calculate_interaction_zscores.R 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Continue with the rest of the function as before
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  259. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  260. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  261. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  262. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  263. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  264. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  265. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  266. )
  267. # Continue with gene Z-scores and interactions
  268. calculations <- calculations %>%
  269. left_join(lm_means_sds, by = group_vars) %>%
  270. group_by(across(all_of(group_vars))) %>%
  271. mutate(
  272. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  273. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  274. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  275. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  276. )
  277. # Build summary stats (interactions)
  278. interactions <- calculations %>%
  279. group_by(across(all_of(group_vars))) %>%
  280. summarise(
  281. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  282. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  283. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  284. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  285. # Interaction Z-scores
  286. Z_lm_L = first(Z_lm_L),
  287. Z_lm_K = first(Z_lm_K),
  288. Z_lm_r = first(Z_lm_r),
  289. Z_lm_AUC = first(Z_lm_AUC),
  290. # Raw Shifts
  291. Raw_Shift_L = first(Raw_Shift_L),
  292. Raw_Shift_K = first(Raw_Shift_K),
  293. Raw_Shift_r = first(Raw_Shift_r),
  294. Raw_Shift_AUC = first(Raw_Shift_AUC),
  295. # Z Shifts
  296. Z_Shift_L = first(Z_Shift_L),
  297. Z_Shift_K = first(Z_Shift_K),
  298. Z_Shift_r = first(Z_Shift_r),
  299. Z_Shift_AUC = first(Z_Shift_AUC),
  300. NG = first(NG),
  301. DB = first(DB),
  302. SM = first(SM)
  303. ) %>%
  304. arrange(desc(Z_lm_L), desc(NG)) %>%
  305. ungroup() %>%
  306. mutate(
  307. Overlap = case_when(
  308. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  309. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  310. Z_lm_L >= overlap_threshold & Avg_Zscore_L < overlap_threshold ~ "Deletion Enhancer lm only",
  311. Z_lm_L < overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  312. Z_lm_L <= -overlap_threshold & Avg_Zscore_L > -overlap_threshold ~ "Deletion Suppressor lm only",
  313. Z_lm_L > -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  314. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  315. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  316. TRUE ~ "No Effect"
  317. )
  318. )
  319. # Return full data and correlation stats
  320. full_data <- calculations %>%
  321. left_join(interactions, by = group_vars)
  322. return(list(
  323. calculations = calculations,
  324. interactions = interactions,
  325. full_data = full_data
  326. ))
  327. }
  328. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  329. message("Generating ", filename, ".pdf and ", filename, ".html")
  330. # Check if we're dealing with multiple plot groups
  331. plot_groups <- if ("plots" %in% names(plot_configs)) {
  332. list(plot_configs) # Single group
  333. } else {
  334. plot_configs # Multiple groups
  335. }
  336. for (group in plot_groups) {
  337. static_plots <- list()
  338. plotly_plots <- list()
  339. grid_layout <- group$grid_layout
  340. plots <- group$plots
  341. for (i in seq_along(plots)) {
  342. config <- plots[[i]]
  343. df <- config$df
  344. if (config$plot_type == "bar") {
  345. if (!is.null(config$color_var)) {
  346. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  347. } else {
  348. aes_mapping <- aes(x = .data[[config$x_var]])
  349. }
  350. } else if (config$plot_type == "density") {
  351. if (!is.null(config$color_var)) {
  352. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  353. } else {
  354. aes_mapping <- aes(x = .data[[config$x_var]])
  355. }
  356. } else {
  357. # For other plot types
  358. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  359. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  360. } else if (!is.null(config$y_var)) {
  361. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  362. } else {
  363. aes_mapping <- aes(x = .data[[config$x_var]])
  364. }
  365. }
  366. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  367. plot <- switch(config$plot_type,
  368. "scatter" = generate_scatter_plot(plot, config),
  369. "box" = generate_boxplot(plot, config),
  370. "density" = plot + geom_density(),
  371. "bar" = plot + geom_bar(),
  372. plot # default (unused)
  373. )
