calculate_interaction_zscores.R 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_filter_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  122. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  123. conc_num_factor_num = as.numeric(conc_num_factor)
  124. )
  125. return(df)
  126. }
  127. # Update Gene names using the SGD gene list
  128. update_gene_names <- function(df, sgd_gene_list) {
  129. # Load SGD gene list
  130. genes <- read.delim(file = sgd_gene_list,
  131. quote = "", header = FALSE,
  132. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  133. # Create a named vector for mapping ORF to GeneName
  134. gene_map <- setNames(genes$V5, genes$V4)
  135. # Vectorized match to find the GeneName from gene_map
  136. mapped_genes <- gene_map[df$ORF]
  137. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  138. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  139. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  140. df <- df %>%
  141. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  142. return(df)
  143. }
  144. calculate_summary_stats <- function(df, variables, group_vars) {
  145. summary_stats <- df %>%
  146. group_by(across(all_of(group_vars))) %>%
  147. summarise(
  148. N = n(),
  149. across(all_of(variables),
  150. list(
  151. mean = ~mean(., na.rm = TRUE),
  152. median = ~median(., na.rm = TRUE),
  153. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  154. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  155. sd = ~sd(., na.rm = TRUE),
  156. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  157. ),
  158. .names = "{.fn}_{.col}"
  159. ),
  160. .groups = "drop"
  161. )
  162. # Create a cleaned version of df that doesn't overlap with summary_stats
  163. cleaned_df <- df %>%
  164. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  165. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  166. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  167. }
  168. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  169. group_vars = c("OrfRep", "Gene", "num")) {
  170. # Calculate total concentration variables
  171. total_conc_num <- length(unique(df$conc_num))
  172. calculations <- df %>%
  173. group_by(across(all_of(group_vars))) %>%
  174. mutate(
  175. NG = sum(NG, na.rm = TRUE),
  176. DB = sum(DB, na.rm = TRUE),
  177. SM = sum(SM, na.rm = TRUE),
  178. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  179. # Calculate raw data
  180. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  181. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  182. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  183. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  184. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  185. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  186. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  187. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  188. Exp_L = WT_L + Raw_Shift_L,
  189. Exp_K = WT_K + Raw_Shift_K,
  190. Exp_r = WT_r + Raw_Shift_r,
  191. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  192. Delta_L = mean_L - Exp_L,
  193. Delta_K = mean_K - Exp_K,
  194. Delta_r = mean_r - Exp_r,
  195. Delta_AUC = mean_AUC - Exp_AUC,
  196. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  197. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  198. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  199. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  200. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  201. # Calculate Z-scores
  202. Zscore_L = Delta_L / WT_sd_L,
  203. Zscore_K = Delta_K / WT_sd_K,
  204. Zscore_r = Delta_r / WT_sd_r,
  205. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  206. # Fit linear models and store in list-columns
  207. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  208. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  209. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  210. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  211. # Extract coefficients using purrr::map_dbl
  212. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  213. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  214. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  215. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  216. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  217. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  218. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  219. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  220. # Calculate lm_Score_* based on coefficients
  221. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  222. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  223. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  224. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  225. # Calculate R-squared values
  226. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  227. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  228. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  229. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  230. ) %>%
  231. ungroup()
  232. # Calculate overall mean and SD for lm_Score_* variables
  233. lm_means_sds <- calculations %>%
  234. summarise(
  235. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  236. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  237. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  238. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  239. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  240. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  241. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  242. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  243. )
