193. WT_L = mean(mean_L, na.rm = TRUE),
  194. WT_sd_L = mean(sd_L, na.rm = TRUE),
  195. WT_K = mean(mean_K, na.rm = TRUE),
  196. WT_sd_K = mean(sd_K, na.rm = TRUE),
  197. WT_r = mean(mean_r, na.rm = TRUE),
  198. WT_sd_r = mean(sd_r, na.rm = TRUE),
  199. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  200. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  201. .groups = "drop"
  202. )
  203. # Join WT statistics to df
  204. df <- df %>%
  205. left_join(wt_stats, by = bg_group_vars)
  206. # Compute mean values at zero concentration
  207. mean_zeroes <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. df <- df %>%
  218. left_join(mean_zeroes, by = c(group_vars))
  219. # Calculate Raw Shifts and Z Shifts
  220. df <- df %>%
  221. mutate(
  222. Raw_Shift_L = mean_L_zero - WT_L,
  223. Raw_Shift_K = mean_K_zero - WT_K,
  224. Raw_Shift_r = mean_r_zero - WT_r,
  225. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  226. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  227. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  228. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  229. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  230. )
  231. calculations <- df %>%
  232. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  233. mutate(
  234. NG_sum = sum(NG, na.rm = TRUE),
  235. DB_sum = sum(DB, na.rm = TRUE),
  236. SM_sum = sum(SM, na.rm = TRUE),
  237. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  238. # Expected values
  239. Exp_L = WT_L + Raw_Shift_L,
  240. Exp_K = WT_K + Raw_Shift_K,
  241. Exp_r = WT_r + Raw_Shift_r,
  242. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  243. # Deltas
  244. Delta_L = mean_L - Exp_L,
  245. Delta_K = mean_K - Exp_K,
  246. Delta_r = mean_r - Exp_r,
  247. Delta_AUC = mean_AUC - Exp_AUC,
  248. # Adjust deltas for NG and SM
  249. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  250. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  251. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  252. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  253. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  254. # Calculate Z-scores
  255. Zscore_L = Delta_L / WT_sd_L,
  256. Zscore_K = Delta_K / WT_sd_K,
  257. Zscore_r = Delta_r / WT_sd_r,
  258. Zscore_AUC = Delta_AUC / WT_sd_AUC
  259. ) %>%
  260. ungroup() %>% # Ungroup before group_modify
  261. group_by(across(all_of(group_vars))) %>%
  262. group_modify(~ {
  263. # Filter each column for valid data or else linear modeling will fail
  264. valid_data_L <- .x %>% filter(!is.na(Delta_L))
  265. valid_data_K <- .x %>% filter(!is.na(Delta_K))
  266. valid_data_r <- .x %>% filter(!is.na(Delta_r))
  267. valid_data_AUC <- .x %>% filter(!is.na(Delta_AUC))
  268. # Perform linear modeling
  269. lm_L <- if (nrow(valid_data_L) > 1) lm(Delta_L ~ conc_num_factor, data = valid_data_L) else NULL
  270. lm_K <- if (nrow(valid_data_K) > 1) lm(Delta_K ~ conc_num_factor, data = valid_data_K) else NULL
  271. lm_r <- if (nrow(valid_data_r) > 1) lm(Delta_r ~ conc_num_factor, data = valid_data_r) else NULL
  272. lm_AUC <- if (nrow(valid_data_AUC) > 1) lm(Delta_AUC ~ conc_num_factor, data = valid_data_AUC) else NULL
  273. # Extract coefficients for calculations and plotting
  274. .x %>%
  275. mutate(
  276. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  277. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  278. R_Squared_L = if (!is.null(lm_L)) summary(lm_L)$r.squared else NA,
  279. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  280. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  281. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  282. R_Squared_K = if (!is.null(lm_K)) summary(lm_K)$r.squared else NA,
  283. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  284. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  285. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  286. R_Squared_r = if (!is.null(lm_r)) summary(lm_r)$r.squared else NA,
  287. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  288. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  289. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  290. R_Squared_AUC = if (!is.null(lm_AUC)) summary(lm_AUC)$r.squared else NA,
  291. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  292. )
  293. }) %>%
  294. ungroup()
  295. # For interaction plot error bars
  296. delta_means_sds <- calculations %>%
  297. group_by(across(all_of(group_vars))) %>%
  298. summarise(
  299. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  300. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  301. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  302. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  303. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  304. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  305. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  306. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  307. .groups = "drop"
  308. )
  309. calculations <- calculations %>%
  310. left_join(delta_means_sds, by = group_vars)
  311. # Summary statistics for lm scores
  312. calculations <- calculations %>%
  313. mutate(
  314. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  315. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  316. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  317. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  318. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  319. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  320. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  321. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  322. ) %>%
  323. # Calculate Z-lm scores
  324. mutate(
  325. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  326. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  327. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  328. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  329. )
  330. # Build summary stats (interactions)
  331. interactions <- calculations %>%
  332. group_by(across(all_of(group_vars))) %>%
  333. summarise(
  334. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  335. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  336. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  337. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  338. # Interaction Z-scores
  339. Z_lm_L = first(Z_lm_L),
  340. Z_lm_K = first(Z_lm_K),