  374. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  375. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  376. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  377. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  378. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  379. static_plots[[i]] <- plot
  380. plotly_plots[[i]] <- plotly_plot
  381. }
  382. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  383. if (is.null(grid_layout)) {
  384. for (plot in static_plots) {
  385. print(plot)
  386. }
  387. } else {
  388. grid.arrange(
  389. grobs = static_plots,
  390. ncol = grid_layout$ncol,
  391. nrow = grid_layout$nrow
  392. )
  393. }
  394. dev.off()
  395. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  396. message("Saving combined HTML file: ", out_html_file)
  397. htmltools::save_html(
  398. htmltools::tagList(plotly_plots),
  399. file = out_html_file
  400. )
  401. }
  402. }
  403. generate_scatter_plot <- function(plot, config) {
  404. # Define the points
  405. shape <- if (!is.null(config$shape)) config$shape else 3
  406. size <- if (!is.null(config$size)) config$size else 1.5
  407. position <-
  408. if (!is.null(config$position) && config$position == "jitter") {
  409. position_jitter(width = 0.1, height = 0)
  410. } else {
  411. "identity"
  412. }
  413. plot <- plot + geom_point(
  414. shape = shape,
  415. size = size,
  416. position = position
  417. )
  418. if (!is.null(config$cyan_points) && config$cyan_points) {
  419. plot <- plot + geom_point(
  420. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  421. color = "cyan",
  422. shape = 3,
  423. size = 0.5
  424. )
  425. }
  426. # Add Smooth Line if specified
  427. if (!is.null(config$smooth) && config$smooth) {
  428. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  429. if (!is.null(config$lm_line)) {
  430. plot <- plot +
  431. geom_abline(
  432. intercept = config$lm_line$intercept,
  433. slope = config$lm_line$slope,
  434. color = smooth_color
  435. )
  436. } else {
  437. plot <- plot +
  438. geom_smooth(
  439. method = "lm",
  440. se = FALSE,
  441. color = smooth_color
  442. )
  443. }
  444. }
  445. # Add SD Bands if specified
  446. if (!is.null(config$sd_band)) {
  447. plot <- plot +
  448. annotate(
  449. "rect",
  450. xmin = -Inf, xmax = Inf,
  451. ymin = config$sd_band, ymax = Inf,
  452. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  453. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  454. ) +
  455. annotate(
  456. "rect",
  457. xmin = -Inf, xmax = Inf,
  458. ymin = -config$sd_band, ymax = -Inf,
  459. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  460. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  461. ) +
  462. geom_hline(
  463. yintercept = c(-config$sd_band, config$sd_band),
  464. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  465. )
  466. }
  467. # Add Rectangles if specified
  468. if (!is.null(config$rectangles)) {
  469. for (rect in config$rectangles) {
  470. plot <- plot + annotate(
  471. "rect",
  472. xmin = rect$xmin,
  473. xmax = rect$xmax,
  474. ymin = rect$ymin,
  475. ymax = rect$ymax,
  476. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  477. color = ifelse(is.null(rect$color), "black", rect$color),
  478. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  479. )
  480. }
  481. }
  482. # Add error bars if specified
  483. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  484. if (!is.null(config$error_bar_params)) {
  485. plot <- plot + geom_errorbar(aes(ymin = config$error_bar_params$ymin, ymax = config$error_bar_params$ymax))
  486. } else {
  487. y_mean_col <- paste0("mean_", config$y_var)
  488. y_sd_col <- paste0("sd_", config$y_var)
  489. plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col), ymax = !!sym(y_mean_col) + !!sym(y_sd_col)))
  490. }
  491. }
  492. # Customize X-axis if specified
  493. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  494. # Check if x_var is factor or character (for discrete x-axis)
  495. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  496. plot <- plot +
  497. scale_x_discrete(
  498. name = config$x_label,
  499. breaks = config$x_breaks,
  500. labels = config$x_labels
  501. )
  502. } else {
  503. plot <- plot +
  504. scale_x_continuous(
  505. name = config$x_label,
  506. breaks = config$x_breaks,
  507. labels = config$x_labels
  508. )
  509. }
  510. }
  511. # Set Y-axis limits if specified
  512. if (!is.null(config$ylim_vals)) {
  513. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  514. }
  515. # Add annotations if specified
  516. if (!is.null(config$annotations)) {
  517. for (annotation in config$annotations) {
  518. plot <- plot +
  519. annotate(
  520. "text",
  521. x = annotation$x,
  522. y = annotation$y,