  244. calculations <- calculations %>%
  245. mutate(
  246. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  247. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  248. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  249. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  250. )
  251. # Summarize some of the stats
  252. interactions <- calculations %>%
  253. group_by(across(all_of(group_vars))) %>%
  254. mutate(
  255. # Calculate raw shifts
  256. Raw_Shift_L = first(Raw_Shift_L),
  257. Raw_Shift_K = first(Raw_Shift_K),
  258. Raw_Shift_r = first(Raw_Shift_r),
  259. Raw_Shift_AUC = first(Raw_Shift_AUC),
  260. # Calculate Z-shifts
  261. Z_Shift_L = first(Z_Shift_L),
  262. Z_Shift_K = first(Z_Shift_K),
  263. Z_Shift_r = first(Z_Shift_r),
  264. Z_Shift_AUC = first(Z_Shift_AUC),
  265. # Sum Z-scores
  266. Sum_Z_Score_L = sum(Zscore_L),
  267. Sum_Z_Score_K = sum(Zscore_K),
  268. Sum_Z_Score_r = sum(Zscore_r),
  269. Sum_Z_Score_AUC = sum(Zscore_AUC),
  270. # Calculate Average Z-scores
  271. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  272. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  273. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  274. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  275. ) %>%
  276. arrange(desc(Z_lm_L), desc(NG)) %>%
  277. ungroup()
  278. # Declare column order for output
  279. calculations <- calculations %>%
  280. select(
  281. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  282. "mean_L", "mean_K", "mean_r", "mean_AUC",
  283. "median_L", "median_K", "median_r", "median_AUC",
  284. "sd_L", "sd_K", "sd_r", "sd_AUC",
  285. "se_L", "se_K", "se_r", "se_AUC",
  286. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  287. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  288. "WT_L", "WT_K", "WT_r", "WT_AUC",
  289. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  290. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  291. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  292. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  293. "NG", "SM", "DB")
  294. interactions <- interactions %>%
  295. select(
  296. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  297. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  298. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  299. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  300. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  301. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  302. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  303. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  304. cleaned_df <- df %>%
  305. select(-any_of(
  306. setdiff(intersect(names(df), names(interactions)),
  307. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  308. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  309. return(list(
  310. calculations = calculations,
  311. interactions = interactions,
  312. interactions_joined = interactions_joined))
  313. }
  314. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  315. message("Generating ", filename, ".pdf and ", filename, ".html")
  316. # Prepare lists to collect plots
  317. static_plots <- list()
  318. plotly_plots <- list()
  319. for (i in seq_along(plot_configs)) {
  320. config <- plot_configs[[i]]
  321. df <- config$df
  322. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  323. if (is.null(config$color_var)) {
  324. aes(x = .data[[config$x_var]])
  325. } else {
  326. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  327. }
  328. } else if (is.null(config$color_var)) {
  329. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  330. } else {
  331. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  332. }
  333. # Start building the plot with aes_mapping
  334. plot_base <- ggplot(df, aes_mapping)
  335. # Use appropriate helper function based on plot type
  336. plot <- switch(config$plot_type,
  337. "scatter" = generate_scatter_plot(plot_base, config),
  338. "box" = generate_box_plot(plot_base, config),
  339. "density" = plot_base + geom_density(),
  340. "bar" = plot_base + geom_bar(),
  341. plot_base # default case if no type matches
  342. )
  343. # Apply additional settings
  344. if (!is.null(config$legend_position)) {
  345. plot <- plot + theme(legend.position = config$legend_position)
  346. }
  347. # Add title and labels
  348. if (!is.null(config$title)) {
  349. plot <- plot + ggtitle(config$title)
  350. }
  351. if (!is.null(config$x_label)) {
  352. plot <- plot + xlab(config$x_label)
  353. }
  354. if (!is.null(config$y_label)) {
  355. plot <- plot + ylab(config$y_label)
  356. }
  357. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  358. if (is.null(config$color_var)) {
  359. plot <- plot + scale_color_discrete(guide = "none")
  360. }
  361. # Add interactive tooltips for plotly
  362. tooltip_vars <- c()
  363. if (config$plot_type == "scatter") {
  364. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  365. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  366. } else if (!is.null(config$gene_point) && config$gene_point) {
  367. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  368. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  369. tooltip_vars <- c(config$x_var, config$y_var)
  370. }
  371. }
  372. # Convert to plotly object
  373. if (length(tooltip_vars) > 0) {
  374. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  375. } else {
  376. plotly_plot <- ggplotly(plot, tooltip = "none")
  377. }
  378. # Adjust legend position if specified
  379. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  380. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  381. }
