calculate_interaction_zscores.R 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. stats <- df %>%
  176. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  177. summarise(
  178. N = sum(!is.na(L)),
  179. NG = sum(NG, na.rm = TRUE),
  180. DB = sum(DB, na.rm = TRUE),
  181. SM = sum(SM, na.rm = TRUE),
  182. across(all_of(variables), list(
  183. mean = ~mean(., na.rm = TRUE),
  184. median = ~median(., na.rm = TRUE),
  185. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  186. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  187. sd = ~sd(., na.rm = TRUE),
  188. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  189. ), .names = "{.fn}_{.col}")
  190. )
  191. stats <- df %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. WT_L = mean_L,
  195. WT_K = mean_K,
  196. WT_r = mean_r,
  197. WT_AUC = mean_AUC,
  198. WT_sd_L = sd_L,
  199. WT_sd_K = sd_K,
  200. WT_sd_r = sd_r,
  201. WT_sd_AUC = sd_AUC
  202. )
  203. stats <- stats %>%
  204. mutate(
  205. Raw_Shift_L = first(mean_L) - bg_means$L,
  206. Raw_Shift_K = first(mean_K) - bg_means$K,
  207. Raw_Shift_r = first(mean_r) - bg_means$r,
  208. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  209. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  210. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  211. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  212. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  213. )
  214. stats <- stats %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Exp_K = WT_K + Raw_Shift_K,
  218. Exp_r = WT_r + Raw_Shift_r,
  219. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  220. Delta_L = mean_L - Exp_L,
  221. Delta_K = mean_K - Exp_K,
  222. Delta_r = mean_r - Exp_r,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. stats <- stats %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. stats <- stats %>%
  234. mutate(
  235. Zscore_L = Delta_L / WT_sd_L,
  236. Zscore_K = Delta_K / WT_sd_K,
  237. Zscore_r = Delta_r / WT_sd_r,
  238. Zscore_AUC = Delta_AUC / WT_sd_AUC
  239. )
  240. # Calculate linear models
  241. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  242. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  243. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  244. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  245. interactions <- stats %>%
  246. summarise(
  247. OrfRep = first(OrfRep),
  248. Gene = first(Gene),
  249. num = first(num),
  250. conc_num = first(conc_num),
  251. conc_num_factor = first(conc_num_factor),
  252. Raw_Shift_L = first(Raw_Shift_L),
  253. Raw_Shift_K = first(Raw_Shift_K),
  254. Raw_Shift_r = first(Raw_Shift_r),
  255. Raw_Shift_AUC = first(Raw_Shift_AUC),
  256. Z_Shift_L = first(Z_Shift_L),
  257. Z_Shift_K = first(Z_Shift_K),
  258. Z_Shift_r = first(Z_Shift_r),
  259. Z_Shift_AUC = first(Z_Shift_AUC),
  260. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  261. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  262. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  263. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  264. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  265. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  266. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  267. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  268. R_Squared_L = summary(lm_L)$r.squared,
  269. R_Squared_K = summary(lm_K)$r.squared,
  270. R_Squared_r = summary(lm_r)$r.squared,
  271. R_Squared_AUC = summary(lm_AUC)$r.squared,
  272. lm_intercept_L = coef(lm_L)[1],
  273. lm_slope_L = coef(lm_L)[2],
  274. lm_intercept_K = coef(lm_K)[1],
  275. lm_slope_K = coef(lm_K)[2],
  276. lm_intercept_r = coef(lm_r)[1],
  277. lm_slope_r = coef(lm_r)[2],
  278. lm_intercept_AUC = coef(lm_AUC)[1],
  279. lm_slope_AUC = coef(lm_AUC)[2],
  280. NG = sum(NG, na.rm = TRUE),
  281. DB = sum(DB, na.rm = TRUE),
  282. SM = sum(SM, na.rm = TRUE)
  283. )
  284. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  285. interactions <- interactions %>%
  286. mutate(
  287. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  288. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  289. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  290. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  291. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  292. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  293. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  294. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  295. ) %>%
  296. arrange(desc(Z_lm_L)) %>%
  297. arrange(desc(NG))
  298. # Declare column order for output
  299. calculations <- stats %>%
  300. select(
  301. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  302. "mean_L", "mean_K", "mean_r", "mean_AUC",
  303. "median_L", "median_K", "median_r", "median_AUC",
  304. "sd_L", "sd_K", "sd_r", "sd_AUC",
  305. "se_L", "se_K", "se_r", "se_AUC",
  306. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  307. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  308. "WT_L", "WT_K", "WT_r", "WT_AUC",