  341. Z_lm_r = first(Z_lm_r),
  342. Z_lm_AUC = first(Z_lm_AUC),
  343. # Raw Shifts
  344. Raw_Shift_L = first(Raw_Shift_L),
  345. Raw_Shift_K = first(Raw_Shift_K),
  346. Raw_Shift_r = first(Raw_Shift_r),
  347. Raw_Shift_AUC = first(Raw_Shift_AUC),
  348. # Z Shifts
  349. Z_Shift_L = first(Z_Shift_L),
  350. Z_Shift_K = first(Z_Shift_K),
  351. Z_Shift_r = first(Z_Shift_r),
  352. Z_Shift_AUC = first(Z_Shift_AUC),
  353. # R Squared values
  354. R_Squared_L = first(R_Squared_L),
  355. R_Squared_K = first(R_Squared_K),
  356. R_Squared_r = first(R_Squared_r),
  357. R_Squared_AUC = first(R_Squared_AUC),
  358. # lm intercepts
  359. lm_intercept_L = first(lm_intercept_L),
  360. lm_intercept_K = first(lm_intercept_K),
  361. lm_intercept_r = first(lm_intercept_r),
  362. lm_intercept_AUC = first(lm_intercept_AUC),
  363. # lm slopes
  364. lm_slope_L = first(lm_slope_L),
  365. lm_slope_K = first(lm_slope_K),
  366. lm_slope_r = first(lm_slope_r),
  367. lm_slope_AUC = first(lm_slope_AUC),
  368. # NG, DB, SM values
  369. NG = first(NG),
  370. DB = first(DB),
  371. SM = first(SM),
  372. .groups = "drop"
  373. )
  374. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  375. interactions <- interactions %>%
  376. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  377. mutate(
  378. Overlap = case_when(
  379. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  380. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  381. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  382. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  383. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  384. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  385. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  386. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  387. TRUE ~ "No Effect"
  388. ),
  389. # For correlation plots
  390. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  391. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  392. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  393. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  394. )
  395. # Creating the final calculations and interactions dataframes with only required columns for csv output
  396. df_calculations <- calculations %>%
  397. select(
  398. all_of(group_vars),
  399. conc_num, conc_num_factor, conc_num_factor_factor, N,
  400. mean_L, median_L, sd_L, se_L,
  401. mean_K, median_K, sd_K, se_K,
  402. mean_r, median_r, sd_r, se_r,
  403. mean_AUC, median_AUC, sd_AUC, se_AUC,
  404. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  405. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  406. WT_L, WT_K, WT_r, WT_AUC,
  407. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  408. Exp_L, Exp_K, Exp_r, Exp_AUC,
  409. Delta_L, Delta_K, Delta_r, Delta_AUC,
  410. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  411. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  412. )
  413. df_interactions <- interactions %>%
  414. select(
  415. all_of(group_vars),
  416. NG, DB, SM,
  417. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  418. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  419. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  420. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  421. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  422. lm_intercept_L, lm_intercept_K, lm_intercept_r, lm_intercept_AUC,
  423. lm_slope_L, lm_slope_K, lm_slope_r, lm_slope_AUC, Overlap
  424. )
  425. # Join calculations and interactions to avoid dimension mismatch
  426. calculations_no_overlap <- calculations %>%
  427. select(-any_of(c("DB", "NG", "SM",
  428. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  429. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  430. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  431. "lm_R_squared_L", "lm_R_squared_K", "lm_R_squared_r", "lm_R_squared_AUC",
  432. "lm_intercept_L", "lm_intercept_K", "lm_intercept_r", "lm_intercept_AUC",
  433. "lm_slope_L", "lm_slope_K", "lm_slope_r", "lm_slope_AUC"
  434. )))
  435. full_data <- calculations_no_overlap %>%
  436. left_join(df_interactions, by = group_vars)
  437. # Return final dataframes
  438. return(list(
  439. calculations = df_calculations,
  440. interactions = df_interactions,
  441. full_data = full_data
  442. ))
  443. }
  444. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  445. message("Generating ", filename, ".pdf and ", filename, ".html")
  446. plot_groups <- if ("plots" %in% names(plot_configs)) {
  447. list(plot_configs) # Single group
  448. } else {
  449. plot_configs # Multiple groups
  450. }
  451. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  452. for (group in plot_groups) {
  453. static_plots <- list()
  454. plotly_plots <- list()
  455. for (i in seq_along(group$plots)) {
  456. config <- group$plots[[i]]
  457. df <- config$df
  458. # Filter NAs
  459. if (!is.null(config$filter_na) && config$filter_na) {
  460. df <- df %>%
  461. filter(!is.na(.data[[config$y_var]]))
  462. }
  463. # TODO for now skip all NA plots NA data
  464. # Eventually add to own or filter_na block so we can handle selectively
  465. if (nrow(df) == 0) {
  466. message("Insufficient data for plot:", config$title)
  467. next # skip plot if insufficient data is available
  468. }
  469. aes_mapping <- if (config$plot_type == "bar") {
  470. if (!is.null(config$color_var)) {
  471. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  472. } else {
  473. aes(x = .data[[config$x_var]])
  474. }
  475. } else if (config$plot_type == "density") {
  476. if (!is.null(config$color_var)) {
  477. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  478. } else {
  479. aes(x = .data[[config$x_var]])
  480. }
  481. } else {
  482. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  483. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  484. } else if (!is.null(config$y_var)) {
  485. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  486. } else {
  487. aes(x = .data[[config$x_var]])
  488. }
  489. }
  490. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  491. plot <- switch(config$plot_type,
  492. "scatter" = generate_scatter_plot(plot, config),
  493. "box" = generate_boxplot(plot, config),
  494. "density" = plot + geom_density(),
  495. "bar" = plot + geom_bar(),
  496. plot # default
  497. )
  498. if (!is.null(config$title)) {
  499. plot <- plot + ggtitle(config$title)