  523. label = annotation$label,
  524. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  525. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  526. size = ifelse(is.null(annotation$size), 6, annotation$size),
  527. color = ifelse(is.null(annotation$color), "black", annotation$color)
  528. )
  529. }
  530. }
  531. return(plot)
  532. }
  533. generate_boxplot <- function(plot, config) {
  534. # Convert x_var to a factor within aes mapping
  535. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  536. # Customize X-axis if specified
  537. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  538. # Check if x_var is factor or character (for discrete x-axis)
  539. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  540. plot <- plot +
  541. scale_x_discrete(
  542. name = config$x_label,
  543. breaks = config$x_breaks,
  544. labels = config$x_labels
  545. )
  546. } else {
  547. plot <- plot +
  548. scale_x_continuous(
  549. name = config$x_label,
  550. breaks = config$x_breaks,
  551. labels = config$x_labels
  552. )
  553. }
  554. }
  555. return(plot)
  556. }
  557. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  558. plot_type = "scatter", stages = c("before", "after")) {
  559. plot_configs <- list()
  560. for (var in variables) {
  561. for (stage in stages) {
  562. df_plot <- if (stage == "before") df_before else df_after
  563. # Check for non-finite values in the y-variable
  564. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  565. # Adjust settings based on plot_type
  566. plot_config <- list(
  567. df = df_plot_filtered,
  568. x_var = "scan",
  569. y_var = var,
  570. plot_type = plot_type,
  571. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  572. color_var = "conc_num_factor_factor",
  573. position = if (plot_type == "scatter") "jitter" else NULL,
  574. size = 0.2,
  575. error_bar = (plot_type == "scatter")
  576. )
  577. # Add config to plots list
  578. plot_configs <- append(plot_configs, list(plot_config))
  579. }
  580. }
  581. return(list(plots = plot_configs))
  582. }
  583. generate_interaction_plot_configs <- function(df, type) {
  584. if (type == "reference") {
  585. group_vars <- c("OrfRep", "Gene", "num")
  586. df <- df %>%
  587. mutate(OrfRepCombined = paste(!!!syms(group_vars), sep = "_"))
  588. } else if (type == "deletion") {
  589. group_vars <- c("OrfRep", "Gene")
  590. df <- df %>%
  591. mutate(OrfRepCombined = OrfRep)
  592. }
  593. limits_map <- list(
  594. L = c(0, 130),
  595. K = c(-20, 160),
  596. r = c(0, 1),
  597. AUC = c(0, 12500)
  598. )
  599. delta_limits_map <- list(
  600. L = c(-60, 60),
  601. K = c(-60, 60),
  602. r = c(-0.6, 0.6),
  603. AUC = c(-6000, 6000)
  604. )
  605. overall_plot_configs <- list()
  606. delta_plot_configs <- list()
  607. # Overall plots with lm_line for each interaction
  608. for (var in names(limits_map)) {
  609. y_limits <- limits_map[[var]]
  610. # Use the pre-calculated lm intercept and slope from the dataframe
  611. lm_intercept_col <- paste0("lm_intercept_", var)
  612. lm_slope_col <- paste0("lm_slope_", var)
  613. plot_config <- list(
  614. df = df,
  615. plot_type = "scatter",
  616. x_var = "conc_num_factor_factor",
  617. y_var = var,
  618. x_label = unique(df$Drug)[1],
  619. title = sprintf("Scatter RF for %s with SD", var),
  620. coord_cartesian = y_limits,
  621. error_bar = TRUE,
  622. x_breaks = unique(df$conc_num_factor_factor),
  623. x_labels = as.character(unique(df$conc_num)),
  624. position = "jitter",
  625. smooth = TRUE,
  626. lm_line = list(
  627. intercept = mean(df[[lm_intercept_col]], na.rm = TRUE),
  628. slope = mean(df[[lm_slope_col]], na.rm = TRUE)
  629. )
  630. )
  631. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  632. }
  633. # Delta plots (add lm_line if necessary)
  634. unique_groups <- df %>% select(all_of(group_vars)) %>% distinct()
  635. for (i in seq_len(nrow(unique_groups))) {
  636. group <- unique_groups[i, ]
  637. group_data <- df %>% semi_join(group, by = group_vars)
  638. OrfRep <- as.character(group$OrfRep)
  639. Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
  640. num <- if ("num" %in% names(group)) as.character(group$num) else ""
  641. for (var in names(delta_limits_map)) {
  642. y_limits <- delta_limits_map[[var]]
  643. y_span <- y_limits[2] - y_limits[1]
  644. # For error bars
  645. WT_sd_value <- group_data[[paste0("WT_sd_", var)]][1]
  646. Z_Shift_value <- round(group_data[[paste0("Z_Shift_", var)]][1], 2)
  647. Z_lm_value <- round(group_data[[paste0("Z_lm_", var)]][1], 2)
  648. R_squared_value <- round(group_data[[paste0("R_squared_", var)]][1], 2)
  649. NG_value <- group_data$NG[1]
  650. DB_value <- group_data$DB[1]
  651. SM_value <- group_data$SM[1]
  652. annotations <- list(