  309. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  310. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  311. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  312. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  313. "NG", "SM", "DB")
  314. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  315. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  316. # # TODO for debug
  317. # df_duplicates <- df %>%
  318. # group_by(OrfRep, Gene, num) %>%
  319. # filter(n() > 1)
  320. # interactions_duplicates <- interactions %>%
  321. # group_by(OrfRep, Gene, num) %>%
  322. # filter(n() > 1)
  323. # print(df_duplicates)
  324. # print(interactions_duplicates)
  325. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  326. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  327. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  328. calculations_joined = calculations_joined))
  329. }
  330. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  331. message("Generating html and pdf plots for: ", file_name)
  332. plots <- lapply(plot_configs, function(config) {
  333. df <- config$df
  334. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  335. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  336. # Plots are testy about missing aesthetics, so handle them here
  337. aes_mapping <-
  338. if (is.null(config$color_var)) {
  339. if (is.null(config$y_var)) {
  340. aes(x = !!sym(config$x_var))
  341. } else {
  342. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  343. }
  344. } else {
  345. if (is.null(config$y_var)) {
  346. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  347. } else {
  348. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  349. }
  350. }
  351. # Start building the plot
  352. plot <- ggplot(df, aes_mapping)
  353. # Use appropriate helper function based on plot type
  354. plot <- switch(config$plot_type,
  355. "scatter" = generate_scatter_plot(plot, config),
  356. "box" = generate_box_plot(plot, config),
  357. "density" = plot + geom_density(),
  358. "bar" = plot + geom_bar(),
  359. plot # default case if no type matches
  360. )
  361. return(list(plot = plot, config = config))
  362. })
  363. # PDF saving logic
  364. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  365. lapply(plots, function(item) print(item$plot))
  366. dev.off()
  367. # HTML saving logic
  368. plotly_plots <- lapply(plots, function(item) {
  369. plot <- item$plot
  370. config <- item$config
  371. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  372. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  373. } else {
  374. ggplotly(plot, tooltip = "text")
  375. }
  376. })
  377. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  378. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  379. }
  380. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  381. # Check for missing or out-of-range data
  382. missing_data <- config$df %>%
  383. filter(
  384. is.na(!!sym(config$x_var)) | is.na(!!sym(config$y_var)) |
  385. !!sym(config$y_var) < min(config$ylim_vals, na.rm = TRUE) |
  386. !!sym(config$y_var) > max(config$ylim_vals, na.rm = TRUE)
  387. )
  388. # Print the rows with missing or out-of-range data if any
  389. if (nrow(missing_data) > 0) {
  390. message("Missing or out-of-range data for ", config$title, ":")
  391. print(missing_data %>% select(any_of(c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", config$x_var, config$y_var))), n = 100)
  392. }
  393. # Add the interactive `text` aesthetic if `interactive` is TRUE
  394. if (interactive) {
  395. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  396. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  397. shape = config$shape %||% 3, size = config$size %||% 0.2)
  398. } else if (!is.null(config$gene_point) && config$gene_point) {
  399. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  400. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  401. } else {
  402. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  403. }
  404. } else {
  405. # For non-interactive plots, just add `geom_point`
  406. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  407. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  408. }
  409. # Add smooth line if specified
  410. if (!is.null(config$add_smooth) && config$add_smooth) {
  411. plot <- if (!is.null(config$lm_line)) {
  412. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  413. } else {
  414. plot + geom_smooth(method = "lm", se = FALSE)
  415. }
  416. }
  417. # Add SD bands (iterate over sd_band only here)
  418. if (!is.null(config$sd_band)) {
  419. for (i in config$sd_band) {
  420. plot <- plot +
  421. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  422. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  423. geom_hline(yintercept = c(-i, i), color = "gray")
  424. }
  425. }
  426. # Add error bars if specified
  427. if (!is.null(config$error_bar) && config$error_bar) {
  428. y_mean_col <- paste0("mean_", config$y_var)