  382. # Add plots to lists
  383. static_plots[[i]] <- plot
  384. plotly_plots[[i]] <- plotly_plot
  385. }
  386. # Save static PDF plots
  387. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  388. lapply(static_plots, print)
  389. dev.off()
  390. # Combine and save interactive HTML plots
  391. combined_plot <- subplot(
  392. plotly_plots,
  393. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  394. grid_layout$nrow
  395. } else {
  396. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  397. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  398. },
  399. margin = 0.05
  400. )
  401. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  402. }
  403. generate_scatter_plot <- function(plot, config) {
  404. shape <- if (!is.null(config$shape)) config$shape else 3
  405. size <- if (!is.null(config$size)) config$size else 0.1
  406. position <-
  407. if (!is.null(config$position) && config$position == "jitter") {
  408. position_jitter(width = 0.1, height = 0)
  409. } else {
  410. "identity"
  411. }
  412. plot <- plot + geom_point(
  413. shape = shape,
  414. size = size,
  415. position = position
  416. )
  417. if (!is.null(config$cyan_points) && config$cyan_points) {
  418. plot <- plot + geom_point(
  419. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  420. color = "cyan",
  421. shape = 3,
  422. size = 0.5
  423. )
  424. }
  425. # Add Smooth Line if specified
  426. if (!is.null(config$smooth) && config$smooth) {
  427. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  428. if (!is.null(config$lm_line)) {
  429. plot <- plot +
  430. geom_abline(
  431. intercept = config$lm_line$intercept,
  432. slope = config$lm_line$slope,
  433. color = smooth_color
  434. )
  435. } else {
  436. plot <- plot +
  437. geom_smooth(
  438. method = "lm",
  439. se = FALSE,
  440. color = smooth_color
  441. )
  442. }
  443. }
  444. # Add SD Bands if specified
  445. if (!is.null(config$sd_band)) {
  446. plot <- plot +
  447. annotate(
  448. "rect",
  449. xmin = -Inf, xmax = Inf,
  450. ymin = config$sd_band, ymax = Inf,
  451. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  452. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  453. ) +
  454. annotate(
  455. "rect",
  456. xmin = -Inf, xmax = Inf,
  457. ymin = -config$sd_band, ymax = -Inf,
  458. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  459. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  460. ) +
  461. geom_hline(
  462. yintercept = c(-config$sd_band, config$sd_band),
  463. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  464. )
  465. }
  466. # Add Rectangles if specified
  467. if (!is.null(config$rectangles)) {
  468. for (rect in config$rectangles) {
  469. plot <- plot + annotate(
  470. "rect",
  471. xmin = rect$xmin,
  472. xmax = rect$xmax,
  473. ymin = rect$ymin,
  474. ymax = rect$ymax,
  475. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  476. color = ifelse(is.null(rect$color), "black", rect$color),
  477. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  478. )
  479. }
  480. }
  481. # Add Error Bars if specified
  482. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  483. y_mean_col <- paste0("mean_", config$y_var)
  484. y_sd_col <- paste0("sd_", config$y_var)
  485. plot <- plot +
  486. geom_errorbar(
  487. aes(
  488. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  489. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  490. ),
  491. alpha = 0.3
  492. )
  493. }
  494. # Customize X-axis if specified
  495. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  496. plot <- plot +
  497. scale_x_discrete(
  498. name = config$x_label,
  499. breaks = config$x_breaks,
  500. labels = config$x_labels
  501. )
  502. }
  503. # Apply coord_cartesian if specified
  504. if (!is.null(config$coord_cartesian)) {
  505. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  506. }
  507. # Set Y-axis limits if specified
  508. if (!is.null(config$ylim_vals)) {
  509. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  510. }
  511. # Add Annotations if specified
  512. if (!is.null(config$annotations)) {
  513. for (annotation in config$annotations) {
  514. plot <- plot +
  515. annotate(
  516. "text",
  517. x = annotation$x,
  518. y = annotation$y,
  519. label = annotation$label,
  520. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  521. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  522. size = ifelse(is.null(annotation$size), 4, annotation$size),
  523. color = ifelse(is.null(annotation$color), "black", annotation$color)
  524. )
  525. }
  526. }
  527. # Add Title if specified
  528. if (!is.null(config$title)) {
  529. plot <- plot + ggtitle(config$title)
  530. }
  531. # Adjust Legend Position if specified
  532. if (!is.null(config$legend_position)) {
  533. plot <- plot + theme(legend.position = config$legend_position)
  534. }
  535. return(plot)
  536. }
  537. generate_box_plot <- function(plot, config) {
  538. plot <- plot + geom_boxplot()
  539. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  540. plot <- plot + scale_x_discrete(
  541. name = config$x_label,
  542. breaks = config$x_breaks,
  543. labels = config$x_labels
  544. )
  545. }
  546. if (!is.null(config$coord_cartesian)) {
  547. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  548. }
  549. return(plot)
  550. }
  551. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  552. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  553. plots <- list()
  554. for (var in variables) {
  555. for (stage in stages) {
  556. df_plot <- if (stage == "before") df_before else df_after