  653. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  654. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  655. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  656. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  657. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  658. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  659. )
  660. # Delta plot configuration with lm_line if needed
  661. plot_config <- list(
  662. df = group_data,
  663. plot_type = "scatter",
  664. x_var = "conc_num_factor_factor",
  665. y_var = var,
  666. x_label = unique(group_data$Drug)[1],
  667. title = paste(OrfRepCombined, Gene, sep = " "),
  668. coord_cartesian = y_limits,
  669. annotations = annotations,
  670. error_bar = TRUE,
  671. error_bar_params = list(
  672. ymin = 0 - (2 * WT_sd_value),
  673. ymax = 0 + (2 * WT_sd_value)
  674. ),
  675. smooth = TRUE,
  676. x_breaks = unique(group_data$conc_num_factor_factor),
  677. x_labels = as.character(unique(group_data$conc_num)),
  678. ylim_vals = y_limits,
  679. lm_line = list(
  680. intercept = group_data[[lm_intercept_col]][1],
  681. slope = group_data[[lm_slope_col]][1]
  682. )
  683. )
  684. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  685. }
  686. }
  687. # Calculate dynamic grid layout based on the number of plots for the delta_L plots
  688. grid_ncol <- 4
  689. num_plots <- length(delta_plot_configs)
  690. grid_nrow <- ceiling(num_plots / grid_ncol)
  691. return(list(
  692. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  693. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  694. ))
  695. }
  696. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  697. sd_bands <- c(1, 2, 3)
  698. plot_configs <- list()
  699. variables <- c("L", "K")
  700. # Adjust (if necessary) and rank columns
  701. for (variable in variables) {
  702. if (adjust) {
  703. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  704. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  705. }
  706. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  707. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  708. }
  709. # Helper function to create a plot configuration
  710. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  711. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  712. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  713. # Default plot config
  714. plot_config <- list(
  715. df = df,
  716. x_var = rank_var,
  717. y_var = zscore_var,
  718. plot_type = "scatter",
  719. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  720. sd_band = sd_band,
  721. fill_positive = "#542788",
  722. fill_negative = "orange",
  723. alpha_positive = 0.3,
  724. alpha_negative = 0.3,
  725. annotations = NULL,
  726. shape = 3,
  727. size = 0.1,
  728. y_label = y_label,
  729. x_label = "Rank",
  730. legend_position = "none"
  731. )
  732. if (with_annotations) {
  733. # Add specific annotations for plots with annotations
  734. plot_config$annotations <- list(
  735. list(
  736. x = median(df[[rank_var]], na.rm = TRUE),
  737. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  738. label = paste("Deletion Enhancers =", num_enhancers)
  739. ),
  740. list(
  741. x = median(df[[rank_var]], na.rm = TRUE),
  742. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  743. label = paste("Deletion Suppressors =", num_suppressors)
  744. )
  745. )
  746. }
  747. return(plot_config)
  748. }
  749. # Generate plots for each variable
  750. for (variable in variables) {
  751. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  752. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  753. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  754. # Loop through SD bands
  755. for (sd_band in sd_bands) {
  756. # Create plot with annotations
  757. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  758. # Create plot without annotations
  759. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  760. }
  761. }
  762. # Calculate dynamic grid layout based on the number of plots
  763. grid_ncol <- 3
  764. num_plots <- length(plot_configs)
  765. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  766. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  767. }
  768. generate_correlation_plot_configs <- function(df, correlation_stats) {
  769. # Define relationships for different-variable correlations
  770. relationships <- list(
  771. list(x = "L", y = "K"),
  772. list(x = "L", y = "r"),
  773. list(x = "L", y = "AUC"),
  774. list(x = "K", y = "r"),
  775. list(x = "K", y = "AUC"),
  776. list(x = "r", y = "AUC")
  777. )
  778. plot_configs <- list()
  779. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  780. highlight_cyan_options <- c(FALSE, TRUE)
  781. for (highlight_cyan in highlight_cyan_options) {