  429. y_sd_col <- paste0("sd_", config$y_var)
  430. plot <- plot + geom_errorbar(aes(
  431. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  432. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  433. ), alpha = 0.3)
  434. }
  435. # Add x-axis customization if specified
  436. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  437. plot <- plot + scale_x_continuous(
  438. name = config$x_label,
  439. breaks = config$x_breaks,
  440. labels = config$x_labels)
  441. }
  442. # Use coord_cartesian for zooming in without removing data outside the range
  443. if (!is.null(config$coord_cartesian)) {
  444. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  445. }
  446. # Use scale_y_continuous for setting the y-axis limits
  447. if (!is.null(config$ylim_vals)) {
  448. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  449. }
  450. return(plot)
  451. }
  452. generate_box_plot <- function(plot, config) {
  453. plot <- plot + geom_boxplot()
  454. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  455. plot <- plot + scale_x_discrete(
  456. name = config$x_label,
  457. breaks = config$x_breaks,
  458. labels = config$x_labels
  459. )
  460. }
  461. if (!is.null(config$coord_cartesian)) {
  462. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  463. }
  464. return(plot)
  465. }
  466. # Adjust missing values and calculate ranks
  467. adjust_missing_and_rank <- function(df, variables) {
  468. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  469. df <- df %>%
  470. mutate(across(all_of(variables), list(
  471. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  472. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  473. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  474. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  475. ), .names = "{fn}_{col}"))
  476. return(df)
  477. }
  478. generate_interaction_plot_configs <- function(df, variables) {
  479. configs <- list()
  480. # Define common y-limits and other attributes for each variable dynamically
  481. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  482. # Define annotation positions based on the variable being plotted
  483. annotation_positions <- list(
  484. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  485. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  486. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  487. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  488. )
  489. # Define which annotations to include for each plot
  490. annotation_labels <- list(
  491. ZShift = function(df, var) {
  492. val <- df[[paste0("Z_Shift_", var)]]
  493. if (is.numeric(val)) {
  494. paste("ZShift =", round(val, 2))
  495. } else {
  496. paste("ZShift =", val)
  497. }
  498. },
  499. lm_ZScore = function(df, var) {
  500. val <- df[[paste0("Z_lm_", var)]]
  501. if (is.numeric(val)) {
  502. paste("lm ZScore =", round(val, 2))
  503. } else {
  504. paste("lm ZScore =", val)
  505. }
  506. },
  507. NG = function(df, var) paste("NG =", df$NG),
  508. DB = function(df, var) paste("DB =", df$DB),
  509. SM = function(df, var) paste("SM =", df$SM)
  510. )
  511. for (variable in variables) {
  512. # Dynamically generate the names of the columns
  513. var_info <- list(
  514. ylim = limits_map[[variable]],
  515. sd_col = paste0("WT_sd_", variable)
  516. )
  517. # Extract the precomputed linear model coefficients
  518. lm_line <- list(
  519. intercept = df[[paste0("lm_intercept_", variable)]],
  520. slope = df[[paste0("lm_slope_", variable)]]
  521. )
  522. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  523. message("Processing annotation: ", annotation_name, " for variable: ", variable)
  524. y_pos <- annotation_positions[[variable]][[annotation_name]]
  525. # Check if the annotation_name exists in annotation_labels
  526. if (!is.null(annotation_labels[[annotation_name]])) {
  527. label <- annotation_labels[[annotation_name]](df, variable)
  528. list(x = 1, y = y_pos, label = label)
  529. } else {
  530. message(paste("Warning: No annotation function found for", annotation_name))
  531. NULL
  532. }
  533. })
  534. # Filter out any NULL annotations
  535. annotations <- Filter(Negate(is.null), annotations)
  536. # Add scatter plot configuration for this variable
  537. configs[[length(configs) + 1]] <- list(
  538. df = df,
  539. x_var = "conc_num_factor",
  540. y_var = variable,
  541. plot_type = "scatter",
  542. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  543. ylim_vals = var_info$ylim,
  544. annotations = annotations,
  545. lm_line = lm_line, # Precomputed linear model
  546. error_bar = TRUE,
  547. x_breaks = unique(df$conc_num_factor),
  548. x_labels = unique(as.character(df$conc_num)),
  549. x_label = unique(df$Drug[1]),
  550. position = "jitter",
  551. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  552. )
  553. # Add box plot configuration for this variable
  554. configs[[length(configs) + 1]] <- list(
  555. df = df,
  556. x_var = "conc_num_factor",
  557. y_var = variable,
  558. plot_type = "box",