  557. # Check for non-finite values in the y-variable
  558. df_plot_filtered <- df_plot %>%
  559. filter(is.finite(!!sym(var)))
  560. # Count removed rows
  561. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  562. if (removed_rows > 0) {
  563. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  564. }
  565. # Adjust settings based on plot_type
  566. if (plot_type == "scatter") {
  567. error_bar <- TRUE
  568. position <- "jitter"
  569. } else if (plot_type == "box") {
  570. error_bar <- FALSE
  571. position <- NULL
  572. }
  573. config <- list(
  574. df = df_plot,
  575. x_var = "scan",
  576. y_var = var,
  577. plot_type = plot_type,
  578. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  579. error_bar = error_bar,
  580. color_var = "conc_num_factor",
  581. position = position
  582. )
  583. plots <- append(plots, list(config))
  584. }
  585. }
  586. return(plots)
  587. }
  588. generate_interaction_plot_configs <- function(df, limits_map = NULL) {
  589. # Default limits_map if not provided
  590. if (is.null(limits_map)) {
  591. limits_map <- list(
  592. L = c(-65, 65),
  593. K = c(-65, 65),
  594. r = c(-0.65, 0.65),
  595. AUC = c(-6500, 6500)
  596. )
  597. }
  598. # Filter data
  599. df_filtered <- df
  600. for (var in names(limits_map)) {
  601. df_filtered <- df_filtered %>%
  602. filter(!is.na(!!sym(var)) &
  603. !!sym(var) >= limits_map[[var]][1] &
  604. !!sym(var) <= limits_map[[var]][2])
  605. }
  606. configs <- list()
  607. for (var in names(limits_map)) {
  608. y_range <- limits_map[[var]]
  609. # Calculate annotation positions
  610. y_min <- min(y_range)
  611. y_max <- max(y_range)
  612. y_span <- y_max - y_min
  613. annotation_positions <- list(
  614. ZShift = y_max - 0.1 * y_span,
  615. lm_ZScore = y_max - 0.2 * y_span,
  616. NG = y_min + 0.2 * y_span,
  617. DB = y_min + 0.1 * y_span,
  618. SM = y_min + 0.05 * y_span
  619. )
  620. # Prepare linear model line
  621. lm_line <- list(
  622. intercept = df_filtered[[paste0("lm_intercept_", var)]],
  623. slope = df_filtered[[paste0("lm_slope_", var)]]
  624. )
  625. # Calculate x-axis position for annotations
  626. num_levels <- length(levels(df_filtered$conc_num_factor))
  627. x_pos <- (1 + num_levels) / 2
  628. # Generate annotations
  629. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  630. label <- switch(annotation_name,
  631. ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
  632. lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
  633. NG = paste("NG =", df_filtered$NG),
  634. DB = paste("DB =", df_filtered$DB),
  635. SM = paste("SM =", df_filtered$SM),
  636. NULL
  637. )
  638. if (!is.null(label)) {
  639. list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
  640. } else {
  641. NULL
  642. }
  643. })
  644. annotations <- Filter(Negate(is.null), annotations)
  645. # Shared plot settings
  646. plot_settings <- list(
  647. df = df_filtered,
  648. x_var = "conc_num_factor",
  649. y_var = var,
  650. ylim_vals = y_range,
  651. annotations = annotations,
  652. lm_line = lm_line,
  653. x_breaks = levels(df_filtered$conc_num_factor),
  654. x_labels = levels(df_filtered$conc_num_factor),
  655. x_label = unique(df_filtered$Drug[1]),
  656. coord_cartesian = y_range
  657. )
  658. # Scatter plot config
  659. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  660. plot_type = "scatter",
  661. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  662. error_bar = TRUE,
  663. position = "jitter"
  664. ))
  665. # Box plot config
  666. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  667. plot_type = "box",
  668. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  669. error_bar = FALSE
  670. ))
  671. }
  672. return(configs)
  673. }
  674. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  675. sd_bands <- c(1, 2, 3)
  676. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  677. z_lm_cols <- paste0("Z_lm_", variables)
  678. rank_avg_zscore_cols <- paste0("Rank_", variables)
  679. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  680. configs <- list()
  681. if (adjust) {
  682. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  683. df <- df %>%
  684. mutate(
  685. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  686. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  687. )
  688. }
  689. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  690. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  691. df_ranked <- df %>%
  692. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  693. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  694. df_ranked <- df_ranked %>%
  695. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  696. # SD-based plots for L and K
  697. for (variable in c("L", "K")) {
  698. if (is_lm) {
  699. rank_var <- paste0("Rank_lm_", variable)
  700. zscore_var <- paste0("Z_lm_", variable)
  701. y_label <- paste("Int Z score", variable)
  702. } else {
  703. rank_var <- paste0("Rank_", variable)
  704. zscore_var <- paste0("Avg_Zscore_", variable)
  705. y_label <- paste("Avg Z score", variable)
  706. }
  707. for (sd_band in sd_bands) {
  708. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  709. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  710. # Annotated plot configuration
  711. configs[[length(configs) + 1]] <- list(
  712. df = df_ranked,
  713. x_var = rank_var,
  714. y_var = zscore_var,
  715. plot_type = "scatter",
  716. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  717. sd_band = sd_band,
  718. fill_positive = "#542788",
  719. fill_negative = "orange",
  720. alpha_positive = 0.3,
  721. alpha_negative = 0.3,
  722. annotations = list(
  723. list(
