calculate_interaction_zscores.R 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. mutate(
  178. WT_L = mean_L,
  179. WT_K = mean_K,
  180. WT_r = mean_r,
  181. WT_AUC = mean_AUC,
  182. WT_sd_L = sd_L,
  183. WT_sd_K = sd_K,
  184. WT_sd_r = sd_r,
  185. WT_sd_AUC = sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  197. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. stats <- stats %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  221. Delta_L = mean_L - Exp_L,
  222. Delta_K = mean_K - Exp_K,
  223. Delta_r = mean_r - Exp_r,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. stats <- stats %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. stats <- stats %>%
  235. mutate(
  236. Zscore_L = Delta_L / WT_sd_L,
  237. Zscore_K = Delta_K / WT_sd_K,
  238. Zscore_r = Delta_r / WT_sd_r,
  239. Zscore_AUC = Delta_AUC / WT_sd_AUC
  240. )
  241. # Create linear models with error handling for missing/insufficient data
  242. # This part is a PITA so best to contain it in its own function
  243. calculate_lm_values <- function(y, x) {
  244. if (length(unique(x)) > 1 && sum(!is.na(y)) > 1) {
  245. # Suppress warnings only for perfect fits or similar issues
  246. model <- suppressWarnings(lm(y ~ x))
  247. coefficients <- coef(model)
  248. r_squared <- tryCatch({
  249. summary(model)$r.squared
  250. }, warning = function(w) {
  251. NA # Set r-squared to NA if there's a warning
  252. })
  253. return(list(intercept = coefficients[1], slope = coefficients[2], r_squared = r_squared))
  254. } else {
  255. return(list(intercept = NA, slope = NA, r_squared = NA))
  256. }
  257. }
  258. lms <- stats %>%
  259. group_by(across(all_of(group_vars))) %>%
  260. reframe(
  261. lm_L = list(calculate_lm_values(Delta_L, conc_num_factor)),
  262. lm_K = list(calculate_lm_values(Delta_K, conc_num_factor)),
  263. lm_r = list(calculate_lm_values(Delta_r, conc_num_factor)),
  264. lm_AUC = list(calculate_lm_values(Delta_AUC, conc_num_factor))
  265. )
  266. lms <- lms %>%
  267. mutate(
  268. lm_L_intercept = sapply(lm_L, `[[`, "intercept"),
  269. lm_L_slope = sapply(lm_L, `[[`, "slope"),
  270. lm_L_r_squared = sapply(lm_L, `[[`, "r_squared"),
  271. lm_K_intercept = sapply(lm_K, `[[`, "intercept"),
  272. lm_K_slope = sapply(lm_K, `[[`, "slope"),
  273. lm_K_r_squared = sapply(lm_K, `[[`, "r_squared"),
  274. lm_r_intercept = sapply(lm_r, `[[`, "intercept"),
  275. lm_r_slope = sapply(lm_r, `[[`, "slope"),
  276. lm_r_r_squared = sapply(lm_r, `[[`, "r_squared"),
  277. lm_AUC_intercept = sapply(lm_AUC, `[[`, "intercept"),
  278. lm_AUC_slope = sapply(lm_AUC, `[[`, "slope"),
  279. lm_AUC_r_squared = sapply(lm_AUC, `[[`, "r_squared")
  280. ) %>%
  281. select(-lm_L, -lm_K, -lm_r, -lm_AUC)
  282. stats <- stats %>%
  283. left_join(lms, by = group_vars) %>%
  284. mutate(
  285. lm_Score_L = lm_L_slope * max_conc + lm_L_intercept,
  286. lm_Score_K = lm_K_slope * max_conc + lm_K_intercept,
  287. lm_Score_r = lm_r_slope * max_conc + lm_r_intercept,
  288. lm_Score_AUC = lm_AUC_slope * max_conc + lm_AUC_intercept,
  289. R_Squared_L = lm_L_r_squared,
  290. R_Squared_K = lm_K_r_squared,
  291. R_Squared_r = lm_r_r_squared,
  292. R_Squared_AUC = lm_AUC_r_squared,
  293. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  294. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  295. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  296. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  297. )
  298. stats <- stats %>%
  299. mutate(
  300. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  301. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  302. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  303. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  304. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  305. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  306. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  307. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  308. )
  309. # Declare column order for output
  310. calculations <- stats %>%
  311. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  312. "mean_L", "mean_K", "mean_r", "mean_AUC",
  313. "median_L", "median_K", "median_r", "median_AUC",
  314. "sd_L", "sd_K", "sd_r", "sd_AUC",
  315. "se_L", "se_K", "se_r", "se_AUC",
  316. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  317. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  318. "WT_L", "WT_K", "WT_r", "WT_AUC",