  559. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  560. ylim_vals = var_info$ylim,
  561. annotations = annotations,
  562. error_bar = FALSE,
  563. x_breaks = unique(df$conc_num_factor),
  564. x_labels = unique(as.character(df$conc_num)),
  565. x_label = unique(df$Drug[1]),
  566. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  567. )
  568. }
  569. return(configs)
  570. }
  571. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  572. configs <- list()
  573. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  574. # Single config with all sd bands
  575. configs[[length(configs) + 1]] <- list(
  576. df = df,
  577. x_var = rank_var,
  578. y_var = zscore_var,
  579. plot_type = "scatter",
  580. title = paste(plot_title_prefix, var, "Rank Plot"),
  581. sd_band = c(1, 2, 3), # Pass all sd bands at once
  582. enhancer_label = list(
  583. x = nrow(df) / 2, y = 10,
  584. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= 1, ])) # Example for the first SD band
  585. ),
  586. suppressor_label = list(
  587. x = nrow(df) / 2, y = -10,
  588. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -1, ]))
  589. ),
  590. shape = 3,
  591. size = 0.1
  592. )
  593. # Non-annotated version
  594. configs[[length(configs) + 1]] <- list(
  595. df = df,
  596. x_var = rank_var,
  597. y_var = zscore_var,
  598. plot_type = "scatter",
  599. title = paste(plot_title_prefix, var, "Rank Plot No Annotations"),
  600. sd_band = c(1, 2, 3),
  601. enhancer_label = NULL,
  602. suppressor_label = NULL,
  603. shape = 3,
  604. size = 0.1,
  605. position = "jitter"
  606. )
  607. return(configs)
  608. }
  609. generate_correlation_plot_configs <- function(df, variables) {
  610. configs <- list()
  611. for (variable in variables) {
  612. z_lm_var <- paste0("Z_lm_", variable)
  613. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  614. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  615. configs[[length(configs) + 1]] <- list(
  616. df = df,
  617. x_var = avg_zscore_var,
  618. y_var = z_lm_var,
  619. plot_type = "scatter",
  620. title = paste("Avg Zscore vs lm", variable),
  621. color_var = "Overlap",
  622. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  623. shape = 3,
  624. geom_smooth = TRUE,
  625. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  626. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  627. legend_position = "right"
  628. )
  629. }
  630. return(configs)
  631. }
  632. main <- function() {
  633. lapply(names(args$experiments), function(exp_name) {
  634. exp <- args$experiments[[exp_name]]
  635. exp_path <- exp$path
  636. exp_sd <- exp$sd
  637. out_dir <- file.path(exp_path, "zscores")
  638. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  639. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  640. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  641. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  642. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  643. orf_group_vars <- c("OrfRep", "Gene", "num")
  644. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  645. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  646. message("Loading and filtering data")
  647. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  648. df <- update_gene_names(df, args$sgd_gene_list)
  649. df <- as_tibble(df)
  650. # Filter rows that are above tolerance for quality control plots
  651. df_above_tolerance <- df %>% filter(DB == 1)
  652. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  653. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  654. # Remove rows with 0 values in L
  655. df_no_zeros <- df_na %>% filter(L > 0)
  656. # Save some constants
  657. max_conc <- max(df$conc_num_factor)
  658. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  659. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  660. message("Calculating summary statistics before quality control")
  661. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  662. # df_ss <- ss$summary_stats
  663. df_stats <- ss$df_with_stats
  664. df_filtered_stats <- df_stats %>%
  665. {
  666. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  667. if (nrow(non_finite_rows) > 0) {
  668. message("Filtering out the following non-finite rows:")
  669. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  670. }
  671. filter(., if_all(c(L), is.finite))
  672. }
  673. message("Calculating summary statistics after quality control")
  674. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  675. df_na_ss <- ss$summary_stats
  676. df_na_stats <- ss$df_with_stats
  677. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  678. # Filter out non-finite rows for plotting
  679. df_na_filtered_stats <- df_na_stats %>%
  680. {
  681. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  682. if (nrow(non_finite_rows) > 0) {
  683. message("Removed the following non-finite rows:")
  684. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  685. }
  686. filter(., if_all(c(L), is.finite))
  687. }