  500. if (!is.null(config$title_size)) {
  501. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  502. }
  503. }
  504. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  505. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  506. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  507. #plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  508. static_plots[[i]] <- plot
  509. #plotly_plots[[i]] <- plotly_plot
  510. }
  511. grid_layout <- group$grid_layout
  512. if (!is.null(grid_layout)) {
  513. if (is.null(grid_layout$ncol)) {
  514. grid_layout$ncol <- 1
  515. }
  516. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  517. num_plots <- length(static_plots)
  518. grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol)
  519. }
  520. total_spots <- grid_layout$nrow * grid_layout$ncol
  521. num_plots <- length(static_plots)
  522. if (num_plots < total_spots) {
  523. message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  524. static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  525. }
  526. grid.arrange(
  527. grobs = static_plots,
  528. ncol = grid_layout$ncol,
  529. nrow = grid_layout$nrow
  530. )
  531. } else {
  532. for (plot in static_plots) {
  533. print(plot)
  534. }
  535. }
  536. }
  537. dev.off()
  538. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  539. # message("Saving combined HTML file: ", out_html_file)
  540. # htmltools::save_html(
  541. # htmltools::tagList(plotly_plots),
  542. # file = out_html_file
  543. # )
  544. }
  545. generate_scatter_plot <- function(plot, config) {
  546. # Define the points
  547. shape <- if (!is.null(config$shape)) config$shape else 3
  548. size <- if (!is.null(config$size)) config$size else 1.5
  549. position <-
  550. if (!is.null(config$position) && config$position == "jitter") {
  551. position_jitter(width = 0.4, height = 0.1)
  552. } else {
  553. "identity"
  554. }
  555. plot <- plot + geom_point(
  556. shape = shape,
  557. size = size,
  558. position = position
  559. )
  560. # Add a cyan point for the reference data for correlation plots
  561. if (!is.null(config$cyan_points) && config$cyan_points) {
  562. plot <- plot + geom_point(
  563. data = config$df_reference,
  564. mapping = aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  565. color = "cyan",
  566. shape = 3,
  567. size = 0.5,
  568. inherit.aes = FALSE
  569. )
  570. }
  571. # Add error bars if specified
  572. if (!is.null(config$error_bar) && config$error_bar) {
  573. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  574. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  575. config$error_bar_params$y_mean_col
  576. } else {
  577. paste0("mean_", config$y_var)
  578. }
  579. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  580. config$error_bar_params$y_sd_col
  581. } else {
  582. paste0("sd_", config$y_var)
  583. }
  584. # Use rlang to handle custom error bar calculations
  585. if (!is.null(config$error_bar_params$custom_error_bar)) {
  586. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  587. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  588. plot <- plot + geom_errorbar(
  589. aes(
  590. ymin = !!custom_ymin_expr,
  591. ymax = !!custom_ymax_expr
  592. ),
  593. color = config$error_bar_params$color,
  594. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  595. )
  596. } else {
  597. # If no custom error bar formula, use the default or dynamic ones
  598. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  599. # Only use color_var if it's present in the dataframe
  600. plot <- plot + geom_errorbar(
  601. aes(
  602. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  603. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  604. color = .data[[config$color_var]]
  605. ),
  606. linewidth = 0.1
  607. )
  608. } else {
  609. # If color_var is missing, fall back to a default color or none
  610. plot <- plot + geom_errorbar(
  611. aes(
  612. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  613. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  614. ),
  615. color = config$error_bar_params$color, # use the provided color or default
  616. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  617. )
  618. }
  619. }
  620. # Add the center point if the option is provided
  621. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  622. if (!is.null(config$error_bar_params$color)) {
  623. plot <- plot + geom_point(
  624. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  625. color = config$error_bar_params$color,
  626. shape = 16,
  627. inherit.aes = FALSE # Prevent overriding global aesthetics
  628. )
  629. } else {
  630. plot <- plot + geom_point(
  631. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  632. shape = 16,
  633. inherit.aes = FALSE # Prevent overriding global aesthetics
  634. )
  635. }
  636. }
  637. }
  638. # Add linear regression line if specified
  639. if (!is.null(config$lm_line)) {
  640. # Extract necessary values
  641. x_min <- config$lm_line$x_min
  642. x_max <- config$lm_line$x_max
  643. intercept <- config$lm_line$intercept
  644. slope <- config$lm_line$slope
  645. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  646. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  647. # Ensure none of the values are NA and calculate y-values
  648. if (!is.na(x_min) && !is.na(x_max) && !is.na(intercept) && !is.na(slope)) {
  649. y_min <- intercept + slope * x_min
  650. y_max <- intercept + slope * x_max
  651. # Ensure y-values are within y-limits (if any)
  652. if (!is.null(config$ylim_vals)) {
  653. y_min_within_limits <- y_min >= config$ylim_vals[1] && y_min <= config$ylim_vals[2]
  654. y_max_within_limits <- y_max >= config$ylim_vals[1] && y_max <= config$ylim_vals[2]
  655. # Adjust or skip based on whether the values fall within limits
  656. if (y_min_within_limits && y_max_within_limits) {
  657. # Ensure x-values are also valid
  658. if (!is.na(x_min) && !is.na(x_max)) {
  659. plot <- plot + annotate(
  660. "segment",
  661. x = x_min,
  662. xend = x_max,
  663. y = y_min,
  664. yend = y_max,
  665. color = color,
  666. linewidth = linewidth
  667. )
  668. }
  669. } else {
  670. message("Skipping linear regression line due to y-values outside of limits")
  671. }
  672. } else {
  673. # If no y-limits are provided, proceed with the annotation
  674. plot <- plot + annotate(
  675. "segment",
  676. x = x_min,