  724. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  725. y = 10,
  726. label = paste("Deletion Enhancers =", num_enhancers),
  727. hjust = 0.5,
  728. vjust = 1
  729. ),
  730. list(
  731. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  732. y = -10,
  733. label = paste("Deletion Suppressors =", num_suppressors),
  734. hjust = 0.5,
  735. vjust = 0
  736. )
  737. ),
  738. shape = 3,
  739. size = 0.1,
  740. y_label = y_label,
  741. x_label = "Rank",
  742. legend_position = "none"
  743. )
  744. # Non-Annotated Plot Configuration
  745. configs[[length(configs) + 1]] <- list(
  746. df = df_ranked,
  747. x_var = rank_var,
  748. y_var = zscore_var,
  749. plot_type = "scatter",
  750. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  751. sd_band = sd_band,
  752. fill_positive = "#542788",
  753. fill_negative = "orange",
  754. alpha_positive = 0.3,
  755. alpha_negative = 0.3,
  756. annotations = NULL,
  757. shape = 3,
  758. size = 0.1,
  759. y_label = y_label,
  760. x_label = "Rank",
  761. legend_position = "none"
  762. )
  763. }
  764. }
  765. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  766. for (variable in variables) {
  767. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  768. title <- paste(plot_type, variable)
  769. # Define specific variables based on plot type
  770. if (plot_type == "Avg Zscore vs lm") {
  771. x_var <- paste0("Avg_Zscore_", variable)
  772. y_var <- paste0("Z_lm_", variable)
  773. rectangles <- list(
  774. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  775. fill = NA, color = "grey20", alpha = 0.1
  776. )
  777. )
  778. } else if (plot_type == "Rank Avg Zscore vs lm") {
  779. x_var <- paste0("Rank_", variable)
  780. y_var <- paste0("Rank_lm_", variable)
  781. rectangles <- NULL
  782. }
  783. # Fit the linear model
  784. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  785. # Extract intercept and slope from the model coefficients
  786. intercept <- coef(lm_model)[1]
  787. slope <- coef(lm_model)[2]
  788. configs[[length(configs) + 1]] <- list(
  789. df = df_ranked,
  790. x_var = x_var,
  791. y_var = y_var,
  792. plot_type = "scatter",
  793. title = title,
  794. annotations = list(
  795. list(
  796. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  797. y = 10,
  798. label = paste("Deletion Enhancers =", num_enhancers),
  799. hjust = 0.5,
  800. vjust = 1
  801. ),
  802. list(
  803. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  804. y = -10,
  805. label = paste("Deletion Suppressors =", num_suppressors),
  806. hjust = 0.5,
  807. vjust = 0
  808. )
  809. ),
  810. shape = 3,
  811. size = 0.1,
  812. smooth = TRUE,
  813. smooth_color = "black",
  814. lm_line = list(intercept = intercept, slope = slope),
  815. legend_position = "right",
  816. color_var = if (overlap_color) "Overlap" else NULL,
  817. x_label = x_var,
  818. y_label = y_var,
  819. rectangles = rectangles
  820. )
  821. }
  822. }
  823. return(configs)
  824. }
  825. generate_correlation_plot_configs <- function(df) {
  826. # Define relationships for plotting
  827. relationships <- list(
  828. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  829. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  830. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  831. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  832. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  833. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  834. )
  835. configs <- list()
  836. for (rel in relationships) {
  837. # Fit linear model
  838. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  839. lm_summary <- summary(lm_model)
  840. # Construct plot configuration
  841. config <- list(
  842. df = df,
  843. x_var = rel$x,
  844. y_var = rel$y,
  845. plot_type = "scatter",
  846. title = rel$label,
  847. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  848. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  849. annotations = list(
  850. list(
  851. x = Inf,
  852. y = Inf,
  853. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  854. hjust = 1.1,
  855. vjust = 2,
  856. size = 4,
  857. color = "black"
  858. )
  859. ),
  860. smooth = TRUE,
  861. smooth_color = "tomato3",
  862. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  863. legend_position = "right",
  864. shape = 3,
  865. size = 0.5,
  866. color_var = "Overlap",
  867. rectangles = list(
  868. list(
  869. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  870. fill = NA, color = "grey20", alpha = 0.1
  871. )
  872. ),
  873. cyan_points = TRUE
  874. )
  875. configs[[length(configs) + 1]] <- config
  876. }
  877. return(configs)
  878. }
  879. main <- function() {
  880. lapply(names(args$experiments), function(exp_name) {
  881. exp <- args$experiments[[exp_name]]
  882. exp_path <- exp$path
  883. exp_sd <- exp$sd
  884. out_dir <- file.path(exp_path, "zscores")
  885. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  886. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  887. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  888. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  889. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  890. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  891. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  892. message("Loading and filtering data for experiment: ", exp_name)
  893. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  894. update_gene_names(args$sgd_gene_list) %>%
  895. as_tibble()
  896. # Filter rows above delta background tolerance
  897. df_above_tolerance <- df %>% filter(DB == 1)