  319. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  320. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  321. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  322. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  323. "NG", "SM", "DB") %>%
  324. ungroup()
  325. interactions <- stats %>%
  326. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  327. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  328. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  329. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  330. "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
  331. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  332. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  333. "NG", "SM", "DB") %>%
  334. arrange(desc(lm_Score_L)) %>%
  335. arrange(desc(NG)) %>%
  336. ungroup()
  337. return(list(calculations = calculations, interactions = interactions))
  338. }
  339. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  340. message("Generating html and pdf plots for: ", file_name)
  341. plots <- lapply(plot_configs, function(config) {
  342. df <- config$df
  343. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  344. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  345. # Define aes mapping based on the presence of y_var
  346. aes_mapping <- if (is.null(config$y_var)) {
  347. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  348. } else {
  349. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  350. }
  351. plot <- ggplot(df, aes_mapping)
  352. # Use appropriate helper function based on plot type
  353. plot <- switch(config$plot_type,
  354. "scatter" = generate_scatter_plot(plot, config),
  355. "rank" = generate_rank_plot(plot, config),
  356. "correlation" = generate_correlation_plot(plot, config),
  357. "box" = generate_box_plot(plot, config),
  358. "density" = plot + geom_density(),
  359. "bar" = plot + geom_bar(),
  360. plot # default case if no type matches
  361. )
  362. return(plot)
  363. })
  364. # PDF saving logic
  365. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  366. lapply(plots, print)
  367. dev.off()
  368. # HTML saving logic
  369. plotly_plots <- lapply(plots, function(plot) {
  370. config <- plot$labels$config
  371. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  372. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  373. } else {
  374. ggplotly(plot, tooltip = "text")
  375. }
  376. })
  377. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  378. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  379. }
  380. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  381. # Determine the base aesthetics
  382. aes_params <- aes(
  383. x = !!sym(config$x_var),
  384. y = !!sym(config$y_var),
  385. color = as.factor(!!sym(config$color_var)))
  386. # Add the interactive `text` aesthetic if `interactive` is TRUE
  387. if (interactive) {
  388. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  389. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)
  390. } else if (!is.null(config$gene_point) && config$gene_point) {
  391. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene)
  392. }
  393. }
  394. # Add the base geom_point layer
  395. plot <- plot + geom_point(
  396. aes_params, shape = config$shape %||% 3,
  397. size = config$size %||% 0.2,
  398. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  399. # Add smooth line if specified
  400. if (!is.null(config$add_smooth) && config$add_smooth) {
  401. plot <- if (!is.null(config$lm_line)) {
  402. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  403. } else {
  404. plot + geom_smooth(method = "lm", se = FALSE)
  405. }
  406. }
  407. # Add x-axis customization if specified
  408. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  409. plot <- plot + scale_x_continuous(
  410. name = config$x_label,
  411. breaks = config$x_breaks,
  412. labels = config$x_labels)
  413. }
  414. # Add y-axis limits if specified
  415. if (!is.null(config$ylim_vals)) {
  416. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  417. }
  418. # Add Cartesian coordinates customization if specified
  419. if (!is.null(config$coord_cartesian)) {
  420. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  421. }
  422. return(plot)
  423. }
  424. generate_rank_plot <- function(plot, config) {
  425. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  426. if (!is.null(config$sd_band)) {
  427. for (i in seq_len(config$sd_band)) {