  677. xend = x_max,
  678. y = y_min,
  679. yend = y_max,
  680. color = color,
  681. linewidth = linewidth
  682. )
  683. }
  684. } else {
  685. message("Skipping linear regression line due to missing or invalid values")
  686. }
  687. }
  688. # Add SD Bands if specified
  689. if (!is.null(config$sd_band)) {
  690. plot <- plot +
  691. annotate(
  692. "rect",
  693. xmin = -Inf, xmax = Inf,
  694. ymin = config$sd_band, ymax = Inf,
  695. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  696. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  697. ) +
  698. annotate(
  699. "rect",
  700. xmin = -Inf, xmax = Inf,
  701. ymin = -config$sd_band, ymax = -Inf,
  702. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  703. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  704. ) +
  705. geom_hline(
  706. yintercept = c(-config$sd_band, config$sd_band),
  707. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  708. )
  709. }
  710. # Add rectangles if specified
  711. if (!is.null(config$rectangles)) {
  712. for (rect in config$rectangles) {
  713. plot <- plot + annotate(
  714. "rect",
  715. xmin = rect$xmin,
  716. xmax = rect$xmax,
  717. ymin = rect$ymin,
  718. ymax = rect$ymax,
  719. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  720. color = ifelse(is.null(rect$color), "black", rect$color),
  721. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  722. )
  723. }
  724. }
  725. # Customize X-axis if specified
  726. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  727. # Check if x_var is factor or character (for discrete x-axis)
  728. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  729. plot <- plot +
  730. scale_x_discrete(
  731. name = config$x_label,
  732. breaks = config$x_breaks,
  733. labels = config$x_labels
  734. )
  735. } else {
  736. plot <- plot +
  737. scale_x_continuous(
  738. name = config$x_label,
  739. breaks = config$x_breaks,
  740. labels = config$x_labels
  741. )
  742. }
  743. }
  744. # Set Y-axis limits if specified
  745. if (!is.null(config$ylim_vals)) {
  746. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  747. }
  748. return(plot)
  749. }
  750. generate_boxplot <- function(plot, config) {
  751. # Convert x_var to a factor within aes mapping
  752. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  753. # Customize X-axis if specified
  754. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  755. # Check if x_var is factor or character (for discrete x-axis)
  756. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  757. plot <- plot +
  758. scale_x_discrete(
  759. name = config$x_label,
  760. breaks = config$x_breaks,
  761. labels = config$x_labels
  762. )
  763. } else {
  764. plot <- plot +
  765. scale_x_continuous(
  766. name = config$x_label,
  767. breaks = config$x_breaks,
  768. labels = config$x_labels
  769. )
  770. }
  771. }
  772. return(plot)
  773. }
  774. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  775. plot_type = "scatter", stages = c("before", "after")) {
  776. plot_configs <- list()
  777. for (var in variables) {
  778. for (stage in stages) {
  779. df_plot <- if (stage == "before") df_before else df_after
  780. # Check for non-finite values in the y-variable
  781. # df_plot_filtered <- df_plot %>% filter(is.finite(.data[[var]]))
  782. # Adjust settings based on plot_type
  783. plot_config <- list(
  784. df = df_plot,
  785. x_var = "scan",
  786. y_var = var,
  787. plot_type = plot_type,
  788. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  789. color_var = "conc_num_factor_factor",
  790. size = 0.2,
  791. error_bar = (plot_type == "scatter"),
  792. legend_position = "bottom",
  793. filter_na = TRUE
  794. )
  795. # Add config to plots list
  796. plot_configs <- append(plot_configs, list(plot_config))
  797. }
  798. }
  799. return(list(plots = plot_configs))
  800. }
  801. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  802. # Define the y-limits for the plots
  803. limits_map <- list(
  804. L = c(0, 130),
  805. K = c(-20, 160),
  806. r = c(0, 1),
  807. AUC = c(0, 12500)
  808. )
  809. stats_plot_configs <- list()
  810. stats_boxplot_configs <- list()
  811. delta_plot_configs <- list()
  812. # Overall statistics plots
  813. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  814. for (plot_type in c("scatter", "box")) {
  815. for (var in names(limits_map)) {
  816. y_limits <- limits_map[[var]]
  817. y_span <- y_limits[2] - y_limits[1]
  818. # Common plot configuration
  819. plot_config <- list(
  820. df = df_summary,
  821. plot_type = plot_type,
  822. x_var = "conc_num_factor_factor",
  823. y_var = var,
  824. shape = 16,
  825. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  826. coord_cartesian = y_limits,
  827. x_breaks = unique(df_summary$conc_num_factor_factor),
  828. x_labels = as.character(unique(df_summary$conc_num))
  829. )
  830. # Add specific configurations for scatter and box plots
  831. if (plot_type == "scatter") {
  832. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  833. plot_config$error_bar <- TRUE
  834. plot_config$error_bar_params <- list(
  835. color = "red",
  836. mean_point = TRUE,
  837. y_mean_col = paste0("mean_mean_", var),
  838. y_sd_col = paste0("mean_sd_", var)
  839. )
  840. plot_config$position <- "jitter"
  841. annotations <- list(
  842. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  843. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  844. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  845. )
  846. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  847. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  848. annotations <- append(annotations, list(
  849. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  850. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  851. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  852. ))
  853. }
  854. plot_config$annotations <- annotations
  855. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  856. } else if (plot_type == "box") {
  857. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  858. plot_config$position <- "dodge"
  859. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  860. }
  861. }
  862. }
  863. # Delta interaction plots
  864. delta_limits_map <- list(
  865. L = c(-60, 60),
  866. K = c(-60, 60),
  867. r = c(-0.6, 0.6),
  868. AUC = c(-6000, 6000)
  869. )