  898. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  899. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  900. # Save some constants
  901. max_conc <- max(df$conc_num_factor_num)
  902. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  903. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  904. message("Calculating summary statistics before quality control")
  905. df_stats <- calculate_summary_stats(
  906. df = df,
  907. variables = summary_vars,
  908. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  909. message("Calculating summary statistics after quality control")
  910. ss <- calculate_summary_stats(
  911. df = df_na,
  912. variables = summary_vars,
  913. group_vars = c("conc_num", "conc_num_factor"))
  914. df_na_ss <- ss$summary_stats
  915. df_na_stats <- ss$df_with_stats
  916. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  917. # For plotting (ggplot warns on NAs)
  918. df_na_stats_filtered <- df_na_stats %>% filter(across(all_of(summary_vars), is.finite))
  919. df_na_stats <- df_na_stats %>%
  920. mutate(
  921. WT_L = mean_L,
  922. WT_K = mean_K,
  923. WT_r = mean_r,
  924. WT_AUC = mean_AUC,
  925. WT_sd_L = sd_L,
  926. WT_sd_K = sd_K,
  927. WT_sd_r = sd_r,
  928. WT_sd_AUC = sd_AUC
  929. )
  930. # Pull the background means and standard deviations from zero concentration for interactions
  931. bg_stats <- df_na_stats %>%
  932. filter(conc_num == 0) %>%
  933. summarise(
  934. mean_L = first(mean_L),
  935. mean_K = first(mean_K),
  936. mean_r = first(mean_r),
  937. mean_AUC = first(mean_AUC),
  938. sd_L = first(sd_L),
  939. sd_K = first(sd_K),
  940. sd_r = first(sd_r),
  941. sd_AUC = first(sd_AUC)
  942. )
  943. message("Calculating summary statistics after quality control excluding zero values")
  944. df_no_zeros_stats <- calculate_summary_stats(
  945. df = df_no_zeros,
  946. variables = summary_vars,
  947. group_vars = c("conc_num", "conc_num_factor")
  948. )$df_with_stats
  949. message("Filtering by 2SD of K")
  950. df_na_within_2sd_k <- df_na_stats %>%
  951. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  952. df_na_outside_2sd_k <- df_na_stats %>%
  953. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  954. message("Calculating summary statistics for L within 2SD of K")
  955. # TODO We're omitting the original z_max calculation, not sure if needed?
  956. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  957. write.csv(ss,
  958. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  959. row.names = FALSE)
  960. message("Calculating summary statistics for L outside 2SD of K")
  961. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  962. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  963. write.csv(ss$summary_stats,
  964. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  965. row.names = FALSE)
  966. # Each plots list corresponds to a file
  967. l_vs_k_plot_configs <- list(
  968. list(
  969. df = df,
  970. x_var = "L",
  971. y_var = "K",
  972. plot_type = "scatter",
  973. delta_bg_point = TRUE,
  974. title = "Raw L vs K before quality control",
  975. color_var = "conc_num_factor",
  976. error_bar = FALSE,
  977. legend_position = "right"
  978. )
  979. )
  980. frequency_delta_bg_plot_configs <- list(
  981. list(
  982. df = df_stats,
  983. x_var = "delta_bg",
  984. y_var = NULL,
  985. plot_type = "density",
  986. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  987. color_var = "conc_num_factor",
  988. x_label = "Delta Background",
  989. y_label = "Density",
  990. error_bar = FALSE,
  991. legend_position = "right"),
  992. list(
  993. df = df_stats,
  994. x_var = "delta_bg",
  995. y_var = NULL,
  996. plot_type = "bar",
  997. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  998. color_var = "conc_num_factor",
  999. x_label = "Delta Background",
  1000. y_label = "Count",
  1001. error_bar = FALSE,
  1002. legend_position = "right")
  1003. )
  1004. above_threshold_plot_configs <- list(
  1005. list(
  1006. df = df_above_tolerance,
  1007. x_var = "L",
  1008. y_var = "K",
  1009. plot_type = "scatter",
  1010. delta_bg_point = TRUE,
  1011. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1012. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1013. color_var = "conc_num_factor",
  1014. position = "jitter",
  1015. annotations = list(
  1016. list(
  1017. x = l_half_median,
  1018. y = k_half_median,
  1019. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1020. )
  1021. ),
  1022. error_bar = FALSE,
  1023. legend_position = "right"
  1024. )
  1025. )
  1026. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1027. variables = summary_vars,
  1028. df_before = df_stats,
  1029. df_after = df_na_stats_filtered
  1030. )
  1031. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1032. variables = summary_vars,
  1033. df_before = df_stats,
  1034. df_after = df_na_stats_filtered,
  1035. plot_type = "box"
  1036. )
  1037. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1038. variables = summary_vars,
  1039. stages = c("after"), # Only after QC
  1040. df_after = df_no_zeros_stats
  1041. )
  1042. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1043. variables = summary_vars,
  1044. stages = c("after"), # Only after QC
  1045. df_after = df_no_zeros_stats,
  1046. plot_type = "box"
  1047. )
  1048. l_outside_2sd_k_plot_configs <- list(
  1049. list(
  1050. df = df_na_l_outside_2sd_k_stats,
  1051. x_var = "L",
  1052. y_var = "K",
  1053. plot_type = "scatter",
  1054. delta_bg_point = TRUE,
  1055. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1056. color_var = "conc_num_factor",
  1057. position = "jitter",
  1058. legend_position = "right"
  1059. )