  688. message("Calculating summary statistics after quality control excluding zero values")
  689. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  690. df_no_zeros_stats <- ss$df_with_stats
  691. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  692. {
  693. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  694. if (nrow(non_finite_rows) > 0) {
  695. message("Removed the following non-finite rows:")
  696. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  697. }
  698. filter(., if_all(c(L), is.finite))
  699. }
  700. message("Filtering by 2SD of K")
  701. df_na_within_2sd_k <- df_na_stats %>%
  702. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  703. df_na_outside_2sd_k <- df_na_stats %>%
  704. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  705. message("Calculating summary statistics for L within 2SD of K")
  706. # TODO We're omitting the original z_max calculation, not sure if needed?
  707. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  708. l_within_2sd_k_ss <- ss$summary_stats
  709. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  710. write.csv(l_within_2sd_k_ss,
  711. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  712. message("Calculating summary statistics for L outside 2SD of K")
  713. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  714. l_outside_2sd_k_ss <- ss$summary_stats
  715. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  716. write.csv(l_outside_2sd_k_ss,
  717. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  718. # Each plots list corresponds to a file
  719. message("Generating quality control plot configurations")
  720. l_vs_k_plots <- list(
  721. list(
  722. df = df,
  723. x_var = "L",
  724. y_var = "K",
  725. plot_type = "scatter",
  726. delta_bg_point = TRUE,
  727. title = "Raw L vs K before quality control",
  728. color_var = "conc_num",
  729. error_bar = FALSE,
  730. legend_position = "right"
  731. )
  732. )
  733. frequency_delta_bg_plots <- list(
  734. list(
  735. df = df_filtered_stats,
  736. x_var = "delta_bg",
  737. y_var = NULL,
  738. plot_type = "density",
  739. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  740. color_var = "conc_num",
  741. x_label = "Delta Background",
  742. y_label = "Density",
  743. error_bar = FALSE,
  744. legend_position = "right"),
  745. list(
  746. df = df_filtered_stats,
  747. x_var = "delta_bg",
  748. y_var = NULL,
  749. plot_type = "bar",
  750. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  751. color_var = "conc_num",
  752. x_label = "Delta Background",
  753. y_label = "Count",
  754. error_bar = FALSE,
  755. legend_position = "right")
  756. )
  757. above_threshold_plots <- list(
  758. list(
  759. df = df_above_tolerance,
  760. x_var = "L",
  761. y_var = "K",
  762. plot_type = "scatter",
  763. delta_bg_point = TRUE,
  764. title = paste("Raw L vs K for strains above Delta Background threshold of",
  765. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  766. color_var = "conc_num",
  767. position = "jitter",
  768. annotations = list(
  769. x = l_half_median,
  770. y = k_half_median,
  771. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  772. ),
  773. error_bar = FALSE,
  774. legend_position = "right"
  775. )
  776. )
  777. plate_analysis_plots <- list()
  778. for (var in summary_vars) {
  779. for (stage in c("before", "after")) {
  780. if (stage == "before") {
  781. df_plot <- df_filtered_stats
  782. } else {
  783. df_plot <- df_na_filtered_stats
  784. }
  785. config <- list(
  786. df = df_plot,
  787. x_var = "scan",
  788. y_var = var,
  789. plot_type = "scatter",
  790. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  791. error_bar = TRUE,
  792. color_var = "conc_num",
  793. position = "jitter")
  794. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  795. }
  796. }
  797. plate_analysis_boxplots <- list()
  798. for (var in summary_vars) {
  799. for (stage in c("before", "after")) {
  800. if (stage == "before") {
  801. df_plot <- df_filtered_stats
  802. } else {
  803. df_plot <- df_na_filtered_stats
  804. }
  805. config <- list(
  806. df = df_plot,
  807. x_var = "scan",
  808. y_var = var,
  809. plot_type = "box",
  810. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  811. error_bar = FALSE,
  812. color_var = "conc_num")
  813. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  814. }
  815. }
  816. plate_analysis_no_zeros_plots <- list()
  817. for (var in summary_vars) {
  818. config <- list(
  819. df = df_no_zeros_filtered_stats,
  820. x_var = "scan",
  821. y_var = var,
  822. plot_type = "scatter",
  823. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  824. error_bar = TRUE,
  825. color_var = "conc_num",
  826. position = "jitter")
  827. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  828. }
  829. plate_analysis_no_zeros_boxplots <- list()
  830. for (var in summary_vars) {
  831. config <- list(
  832. df = df_no_zeros_filtered_stats,
  833. x_var = "scan",
  834. y_var = var,
  835. plot_type = "box",