  870. # Select the data grouping by data type
  871. if (type == "reference") {
  872. group_vars <- c("OrfRep", "Gene", "num")
  873. } else if (type == "deletion") {
  874. group_vars <- c("OrfRep", "Gene")
  875. }
  876. grouped_data <- df_interactions %>%
  877. group_by(across(all_of(group_vars))) %>%
  878. group_split()
  879. for (group_data in grouped_data) {
  880. # Build the plot title
  881. OrfRep <- first(group_data$OrfRep)
  882. Gene <- first(group_data$Gene)
  883. if (type == "reference") {
  884. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  885. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  886. } else if (type == "deletion") {
  887. OrfRepTitle <- OrfRep
  888. }
  889. for (var in names(delta_limits_map)) {
  890. y_limits <- delta_limits_map[[var]]
  891. y_span <- y_limits[2] - y_limits[1]
  892. y_var_name <- paste0("Delta_", var)
  893. # Anti-filter to select out-of-bounds rows
  894. out_of_bounds <- group_data %>%
  895. filter(is.na(.data[[y_var_name]]) |
  896. .data[[y_var_name]] < y_limits[1] |
  897. .data[[y_var_name]] > y_limits[2])
  898. if (nrow(out_of_bounds) > 0) {
  899. message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
  900. nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
  901. ))
  902. }
  903. # Do the actual filtering
  904. group_data_filtered <- group_data %>%
  905. filter(!is.na(.data[[y_var_name]]) &
  906. .data[[y_var_name]] >= y_limits[1] &
  907. .data[[y_var_name]] <= y_limits[2])
  908. if (nrow(group_data_filtered) == 0) {
  909. message("Insufficient data for plot: ", OrfRepTitle, " ", var)
  910. next # skip plot if insufficient data is available
  911. }
  912. WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
  913. Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
  914. Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
  915. R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
  916. NG_value <- first(group_data_filtered$NG, default = 0)
  917. DB_value <- first(group_data_filtered$DB, default = 0)
  918. SM_value <- first(group_data_filtered$SM, default = 0)
  919. lm_intercept_col <- paste0("lm_intercept_", var)
  920. lm_slope_col <- paste0("lm_slope_", var)
  921. lm_intercept_value <- first(group_data_filtered[[lm_intercept_col]], default = 0)
  922. lm_slope_value <- first(group_data_filtered[[lm_slope_col]], default = 0)
  923. plot_config <- list(
  924. df = group_data_filtered,
  925. plot_type = "scatter",
  926. x_var = "conc_num_factor_factor",
  927. y_var = y_var_name,
  928. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  929. shape = 16,
  930. title = paste(OrfRepTitle, Gene, sep = " "),
  931. title_size = rel(1.4),
  932. coord_cartesian = y_limits,
  933. annotations = list(
  934. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  935. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  936. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  937. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  938. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  939. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  940. ),
  941. error_bar = TRUE,
  942. error_bar_params = list(
  943. custom_error_bar = list(
  944. ymin = paste0("0 - 2 * WT_sd_", var),
  945. ymax = paste0("0 + 2 * WT_sd_", var)
  946. ),
  947. color = "gray70",
  948. linewidth = 0.5
  949. ),
  950. x_breaks = unique(group_data_filtered$conc_num_factor_factor),
  951. x_labels = as.character(unique(group_data_filtered$conc_num)),
  952. ylim_vals = y_limits,
  953. lm_line = list(
  954. intercept = lm_intercept_value,
  955. slope = lm_slope_value,
  956. color = "blue",
  957. linewidth = 0.8,
  958. x_min = min(as.numeric(group_data_filtered$conc_num_factor_factor)),
  959. x_max = max(as.numeric(group_data_filtered$conc_num_factor_factor))
  960. )
  961. )
  962. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  963. }
  964. }
  965. # Group delta plots in chunks of 12 per page
  966. chunk_size <- 12
  967. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  968. return(c(
  969. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  970. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  971. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  972. ))
  973. }
  974. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  975. sd_bands <- c(1, 2, 3)
  976. plot_configs <- list()
  977. variables <- c("L", "K")
  978. # Adjust (if necessary) and rank columns
  979. for (variable in variables) {
  980. if (adjust) {
  981. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  982. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  983. }
  984. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  985. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  986. }
  987. # Helper function to create a rank plot configuration
  988. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  989. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  990. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  991. # Default plot config
  992. plot_config <- list(
  993. df = df,
  994. x_var = rank_var,
  995. y_var = zscore_var,
  996. x_label = "Rank",
  997. y_label = y_label,
  998. plot_type = "scatter",
  999. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  1000. sd_band = sd_band,
  1001. fill_positive = "#542788",
  1002. fill_negative = "orange",
  1003. alpha_positive = 0.3,
  1004. alpha_negative = 0.3,
  1005. shape = 3,
  1006. size = 0.1,
  1007. filter_na = filter_na,
  1008. legend_position = "none"
  1009. )
  1010. # Selectively add annotations
  1011. if (with_annotations) {
  1012. plot_config$annotations <- list(
  1013. list(
  1014. x = nrow(df) / 2,
  1015. y = 10,
  1016. label = paste("Deletion Enhancers =", num_enhancers)
  1017. ),
  1018. list(
  1019. x = nrow(df) / 2,
  1020. y = -10,
  1021. label = paste("Deletion Suppressors =", num_suppressors)
  1022. )
  1023. )
  1024. }
  1025. return(plot_config)
  1026. }
  1027. # Generate plots for each variable
  1028. for (variable in variables) {
  1029. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1030. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1031. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1032. # Loop through SD bands
  1033. for (sd_band in sd_bands) {
  1034. # Create plot with annotations
  1035. plot_configs[[length(plot_configs) + 1]] <-
  1036. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1037. # Create plot without annotations