  782. for (rel in relationships) {
  783. # Extract relevant variable names for Z_lm values
  784. x_var <- paste0("Z_lm_", rel$x)
  785. y_var <- paste0("Z_lm_", rel$y)
  786. # Access the correlation statistics from the correlation_stats list
  787. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  788. stats <- correlation_stats[[relationship_name]]
  789. intercept <- stats$intercept
  790. slope <- stats$slope
  791. r_squared <- stats$r_squared
  792. # Generate the label for the plot
  793. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  794. # Construct plot config
  795. plot_config <- list(
  796. df = df,
  797. x_var = x_var,
  798. y_var = y_var,
  799. plot_type = "scatter",
  800. title = plot_label,
  801. annotations = list(
  802. list(
  803. x = mean(df[[x_var]], na.rm = TRUE),
  804. y = mean(df[[y_var]], na.rm = TRUE),
  805. label = paste("R-squared =", round(r_squared, 3))
  806. )
  807. ),
  808. smooth = TRUE,
  809. smooth_color = "tomato3",
  810. lm_line = list(
  811. intercept = intercept,
  812. slope = slope
  813. ),
  814. shape = 3,
  815. size = 0.5,
  816. color_var = "Overlap",
  817. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  818. )
  819. plot_configs <- append(plot_configs, list(plot_config))
  820. }
  821. }
  822. return(list(plots = plot_configs))
  823. }
  824. main <- function() {
  825. lapply(names(args$experiments), function(exp_name) {
  826. exp <- args$experiments[[exp_name]]
  827. exp_path <- exp$path
  828. exp_sd <- exp$sd
  829. out_dir <- file.path(exp_path, "zscores")
  830. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  831. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  832. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  833. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  834. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  835. message("Loading and filtering data for experiment: ", exp_name)
  836. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  837. update_gene_names(args$sgd_gene_list) %>%
  838. as_tibble()
  839. # Filter rows above delta background tolerance
  840. df_above_tolerance <- df %>% filter(DB == 1)
  841. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  842. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  843. # Save some constants
  844. max_conc <- max(df$conc_num_factor)
  845. message("Calculating summary statistics before quality control")
  846. df_stats <- calculate_summary_stats(
  847. df = df,
  848. variables = summary_vars,
  849. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  850. message("Calculating summary statistics after quality control")
  851. ss <- calculate_summary_stats(
  852. df = df_na,
  853. variables = summary_vars,
  854. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  855. df_na_ss <- ss$summary_stats
  856. df_na_stats <- ss$df_with_stats
  857. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  858. # For plotting (ggplot warns on NAs)
  859. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  860. df_na_stats <- df_na_stats %>%
  861. mutate(
  862. WT_L = mean_L,
  863. WT_K = mean_K,
  864. WT_r = mean_r,
  865. WT_AUC = mean_AUC,
  866. WT_sd_L = sd_L,
  867. WT_sd_K = sd_K,
  868. WT_sd_r = sd_r,
  869. WT_sd_AUC = sd_AUC
  870. )
  871. # Pull the background means and standard deviations from zero concentration for interactions
  872. bg_stats <- df_na_stats %>%
  873. filter(conc_num == 0) %>%
  874. summarise(
  875. mean_L = first(mean_L),
  876. mean_K = first(mean_K),
  877. mean_r = first(mean_r),
  878. mean_AUC = first(mean_AUC),
  879. sd_L = first(sd_L),
  880. sd_K = first(sd_K),
  881. sd_r = first(sd_r),
  882. sd_AUC = first(sd_AUC)
  883. )
  884. message("Calculating summary statistics after quality control excluding zero values")
  885. df_no_zeros_stats <- calculate_summary_stats(
  886. df = df_no_zeros,
  887. variables = summary_vars,
  888. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  889. )$df_with_stats
  890. message("Filtering by 2SD of K")
  891. df_na_within_2sd_k <- df_na_stats %>%
  892. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  893. df_na_outside_2sd_k <- df_na_stats %>%
  894. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  895. message("Calculating summary statistics for L within 2SD of K")
  896. # TODO We're omitting the original z_max calculation, not sure if needed?
  897. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  898. write.csv(ss,
  899. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  900. row.names = FALSE)
  901. message("Calculating summary statistics for L outside 2SD of K")
  902. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  903. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  904. write.csv(ss$summary_stats,