  836. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  837. error_bar = FALSE,
  838. color_var = "conc_num"
  839. )
  840. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  841. }
  842. l_outside_2sd_k_plots <- list(
  843. list(
  844. df = df_na_l_outside_2sd_k_stats,
  845. x_var = "L",
  846. y_var = "K",
  847. plot_type = "scatter",
  848. delta_bg_point = TRUE,
  849. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  850. color_var = "conc_num",
  851. position = "jitter",
  852. legend_position = "right"
  853. )
  854. )
  855. delta_bg_outside_2sd_k_plots <- list(
  856. list(
  857. df = df_na_l_outside_2sd_k_stats,
  858. x_var = "delta_bg",
  859. y_var = "K",
  860. plot_type = "scatter",
  861. gene_point = TRUE,
  862. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  863. color_var = "conc_num",
  864. position = "jitter",
  865. legend_position = "right"
  866. )
  867. )
  868. # message("Generating quality control plots")
  869. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  870. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  871. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  872. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  873. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  874. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  875. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  876. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  877. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  878. # Clean up
  879. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  880. gc()
  881. # TODO: Originally this filtered L NA's
  882. # Let's try to avoid for now since stats have already been calculated
  883. # Process background strains
  884. bg_strains <- c("YDL227C")
  885. lapply(bg_strains, function(strain) {
  886. message("Processing background strain: ", strain)
  887. # Handle missing data by setting zero values to NA
  888. # and then removing any rows with NA in L col
  889. df_bg <- df_na %>%
  890. filter(OrfRep == strain) %>%
  891. mutate(
  892. L = if_else(L == 0, NA, L),
  893. K = if_else(K == 0, NA, K),
  894. r = if_else(r == 0, NA, r),
  895. AUC = if_else(AUC == 0, NA, AUC)
  896. ) %>%
  897. filter(!is.na(L))
  898. # Recalculate summary statistics for the background strain
  899. message("Calculating summary statistics for background strain")
  900. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  901. summary_stats_bg <- ss_bg$summary_stats
  902. # df_bg_stats <- ss_bg$df_with_stats
  903. write.csv(summary_stats_bg,
  904. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  905. row.names = FALSE)
  906. # Filter reference and deletion strains
  907. # Formerly X2_RF (reference strains)
  908. df_reference <- df_na_stats %>%
  909. filter(OrfRep == strain) %>%
  910. mutate(SM = 0)
  911. # Formerly X2 (deletion strains)
  912. df_deletion <- df_na_stats %>%
  913. filter(OrfRep != strain) %>%
  914. mutate(SM = 0)
  915. # Set the missing values to the highest theoretical value at each drug conc for L
  916. # Leave other values as 0 for the max/min
  917. reference_strain <- df_reference %>%
  918. group_by(conc_num) %>%
  919. mutate(
  920. max_l_theoretical = max(max_L, na.rm = TRUE),
  921. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  922. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  923. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  924. ungroup()
  925. # Ditto for deletion strains
  926. deletion_strains <- df_deletion %>%
  927. group_by(conc_num) %>%
  928. mutate(
  929. max_l_theoretical = max(max_L, na.rm = TRUE),
  930. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  931. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  932. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  933. ungroup()
  934. message("Calculating interaction scores")
  935. interaction_vars <- c("L", "K", "r", "AUC")
  936. message("Calculating reference strain(s)")
  937. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  938. zscores_calculations_reference <- reference_results$calculations
  939. zscores_interactions_reference <- reference_results$interactions
  940. zscores_calculations_reference_joined <- reference_results$calculations_joined
  941. zscores_interactions_reference_joined <- reference_results$interactions_joined
  942. message("Calculating deletion strain(s)")
  943. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  944. zscores_calculations <- deletion_results$calculations
  945. zscores_interactions <- deletion_results$interactions
  946. zscores_calculations_joined <- deletion_results$calculations_joined
  947. zscores_interactions_joined <- deletion_results$interactions_joined
  948. # Writing Z-Scores to file
  949. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  950. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  951. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  952. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  953. # Create interaction plots
  954. message("Generating interaction plot configurations")