  1038. plot_configs[[length(plot_configs) + 1]] <-
  1039. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1040. }
  1041. }
  1042. # Group delta plots in chunks of 6 per page
  1043. chunk_size <- 6
  1044. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1045. return(c(
  1046. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1047. ))
  1048. }
  1049. generate_correlation_plot_configs <- function(df, df_reference) {
  1050. # Define relationships for different-variable correlations
  1051. relationships <- list(
  1052. list(x = "L", y = "K"),
  1053. list(x = "L", y = "r"),
  1054. list(x = "L", y = "AUC"),
  1055. list(x = "K", y = "r"),
  1056. list(x = "K", y = "AUC"),
  1057. list(x = "r", y = "AUC")
  1058. )
  1059. # This filtering was in the original script
  1060. # df_reference <- df_reference %>%
  1061. # filter(!is.na(Z_lm_L))
  1062. plot_configs <- list()
  1063. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1064. highlight_cyan_options <- c(FALSE, TRUE)
  1065. for (highlight_cyan in highlight_cyan_options) {
  1066. for (rel in relationships) {
  1067. # Extract relevant variable names for Z_lm values
  1068. x_var <- paste0("Z_lm_", rel$x)
  1069. y_var <- paste0("Z_lm_", rel$y)
  1070. # Extract the R-squared, intercept, and slope from the df
  1071. relationship_name <- paste0(rel$x, "_vs_", rel$y)
  1072. intercept <- df[[paste0("lm_intercept_", rel$x)]]
  1073. slope <- df[[paste0("lm_slope_", rel$x)]]
  1074. r_squared <- df[[paste0("lm_R_squared_", rel$x)]]
  1075. # Generate the label for the plot
  1076. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1077. # Construct plot config
  1078. plot_config <- list(
  1079. df = df,
  1080. df_reference = df_reference,
  1081. x_var = x_var,
  1082. y_var = y_var,
  1083. plot_type = "scatter",
  1084. title = plot_label,
  1085. annotations = list(
  1086. list(
  1087. x = mean(df[[x_var]], na.rm = TRUE),
  1088. y = mean(df[[y_var]], na.rm = TRUE),
  1089. label = paste("R-squared =", round(r_squared, 3))
  1090. )
  1091. ),
  1092. lm_line = list(
  1093. intercept = intercept,
  1094. slope = slope,
  1095. color = "tomato3"
  1096. ),
  1097. color = "gray70",
  1098. filter_na = TRUE,
  1099. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1100. )
  1101. plot_configs <- append(plot_configs, list(plot_config))
  1102. }
  1103. }
  1104. return(list(plots = plot_configs))
  1105. }
  1106. main <- function() {
  1107. lapply(names(args$experiments), function(exp_name) {
  1108. exp <- args$experiments[[exp_name]]
  1109. exp_path <- exp$path
  1110. exp_sd <- exp$sd
  1111. out_dir <- file.path(exp_path, "zscores")
  1112. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1113. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1114. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1115. # Each list of plots corresponds to a separate file
  1116. message("Loading and filtering data for experiment: ", exp_name)
  1117. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1118. update_gene_names(args$sgd_gene_list) %>%
  1119. as_tibble()
  1120. l_vs_k_plot_configs <- list(
  1121. plots = list(
  1122. list(
  1123. df = df,
  1124. x_var = "L",
  1125. y_var = "K",
  1126. plot_type = "scatter",
  1127. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1128. title = "Raw L vs K before quality control",
  1129. color_var = "conc_num_factor_factor",
  1130. error_bar = FALSE,
  1131. legend_position = "right"
  1132. )
  1133. )
  1134. )
  1135. message("Calculating summary statistics before quality control")
  1136. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1137. df = df,
  1138. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1139. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1140. frequency_delta_bg_plot_configs <- list(
  1141. plots = list(
  1142. list(
  1143. df = df_stats,
  1144. x_var = "delta_bg",
  1145. y_var = NULL,
  1146. plot_type = "density",
  1147. title = "Density plot for Delta Background by [Drug] (All Data)",
  1148. color_var = "conc_num_factor_factor",
  1149. x_label = "Delta Background",
  1150. y_label = "Density",
  1151. error_bar = FALSE,
  1152. legend_position = "right"
  1153. ),
  1154. list(
  1155. df = df_stats,
  1156. x_var = "delta_bg",
  1157. y_var = NULL,
  1158. plot_type = "bar",
  1159. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1160. color_var = "conc_num_factor_factor",
  1161. x_label = "Delta Background",
  1162. y_label = "Count",
  1163. error_bar = FALSE,
  1164. legend_position = "right"
  1165. )
  1166. )
  1167. )
  1168. message("Filtering rows above delta background tolerance for plotting")
  1169. df_above_tolerance <- df %>% filter(DB == 1)
  1170. above_threshold_plot_configs <- list(
  1171. plots = list(
  1172. list(
  1173. df = df_above_tolerance,
  1174. x_var = "L",
  1175. y_var = "K",
  1176. plot_type = "scatter",
  1177. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1178. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1179. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1180. color_var = "conc_num_factor_factor",
  1181. position = "jitter",
  1182. annotations = list(
  1183. list(
  1184. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1185. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1186. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1187. )
  1188. ),
  1189. error_bar = FALSE,
  1190. legend_position = "right"
  1191. )
  1192. )
  1193. )
  1194. message("Setting rows above delta background tolerance to NA")
  1195. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1196. message("Calculating summary statistics across all strains")
  1197. ss <- calculate_summary_stats(
  1198. df = df_na,
  1199. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1200. group_vars = c("conc_num", "conc_num_factor_factor"))
  1201. df_na_ss <- ss$summary_stats
  1202. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1203. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1204. # This can help bypass missing values ggplot warnings during testing
  1205. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1206. message("Calculating summary statistics excluding zero values")
  1207. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1208. df_no_zeros_stats <- calculate_summary_stats(
  1209. df = df_no_zeros,
  1210. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1211. group_vars = c("conc_num", "conc_num_factor_factor")