  1060. )
  1061. delta_bg_outside_2sd_k_plot_configs <- list(
  1062. list(
  1063. df = df_na_l_outside_2sd_k_stats,
  1064. x_var = "delta_bg",
  1065. y_var = "K",
  1066. plot_type = "scatter",
  1067. gene_point = TRUE,
  1068. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1069. color_var = "conc_num_factor",
  1070. position = "jitter",
  1071. legend_position = "right"
  1072. )
  1073. )
  1074. message("Generating quality control plots")
  1075. # TODO trying out some parallelization
  1076. # future::plan(future::multicore, workers = parallel::detectCores())
  1077. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1078. plot_configs <- list(
  1079. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1080. plot_configs = l_vs_k_plot_configs),
  1081. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1082. plot_configs = frequency_delta_bg_plot_configs),
  1083. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1084. plot_configs = above_threshold_plot_configs),
  1085. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1086. plot_configs = plate_analysis_plot_configs),
  1087. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1088. plot_configs = plate_analysis_boxplot_configs),
  1089. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1090. plot_configs = plate_analysis_no_zeros_plot_configs),
  1091. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1092. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1093. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1094. plot_configs = l_outside_2sd_k_plot_configs),
  1095. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1096. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1097. )
  1098. # Generating quality control plots in parallel
  1099. furrr::future_map(plot_configs, function(config) {
  1100. generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1101. }, .options = furrr_options(seed = TRUE))
  1102. # Process background strains
  1103. bg_strains <- c("YDL227C")
  1104. lapply(bg_strains, function(strain) {
  1105. message("Processing background strain: ", strain)
  1106. # Handle missing data by setting zero values to NA
  1107. # and then removing any rows with NA in L col
  1108. df_bg <- df_na %>%
  1109. filter(OrfRep == strain) %>%
  1110. mutate(
  1111. L = if_else(L == 0, NA, L),
  1112. K = if_else(K == 0, NA, K),
  1113. r = if_else(r == 0, NA, r),
  1114. AUC = if_else(AUC == 0, NA, AUC)
  1115. ) %>%
  1116. filter(!is.na(L))
  1117. # Recalculate summary statistics for the background strain
  1118. message("Calculating summary statistics for background strain")
  1119. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1120. summary_stats_bg <- ss_bg$summary_stats
  1121. write.csv(summary_stats_bg,
  1122. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1123. row.names = FALSE)
  1124. # Set the missing values to the highest theoretical value at each drug conc for L
  1125. # Leave other values as 0 for the max/min
  1126. df_reference <- df_na_stats %>% # formerly X2_RF
  1127. filter(OrfRep == strain) %>%
  1128. filter(!is.na(L)) %>%
  1129. group_by(conc_num, conc_num_factor) %>%
  1130. mutate(
  1131. max_l_theoretical = max(max_L, na.rm = TRUE),
  1132. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1133. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1134. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1135. ungroup()
  1136. # Ditto for deletion strains
  1137. df_deletion <- df_na_stats %>% # formerly X2
  1138. filter(OrfRep != strain) %>%
  1139. filter(!is.na(L)) %>%
  1140. mutate(SM = 0) %>%
  1141. group_by(conc_num, conc_num_factor) %>%
  1142. mutate(
  1143. max_l_theoretical = max(max_L, na.rm = TRUE),
  1144. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1145. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1146. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1147. ungroup()
  1148. message("Calculating reference strain interaction scores")
  1149. df_reference_stats <- calculate_summary_stats(
  1150. df = df_reference,
  1151. variables = interaction_vars,
  1152. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1153. )$df_with_stats
  1154. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1155. zscore_calculations_reference <- reference_results$calculations
  1156. zscore_interactions_reference <- reference_results$interactions
  1157. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1158. message("Calculating deletion strain(s) interactions scores")
  1159. df_deletion_stats <- calculate_summary_stats(
  1160. df = df_deletion,
  1161. variables = interaction_vars,
  1162. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1163. )$df_with_stats
  1164. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1165. zscore_calculations <- deletion_results$calculations
  1166. zscore_interactions <- deletion_results$interactions
  1167. zscore_interactions_joined <- deletion_results$interactions_joined
  1168. # Writing Z-Scores to file
  1169. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1170. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1171. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1172. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1173. # Create interaction plots
  1174. message("Generating reference interaction plots")
  1175. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1176. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1177. message("Generating deletion interaction plots")
  1178. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1179. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1180. # Define conditions for enhancers and suppressors
  1181. # TODO Add to study config?