  905. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  906. row.names = FALSE)
  907. # Each list of plots corresponds to a file
  908. l_vs_k_plot_configs <- list(
  909. plots = list(
  910. list(
  911. df = df,
  912. x_var = "L",
  913. y_var = "K",
  914. plot_type = "scatter",
  915. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  916. title = "Raw L vs K before quality control",
  917. color_var = "conc_num_factor_factor",
  918. error_bar = FALSE,
  919. legend_position = "right"
  920. )
  921. )
  922. )
  923. frequency_delta_bg_plot_configs <- list(
  924. plots = list(
  925. list(
  926. df = df_stats,
  927. x_var = "delta_bg",
  928. y_var = NULL,
  929. plot_type = "density",
  930. title = "Density plot for Delta Background by [Drug] (All Data)",
  931. color_var = "conc_num_factor_factor",
  932. x_label = "Delta Background",
  933. y_label = "Density",
  934. error_bar = FALSE,
  935. legend_position = "right"
  936. ),
  937. list(
  938. df = df_stats,
  939. x_var = "delta_bg",
  940. y_var = NULL,
  941. plot_type = "bar",
  942. title = "Bar plot for Delta Background by [Drug] (All Data)",
  943. color_var = "conc_num_factor_factor",
  944. x_label = "Delta Background",
  945. y_label = "Count",
  946. error_bar = FALSE,
  947. legend_position = "right"
  948. )
  949. )
  950. )
  951. above_threshold_plot_configs <- list(
  952. plots = list(
  953. list(
  954. df = df_above_tolerance,
  955. x_var = "L",
  956. y_var = "K",
  957. plot_type = "scatter",
  958. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  959. title = paste("Raw L vs K for strains above Delta Background threshold of",
  960. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  961. color_var = "conc_num_factor_factor",
  962. position = "jitter",
  963. annotations = list(
  964. list(
  965. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  966. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  967. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  968. )
  969. ),
  970. error_bar = FALSE,
  971. legend_position = "right"
  972. )
  973. )
  974. )
  975. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  976. variables = summary_vars,
  977. df_before = df_stats,
  978. df_after = df_na_stats_filtered
  979. )
  980. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  981. variables = summary_vars,
  982. df_before = df_stats,
  983. df_after = df_na_stats_filtered,
  984. plot_type = "box"
  985. )
  986. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  987. variables = summary_vars,
  988. stages = c("after"), # Only after QC
  989. df_after = df_no_zeros_stats
  990. )
  991. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  992. variables = summary_vars,
  993. stages = c("after"), # Only after QC
  994. df_after = df_no_zeros_stats,
  995. plot_type = "box"
  996. )
  997. l_outside_2sd_k_plot_configs <- list(
  998. plots = list(
  999. list(
  1000. df = df_na_l_outside_2sd_k_stats,
  1001. x_var = "L",
  1002. y_var = "K",
  1003. plot_type = "scatter",
  1004. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1005. color_var = "conc_num_factor_factor",
  1006. position = "jitter",
  1007. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1008. annotations = list(
  1009. list(
  1010. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1011. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1012. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1013. )
  1014. ),
  1015. error_bar = FALSE,
  1016. legend_position = "right"
  1017. )
  1018. )
  1019. )
  1020. delta_bg_outside_2sd_k_plot_configs <- list(
  1021. plots = list(
  1022. list(
  1023. df = df_na_l_outside_2sd_k_stats,
  1024. x_var = "delta_bg",
  1025. y_var = "K",
  1026. plot_type = "scatter",
  1027. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1028. color_var = "conc_num_factor_factor",
  1029. position = "jitter",
  1030. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1031. annotations = list(
  1032. list(
  1033. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1034. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1035. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1036. )
  1037. ),
  1038. error_bar = FALSE,
  1039. legend_position = "right"
  1040. )
  1041. )
  1042. )
  1043. message("Generating quality control plots in parallel")
  1044. # future::plan(future::multicore, workers = parallel::detectCores())
  1045. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1046. plot_configs <- list(
  1047. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1048. plot_configs = l_vs_k_plot_configs),
  1049. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1050. plot_configs = frequency_delta_bg_plot_configs),