  428. plot <- plot +
  429. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  430. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  431. geom_hline(yintercept = c(-i, i), color = "gray")
  432. }
  433. }
  434. if (!is.null(config$enhancer_label)) {
  435. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  436. }
  437. if (!is.null(config$suppressor_label)) {
  438. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  439. }
  440. return(plot)
  441. }
  442. generate_correlation_plot <- function(plot, config) {
  443. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  444. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  445. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  446. if (!is.null(config$rect)) {
  447. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  448. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  449. }
  450. return(plot)
  451. }
  452. generate_box_plot <- function(plot, config) {
  453. plot <- plot + geom_boxplot()
  454. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  455. plot <- plot + scale_x_discrete(
  456. name = config$x_label,
  457. breaks = config$x_breaks,
  458. labels = config$x_labels
  459. )
  460. }
  461. if (!is.null(config$coord_cartesian)) {
  462. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  463. }
  464. return(plot)
  465. }
  466. generate_interaction_plot_configs <- function(df, variables) {
  467. configs <- list()
  468. # Define common y-limits and other attributes for each variable dynamically
  469. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  470. # Define annotation positions based on the variable being plotted
  471. annotation_positions <- list(
  472. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  473. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  474. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  475. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  476. )
  477. # Define which annotations to include for each plot
  478. annotation_labels <- list(
  479. ZShift = function(df, var) {
  480. val <- df[[paste0("Z_Shift_", var)]]
  481. if (is.numeric(val)) {
  482. paste("ZShift =", round(val, 2))
  483. } else {
  484. paste("ZShift =", val)
  485. }
  486. },
  487. lm_ZScore = function(df, var) {
  488. val <- df[[paste0("Z_lm_", var)]]
  489. if (is.numeric(val)) {
  490. paste("lm ZScore =", round(val, 2))
  491. } else {
  492. paste("lm ZScore =", val)
  493. }
  494. },
  495. NG = function(df, var) paste("NG =", df$NG),
  496. DB = function(df, var) paste("DB =", df$DB),
  497. SM = function(df, var) paste("SM =", df$SM)
  498. )
  499. for (variable in variables) {
  500. # Dynamically generate the names of the columns
  501. var_info <- list(
  502. ylim = limits_map[[variable]],
  503. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  504. sd_col = paste0("WT_sd_", variable),
  505. delta_var = paste0("Delta_", variable)
  506. )
  507. # Extract the precomputed linear model coefficients
  508. lm_line <- list(
  509. intercept = coef(var_info$lm_model)[1],
  510. slope = coef(var_info$lm_model)[2]
  511. )
  512. # Dynamically create annotations based on variable
  513. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  514. y_pos <- annotation_positions[[variable]][[annotation_name]]
  515. label <- annotation_labels[[annotation_name]](df, variable)
  516. list(x = 1, y = y_pos, label = label)
  517. })
  518. # Add scatter plot configuration for this variable
  519. configs[[length(configs) + 1]] <- list(
  520. df = df,
  521. x_var = "conc_num_factor",
  522. y_var = var_info$delta_var,
  523. plot_type = "scatter",
  524. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  525. ylim_vals = var_info$ylim,
  526. annotations = annotations,
  527. lm_line = lm_line, # Precomputed linear model
  528. error_bar = list(
  529. ymin = 0 - (2 * df[[var_info$sd_col]][1]),
  530. ymax = 0 + (2 * df[[var_info$sd_col]][1])
  531. ),
  532. x_breaks = unique(df$conc_num_factor),
  533. x_labels = unique(as.character(df$conc_num)),
  534. x_label = unique(df$Drug[1]),
  535. shape = 3,
  536. size = 0.6,
  537. position = "jitter",
  538. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  539. )
  540. # Add box plot configuration for this variable
  541. configs[[length(configs) + 1]] <- list(
  542. df = df,
  543. x_var = "conc_num_factor",
  544. y_var = variable,
  545. plot_type = "box",
  546. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  547. ylim_vals = var_info$ylim,