  1182. threshold <- 2
  1183. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1184. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1185. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1186. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1187. # Subset data
  1188. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1189. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1190. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1191. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1192. # Save enhancers and suppressors
  1193. message("Writing enhancer/suppressor csv files")
  1194. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1195. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1196. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1197. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1198. # Combine conditions for enhancers and suppressors
  1199. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1200. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1201. # Save combined enhancers and suppressors
  1202. write.csv(enhancers_and_suppressors_L,
  1203. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1204. write.csv(enhancers_and_suppressors_K,
  1205. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1206. # Handle linear model based enhancers and suppressors
  1207. lm_threshold <- 2
  1208. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1209. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1210. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1211. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1212. # Save linear model based enhancers and suppressors
  1213. message("Writing linear model enhancer/suppressor csv files")
  1214. write.csv(enhancers_lm_L,
  1215. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1216. write.csv(suppressors_lm_L,
  1217. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1218. write.csv(enhancers_lm_K,
  1219. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1220. write.csv(suppressors_lm_K,
  1221. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1222. message("Generating rank plots")
  1223. rank_plot_configs <- generate_rank_plot_configs(
  1224. df = zscore_interactions_joined,
  1225. variables = interaction_vars,
  1226. is_lm = FALSE,
  1227. adjust = TRUE
  1228. )
  1229. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1230. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1231. message("Generating ranked linear model plots")
  1232. rank_lm_plot_configs <- generate_rank_plot_configs(
  1233. df = zscore_interactions_joined,
  1234. variables = interaction_vars,
  1235. is_lm = TRUE,
  1236. adjust = TRUE
  1237. )
  1238. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1239. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1240. message("Filtering and reranking plots")
  1241. # Formerly X_NArm
  1242. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1243. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1244. mutate(
  1245. Overlap = case_when(
  1246. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1247. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1248. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1249. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1250. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1251. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1252. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1253. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1254. TRUE ~ "No Effect"
  1255. ),
  1256. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1257. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1258. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1259. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1260. )
  1261. message("Generating filtered ranked plots")
  1262. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1263. df = zscore_interactions_filtered,
  1264. variables = interaction_vars,
  1265. is_lm = FALSE,
  1266. adjust = FALSE,
  1267. overlap_color = TRUE
  1268. )
  1269. generate_and_save_plots(
  1270. out_dir = out_dir,
  1271. filename = "RankPlots_na_rm",
  1272. plot_configs = rank_plot_filtered_configs,
  1273. grid_layout = list(ncol = 3, nrow = 2))
  1274. message("Generating filtered ranked linear model plots")
  1275. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1276. df = zscore_interactions_filtered,
  1277. variables = interaction_vars,
  1278. is_lm = TRUE,
  1279. adjust = FALSE,
  1280. overlap_color = TRUE
  1281. )
  1282. generate_and_save_plots(
  1283. out_dir = out_dir,
  1284. filename = "rank_plots_lm_na_rm",
  1285. plot_configs = rank_plot_lm_filtered_configs,
  1286. grid_layout = list(ncol = 3, nrow = 2))
  1287. message("Generating correlation curve parameter pair plots")
  1288. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1289. generate_and_save_plots(
  1290. out_dir = out_dir,
  1291. filename = "correlation_cpps",
  1292. plot_configs = correlation_plot_configs,
  1293. grid_layout = list(ncol = 2, nrow = 2))
  1294. })
  1295. })
  1296. }
  1297. main()