  1051. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1052. plot_configs = above_threshold_plot_configs),
  1053. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1054. plot_configs = plate_analysis_plot_configs),
  1055. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1056. plot_configs = plate_analysis_boxplot_configs),
  1057. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1058. plot_configs = plate_analysis_no_zeros_plot_configs),
  1059. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1060. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1061. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1062. plot_configs = l_outside_2sd_k_plot_configs),
  1063. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1064. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1065. )
  1066. # Generating quality control plots in parallel
  1067. # furrr::future_map(plot_configs, function(config) {
  1068. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1069. # }, .options = furrr_options(seed = TRUE))
  1070. # Process background strains
  1071. bg_strains <- c("YDL227C")
  1072. lapply(bg_strains, function(strain) {
  1073. message("Processing background strain: ", strain)
  1074. # Handle missing data by setting zero values to NA
  1075. # and then removing any rows with NA in L col
  1076. df_bg <- df_na %>%
  1077. filter(OrfRep == strain) %>%
  1078. mutate(
  1079. L = if_else(L == 0, NA, L),
  1080. K = if_else(K == 0, NA, K),
  1081. r = if_else(r == 0, NA, r),
  1082. AUC = if_else(AUC == 0, NA, AUC)
  1083. ) %>%
  1084. filter(!is.na(L))
  1085. # Recalculate summary statistics for the background strain
  1086. message("Calculating summary statistics for background strain")
  1087. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1088. summary_stats_bg <- ss_bg$summary_stats
  1089. write.csv(summary_stats_bg,
  1090. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1091. row.names = FALSE)
  1092. # Set the missing values to the highest theoretical value at each drug conc for L
  1093. # Leave other values as 0 for the max/min
  1094. df_reference <- df_na_stats %>% # formerly X2_RF
  1095. filter(OrfRep == strain) %>%
  1096. filter(!is.na(L)) %>%
  1097. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1098. mutate(
  1099. max_l_theoretical = max(max_L, na.rm = TRUE),
  1100. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1101. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1102. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1103. ungroup()
  1104. # Ditto for deletion strains
  1105. df_deletion <- df_na_stats %>% # formerly X2
  1106. filter(OrfRep != strain) %>%
  1107. filter(!is.na(L)) %>%
  1108. mutate(SM = 0) %>%
  1109. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1110. mutate(
  1111. max_l_theoretical = max(max_L, na.rm = TRUE),
  1112. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1113. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1114. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1115. ungroup()
  1116. message("Calculating reference strain interaction scores")
  1117. df_reference_stats <- calculate_summary_stats(
  1118. df = df_reference,
  1119. variables = interaction_vars,
  1120. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1121. )$df_with_stats
  1122. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1123. zscore_calculations_reference <- reference_results$calculations
  1124. zscore_interactions_reference <- reference_results$interactions
  1125. zscore_interactions_reference_joined <- reference_results$full_data
  1126. message("Calculating deletion strain(s) interactions scores")
  1127. df_deletion_stats <- calculate_summary_stats(
  1128. df = df_deletion,
  1129. variables = interaction_vars,
  1130. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1131. )$df_with_stats
  1132. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1133. zscore_calculations <- deletion_results$calculations
  1134. zscore_interactions <- deletion_results$interactions
  1135. zscore_interactions_joined <- deletion_results$full_data
  1136. # Writing Z-Scores to file
  1137. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1138. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1139. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1140. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1141. # Create interaction plots
  1142. message("Generating reference interaction plots")
  1143. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1144. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1145. message("Generating deletion interaction plots")
  1146. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1147. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1148. # Define conditions for enhancers and suppressors
  1149. # TODO Add to study config?