  548. annotations = annotations,
  549. error_bar = FALSE, # Boxplots typically don't need error bars
  550. x_breaks = unique(df$conc_num_factor),
  551. x_labels = unique(as.character(df$conc_num)),
  552. x_label = unique(df$Drug[1]),
  553. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  554. )
  555. }
  556. return(configs)
  557. }
  558. # Adjust missing values and calculate ranks
  559. adjust_missing_and_rank <- function(df, variables) {
  560. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  561. df <- df %>%
  562. mutate(across(all_of(variables), list(
  563. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  564. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  565. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  566. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  567. ), .names = "{fn}_{col}"))
  568. return(df)
  569. }
  570. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  571. configs <- list()
  572. # Adjust titles for _lm plots if is_lm is TRUE
  573. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  574. # Annotated version (with text)
  575. for (sd_band in c(1, 2, 3)) {
  576. configs[[length(configs) + 1]] <- list(
  577. df = df,
  578. x_var = rank_var,
  579. y_var = zscore_var,
  580. plot_type = "rank",
  581. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  582. sd_band = sd_band,
  583. enhancer_label = list(
  584. x = nrow(df) / 2, y = 10,
  585. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  586. ),
  587. suppressor_label = list(
  588. x = nrow(df) / 2, y = -10,
  589. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  590. ),
  591. shape = 3,
  592. size = 0.1
  593. )
  594. }
  595. # Non-annotated version (_notext)
  596. for (sd_band in c(1, 2, 3)) {
  597. configs[[length(configs) + 1]] <- list(
  598. df = df,
  599. x_var = rank_var,
  600. y_var = zscore_var,
  601. plot_type = "rank",
  602. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  603. sd_band = sd_band,
  604. enhancer_label = NULL, # No annotations for _notext
  605. suppressor_label = NULL, # No annotations for _notext
  606. shape = 3,
  607. size = 0.1,
  608. position = "jitter"
  609. )
  610. }
  611. return(configs)
  612. }
  613. generate_correlation_plot_configs <- function(df, variables) {
  614. configs <- list()
  615. for (variable in variables) {
  616. z_lm_var <- paste0("Z_lm_", variable)
  617. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  618. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  619. configs[[length(configs) + 1]] <- list(
  620. df = df,
  621. x_var = avg_zscore_var,
  622. y_var = z_lm_var,
  623. plot_type = "correlation",
  624. title = paste("Avg Zscore vs lm", variable),
  625. color_var = "Overlap",
  626. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  627. shape = 3,
  628. geom_smooth = TRUE,
  629. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  630. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  631. legend_position = "right"
  632. )
  633. }
  634. return(configs)
  635. }
  636. main <- function() {
  637. lapply(names(args$experiments), function(exp_name) {
  638. exp <- args$experiments[[exp_name]]
  639. exp_path <- exp$path
  640. exp_sd <- exp$sd
  641. out_dir <- file.path(exp_path, "zscores")
  642. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  643. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  644. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  645. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  646. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  647. orf_group_vars <- c("OrfRep", "Gene", "num")
  648. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  649. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  650. message("Loading and filtering data")
  651. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  652. df <- update_gene_names(df, args$sgd_gene_list)
  653. df <- as_tibble(df)
  654. # Filter rows that are above tolerance for quality control plots
  655. df_above_tolerance <- df %>% filter(DB == 1)
  656. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  657. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  658. # Remove rows with 0 values in L
  659. df_no_zeros <- df_na %>% filter(L > 0)
  660. # Save some constants
  661. max_conc <- max(df$conc_num_factor)