  955. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  956. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  957. message("Generating interaction plots")
  958. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  959. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  960. # Define conditions for enhancers and suppressors
  961. # TODO Add to study config file?
  962. threshold <- 2
  963. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  964. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  965. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  966. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  967. # Subset data
  968. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  969. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  970. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  971. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  972. # Save enhancers and suppressors
  973. message("Writing enhancer/suppressor csv files")
  974. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  975. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  976. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  977. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  978. # Combine conditions for enhancers and suppressors
  979. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  980. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  981. # Save combined enhancers and suppressors
  982. write.csv(enhancers_and_suppressors_L,
  983. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  984. write.csv(enhancers_and_suppressors_K,
  985. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  986. # Handle linear model based enhancers and suppressors
  987. lm_threshold <- 2
  988. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  989. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  990. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  991. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  992. # Save linear model based enhancers and suppressors
  993. message("Writing linear model enhancer/suppressor csv files")
  994. write.csv(enhancers_lm_L,
  995. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  996. write.csv(suppressors_lm_L,
  997. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  998. write.csv(enhancers_lm_K,
  999. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1000. write.csv(suppressors_lm_K,
  1001. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1002. # TODO needs explanation
  1003. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1004. rank_plot_configs <- c(
  1005. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1006. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1007. )
  1008. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1009. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1010. rank_lm_plot_config <- c(
  1011. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1012. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1013. )
  1014. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1015. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1016. # Formerly X_NArm
  1017. zscores_interactions_filtered <- zscores_interactions %>%
  1018. group_by(across(all_of(orf_group_vars))) %>%
  1019. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1020. # Final filtered correlation calculations and plots
  1021. lm_results <- zscores_interactions_filtered %>%
  1022. summarise(
  1023. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1024. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1025. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1026. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1027. )
  1028. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1029. left_join(lm_results, by = orf_group_vars) %>%
  1030. mutate(
  1031. Overlap = case_when(
  1032. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1033. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1034. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1035. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1036. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1037. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1038. TRUE ~ "No Effect"
  1039. )
  1040. ) %>%
  1041. ungroup()
  1042. rank_plot_configs <- c(
  1043. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1044. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1045. )
  1046. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1047. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1048. rank_lm_plot_configs <- c(
  1049. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1050. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1051. )
  1052. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1053. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1054. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1055. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1056. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1057. })
  1058. })
  1059. }
  1060. main()