  1212. )$df_with_stats
  1213. message("Filtering by 2SD of K")
  1214. df_na_within_2sd_k <- df_na_stats %>%
  1215. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1216. df_na_outside_2sd_k <- df_na_stats %>%
  1217. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1218. message("Calculating summary statistics for L within 2SD of K")
  1219. # TODO We're omitting the original z_max calculation, not sure if needed?
  1220. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1221. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1222. write.csv(ss,
  1223. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1224. row.names = FALSE)
  1225. message("Calculating summary statistics for L outside 2SD of K")
  1226. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1227. group_vars = c("conc_num", "conc_num_factor_factor"))
  1228. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1229. write.csv(ss$summary_stats,
  1230. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1231. row.names = FALSE)
  1232. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1233. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1234. df_before = df_stats,
  1235. df_after = df_na_stats_filtered
  1236. )
  1237. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1238. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1239. df_before = df_stats,
  1240. df_after = df_na_stats_filtered,
  1241. plot_type = "box"
  1242. )
  1243. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1244. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1245. stages = c("after"), # Only after QC
  1246. df_after = df_no_zeros_stats
  1247. )
  1248. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1249. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1250. stages = c("after"), # Only after QC
  1251. df_after = df_no_zeros_stats,
  1252. plot_type = "box"
  1253. )
  1254. l_outside_2sd_k_plot_configs <- list(
  1255. plots = list(
  1256. list(
  1257. df = df_na_l_outside_2sd_k_stats,
  1258. x_var = "L",
  1259. y_var = "K",
  1260. plot_type = "scatter",
  1261. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1262. color_var = "conc_num_factor_factor",
  1263. position = "jitter",
  1264. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1265. annotations = list(
  1266. list(
  1267. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1268. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1269. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1270. )
  1271. ),
  1272. error_bar = FALSE,
  1273. legend_position = "right"
  1274. )
  1275. )
  1276. )
  1277. delta_bg_outside_2sd_k_plot_configs <- list(
  1278. plots = list(
  1279. list(
  1280. df = df_na_l_outside_2sd_k_stats,
  1281. x_var = "delta_bg",
  1282. x_label = "Delta Background",
  1283. y_var = "K",
  1284. plot_type = "scatter",
  1285. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1286. color_var = "conc_num_factor_factor",
  1287. position = "jitter",
  1288. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1289. annotations = list(
  1290. list(
  1291. x = 0.05,
  1292. y = 0.95,
  1293. hjust = 0,
  1294. vjust = 1,
  1295. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1296. size = 5
  1297. )
  1298. ),
  1299. error_bar = FALSE,
  1300. legend_position = "right"
  1301. )
  1302. )
  1303. )
  1304. message("Generating quality control plots in parallel")
  1305. # future::plan(future::multicore, workers = parallel::detectCores())
  1306. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1307. plot_configs <- list(
  1308. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1309. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1310. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1311. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1312. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1313. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1314. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1315. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1316. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1317. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1318. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1319. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1320. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1321. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1322. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1323. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1324. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1325. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1326. )
  1327. # Parallelize background and quality control plot generation
  1328. # furrr::future_map(plot_configs, function(config) {
  1329. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1330. # page_width = config$page_width, page_height = config$page_height)
  1331. # }, .options = furrr_options(seed = TRUE))
  1332. # Loop over background strains
  1333. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1334. # have to rename or group the output files by dir or something so they don't get clobbered
  1335. bg_strains <- c("YDL227C")
  1336. lapply(bg_strains, function(strain) {
  1337. message("Processing background strain: ", strain)
  1338. # Handle missing data by setting zero values to NA
  1339. # and then removing any rows with NA in L col
  1340. df_bg <- df_na %>%
  1341. filter(OrfRep == strain) %>%
  1342. mutate(
  1343. L = if_else(L == 0, NA, L),
  1344. K = if_else(K == 0, NA, K),
  1345. r = if_else(r == 0, NA, r),
  1346. AUC = if_else(AUC == 0, NA, AUC)
  1347. ) %>%
  1348. filter(!is.na(L))
  1349. message("Calculating background summary statistics")
  1350. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1351. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1352. summary_stats_bg <- ss_bg$summary_stats
  1353. df_bg_stats <- ss_bg$df_with_stats
  1354. write.csv(
  1355. summary_stats_bg,
  1356. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1357. row.names = FALSE)
  1358. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1359. df_reference <- df_na_stats %>% # formerly X2_RF
  1360. filter(OrfRep == strain) %>%
  1361. filter(!is.na(L)) %>%
  1362. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1363. mutate(
  1364. max_l_theoretical = max(max_L, na.rm = TRUE),