  662. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  663. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  664. message("Calculating summary statistics before quality control")
  665. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  666. # df_ss <- ss$summary_stats
  667. df_stats <- ss$df_with_stats
  668. df_filtered_stats <- df_stats %>%
  669. {
  670. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  671. if (nrow(non_finite_rows) > 0) {
  672. message("Removed the following non-finite rows:")
  673. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  674. }
  675. filter(., if_all(c(L), is.finite))
  676. }
  677. message("Calculating summary statistics after quality control")
  678. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  679. df_na_ss <- ss$summary_stats
  680. df_na_stats <- ss$df_with_stats
  681. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  682. # Filter out non-finite rows for plotting
  683. df_na_filtered_stats <- df_na_stats %>%
  684. {
  685. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  686. if (nrow(non_finite_rows) > 0) {
  687. message("Removed the following non-finite rows:")
  688. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  689. }
  690. filter(., if_all(c(L), is.finite))
  691. }
  692. message("Calculating summary statistics after quality control excluding zero values")
  693. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  694. df_no_zeros_stats <- ss$df_with_stats
  695. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  696. {
  697. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  698. if (nrow(non_finite_rows) > 0) {
  699. message("Removed the following non-finite rows:")
  700. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  701. }
  702. filter(., if_all(c(L), is.finite))
  703. }
  704. message("Filtering by 2SD of K")
  705. df_na_within_2sd_k <- df_na_stats %>%
  706. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  707. df_na_outside_2sd_k <- df_na_stats %>%
  708. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  709. message("Calculating summary statistics for L within 2SD of K")
  710. # TODO We're omitting the original z_max calculation, not sure if needed?
  711. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  712. l_within_2sd_k_ss <- ss$summary_stats
  713. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  714. write.csv(l_within_2sd_k_ss,
  715. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  716. message("Calculating summary statistics for L outside 2SD of K")
  717. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  718. l_outside_2sd_k_ss <- ss$summary_stats
  719. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  720. write.csv(l_outside_2sd_k_ss,
  721. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  722. # Each plots list corresponds to a file
  723. message("Generating quality control plot configurations")
  724. l_vs_k_plots <- list(
  725. list(
  726. df = df,
  727. x_var = "L",
  728. y_var = "K",
  729. plot_type = "scatter",
  730. delta_bg_point = TRUE,
  731. title = "Raw L vs K before quality control",
  732. color_var = "conc_num",
  733. error_bar = FALSE,
  734. legend_position = "right"
  735. )
  736. )
  737. frequency_delta_bg_plots <- list(
  738. list(
  739. df = df_filtered_stats,
  740. x_var = "delta_bg",
  741. y_var = NULL,
  742. plot_type = "density",
  743. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  744. color_var = "conc_num",
  745. x_label = "Delta Background",
  746. y_label = "Density",
  747. error_bar = FALSE,
  748. legend_position = "right"),
  749. list(
  750. df = df_filtered_stats,
  751. x_var = "delta_bg",
  752. y_var = NULL,
  753. plot_type = "bar",
  754. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  755. color_var = "conc_num",
  756. x_label = "Delta Background",
  757. y_label = "Count",
  758. error_bar = FALSE,
  759. legend_position = "right")
  760. )
  761. above_threshold_plots <- list(
  762. list(
  763. df = df_above_tolerance,
  764. x_var = "L",
  765. y_var = "K",
  766. plot_type = "scatter",
  767. delta_bg_point = TRUE,
  768. title = paste("Raw L vs K for strains above Delta Background threshold of",
  769. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  770. color_var = "conc_num",
  771. position = "jitter",
  772. annotations = list(
  773. x = l_half_median,
  774. y = k_half_median,
  775. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  776. ),
  777. error_bar = FALSE,
  778. legend_position = "right"
  779. )
  780. )