  1150. threshold <- 2
  1151. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1152. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1153. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1154. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1155. # Subset data
  1156. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1157. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1158. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1159. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1160. # Save enhancers and suppressors
  1161. message("Writing enhancer/suppressor csv files")
  1162. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1163. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1164. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1165. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1166. # Combine conditions for enhancers and suppressors
  1167. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1168. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1169. # Save combined enhancers and suppressors
  1170. write.csv(enhancers_and_suppressors_L,
  1171. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1172. write.csv(enhancers_and_suppressors_K,
  1173. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1174. # Handle linear model based enhancers and suppressors
  1175. lm_threshold <- 2 # TODO add to study config?
  1176. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1177. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1178. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1179. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1180. # Save linear model based enhancers and suppressors
  1181. message("Writing linear model enhancer/suppressor csv files")
  1182. write.csv(enhancers_lm_L,
  1183. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1184. write.csv(suppressors_lm_L,
  1185. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1186. write.csv(enhancers_lm_K,
  1187. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1188. write.csv(suppressors_lm_K,
  1189. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1190. message("Generating rank plots")
  1191. rank_plot_configs <- generate_rank_plot_configs(
  1192. df = zscore_interactions_joined,
  1193. is_lm = FALSE,
  1194. adjust = TRUE
  1195. )
  1196. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1197. plot_configs = rank_plot_configs)
  1198. message("Generating ranked linear model plots")
  1199. rank_lm_plot_configs <- generate_rank_plot_configs(
  1200. df = zscore_interactions_joined,
  1201. is_lm = TRUE,
  1202. adjust = TRUE
  1203. )
  1204. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1205. plot_configs = rank_lm_plot_configs)
  1206. message("Generating filtered ranked plots")
  1207. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1208. df = zscore_interactions_filtered,
  1209. is_lm = FALSE,
  1210. adjust = FALSE,
  1211. overlap_color = TRUE
  1212. )
  1213. generate_and_save_plots(
  1214. out_dir = out_dir,
  1215. filename = "RankPlots_na_rm",
  1216. plot_configs = rank_plot_filtered_configs)
  1217. message("Generating filtered ranked linear model plots")
  1218. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1219. df = zscore_interactions_filtered,
  1220. is_lm = TRUE,
  1221. adjust = FALSE,
  1222. overlap_color = TRUE
  1223. )
  1224. generate_and_save_plots(
  1225. out_dir = out_dir,
  1226. filename = "rank_plots_lm_na_rm",
  1227. plot_configs = rank_plot_lm_filtered_configs)
  1228. message("Generating correlation curve parameter pair plots")
  1229. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1230. generate_and_save_plots(
  1231. out_dir = out_dir,
  1232. filename = "correlation_cpps",
  1233. plot_configs = correlation_plot_configs,
  1234. )
  1235. })
  1236. })
  1237. }
  1238. main()
  1239. # For future simplification of joined dataframes
  1240. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))