  1365. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1366. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1367. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1368. ungroup()
  1369. message("Calculating reference strain summary statistics")
  1370. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1371. df = df_reference,
  1372. variables = c("L", "K", "r", "AUC"),
  1373. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1374. )$df_with_stats
  1375. # Summarise statistics for error bars
  1376. df_reference_summary_stats <- df_reference_summary_stats %>%
  1377. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1378. mutate(
  1379. mean_mean_L = first(mean_L),
  1380. mean_sd_L = first(sd_L),
  1381. mean_mean_K = first(mean_K),
  1382. mean_sd_K = first(sd_K),
  1383. mean_mean_r = first(mean_r),
  1384. mean_sd_r = first(sd_r),
  1385. mean_mean_AUC = first(mean_AUC),
  1386. mean_sd_AUC = first(sd_AUC),
  1387. .groups = "drop"
  1388. )
  1389. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1390. df_reference_interaction_stats <- calculate_summary_stats(
  1391. df = df_reference,
  1392. variables = c("L", "K", "r", "AUC"),
  1393. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1394. )$df_with_stats
  1395. message("Calculating reference strain interaction scores")
  1396. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1397. df_reference_interactions_joined <- reference_results$full_data
  1398. df_reference_interactions <- reference_results$interactions
  1399. write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1400. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1401. message("Generating reference interaction plots")
  1402. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1403. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1404. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1405. df_deletion <- df_na_stats %>% # formerly X2
  1406. filter(OrfRep != strain) %>%
  1407. filter(!is.na(L)) %>%
  1408. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1409. mutate(
  1410. max_l_theoretical = max(max_L, na.rm = TRUE),
  1411. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1412. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1413. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1414. ungroup()
  1415. message("Calculating deletion strain(s) interaction summary statistics")
  1416. df_deletion_stats <- calculate_summary_stats(
  1417. df = df_deletion,
  1418. variables = c("L", "K", "r", "AUC"),
  1419. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1420. )$df_with_stats
  1421. message("Calculating deletion strain(s) interactions scores")
  1422. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1423. df_interactions <- deletion_results$interactions
  1424. df_interactions_joined <- deletion_results$full_data
  1425. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1426. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1427. message("Generating deletion interaction plots")
  1428. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1429. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1430. message("Writing enhancer/suppressor csv files")
  1431. interaction_threshold <- 2 # TODO add to study config?
  1432. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1433. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1434. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1435. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1436. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1437. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1438. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1439. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1440. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1441. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1442. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1443. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1444. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1445. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1446. write.csv(enhancers_and_suppressors_L,
  1447. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1448. write.csv(enhancers_and_suppressors_K,
  1449. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1450. message("Writing linear model enhancer/suppressor csv files")
  1451. lm_interaction_threshold <- 2 # TODO add to study config?
  1452. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1453. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1454. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1455. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1456. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1457. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1458. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1459. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1460. message("Generating rank plots")
  1461. rank_plot_configs <- generate_rank_plot_configs(
  1462. df_interactions,
  1463. is_lm = FALSE,
  1464. adjust = TRUE
  1465. )
  1466. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1467. page_width = 18, page_height = 12)
  1468. message("Generating ranked linear model plots")
  1469. rank_lm_plot_configs <- generate_rank_plot_configs(
  1470. df_interactions,
  1471. is_lm = TRUE,
  1472. adjust = TRUE
  1473. )
  1474. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1475. page_width = 18, page_height = 12)
  1476. message("Generating overlapped ranked plots")
  1477. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1478. df_interactions,
  1479. is_lm = FALSE,
  1480. adjust = FALSE,
  1481. filter_na = TRUE,
  1482. overlap_color = TRUE
  1483. )
  1484. generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1485. page_width = 18, page_height = 12)
  1486. message("Generating overlapped ranked linear model plots")
  1487. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1488. df_interactions,
  1489. is_lm = TRUE,
  1490. adjust = FALSE,
  1491. filter_na = TRUE,
  1492. overlap_color = TRUE
  1493. )
  1494. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1495. page_width = 18, page_height = 12)
  1496. message("Generating correlation curve parameter pair plots")
  1497. correlation_plot_configs <- generate_correlation_plot_configs(
  1498. df_interactions,
  1499. df_reference_interactions
  1500. )
  1501. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1502. page_width = 10, page_height = 7)
  1503. })
  1504. })
  1505. }
  1506. main()