  781. plate_analysis_plots <- list()
  782. for (var in summary_vars) {
  783. for (stage in c("before", "after")) {
  784. if (stage == "before") {
  785. df_plot <- df_filtered_stats
  786. } else {
  787. df_plot <- df_na_filtered_stats
  788. }
  789. config <- list(
  790. df = df_plot,
  791. x_var = "scan",
  792. y_var = var,
  793. plot_type = "scatter",
  794. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  795. error_bar = TRUE,
  796. color_var = "conc_num",
  797. position = "jitter")
  798. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  799. }
  800. }
  801. plate_analysis_boxplots <- list()
  802. for (var in summary_vars) {
  803. for (stage in c("before", "after")) {
  804. if (stage == "before") {
  805. df_plot <- df_filtered_stats
  806. } else {
  807. df_plot <- df_na_filtered_stats
  808. }
  809. config <- list(
  810. df = df_plot,
  811. x_var = "scan",
  812. y_var = var,
  813. plot_type = "box",
  814. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  815. error_bar = FALSE, color_var = "conc_num")
  816. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  817. }
  818. }
  819. plate_analysis_no_zeros_plots <- list()
  820. for (var in summary_vars) {
  821. config <- list(
  822. df = df_no_zeros_filtered_stats,
  823. x_var = "scan",
  824. y_var = var,
  825. plot_type = "scatter",
  826. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  827. error_bar = TRUE,
  828. color_var = "conc_num",
  829. position = "jitter")
  830. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  831. }
  832. plate_analysis_no_zeros_boxplots <- list()
  833. for (var in summary_vars) {
  834. config <- list(
  835. df = df_no_zeros_filtered_stats,
  836. x_var = "scan",
  837. y_var = var,
  838. plot_type = "box",
  839. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  840. error_bar = FALSE,
  841. color_var = "conc_num"
  842. )
  843. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  844. }
  845. l_outside_2sd_k_plots <- list(
  846. list(
  847. df = df_na_l_outside_2sd_k_stats,
  848. x_var = "L",
  849. y_var = "K",
  850. plot_type = "scatter",
  851. delta_bg_point = TRUE,
  852. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  853. color_var = "conc_num",
  854. position = "jitter",
  855. legend_position = "right"
  856. )
  857. )
  858. delta_bg_outside_2sd_k_plots <- list(
  859. list(
  860. df = df_na_l_outside_2sd_k_stats,
  861. x_var = "delta_bg",
  862. y_var = "K",
  863. plot_type = "scatter",
  864. gene_point = TRUE,
  865. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  866. color_var = "conc_num",
  867. position = "jitter",
  868. legend_position = "right"
  869. )
  870. )
  871. message("Generating quality control plots")
  872. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  873. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  874. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  875. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  876. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  877. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  878. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  879. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  880. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  881. # Clean up
  882. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  883. gc()
  884. # TODO: Originally this filtered L NA's
  885. # Let's try to avoid for now since stats have already been calculated
  886. # Process background strains
  887. bg_strains <- c("YDL227C")
  888. lapply(bg_strains, function(strain) {
  889. message("Processing background strain: ", strain)
  890. # Handle missing data by setting zero values to NA
  891. # and then removing any rows with NA in L col
  892. df_bg <- df_na %>%
  893. filter(OrfRep == strain) %>%
  894. mutate(
  895. L = if_else(L == 0, NA, L),
  896. K = if_else(K == 0, NA, K),
  897. r = if_else(r == 0, NA, r),
  898. AUC = if_else(AUC == 0, NA, AUC)
  899. ) %>%
  900. filter(!is.na(L))
  901. # Recalculate summary statistics for the background strain
  902. message("Calculating summary statistics for background strain")
  903. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  904. summary_stats_bg <- ss_bg$summary_stats
  905. # df_bg_stats <- ss_bg$df_with_stats
  906. write.csv(summary_stats_bg,
  907. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  908. row.names = FALSE)
  909. # Filter reference and deletion strains
  910. # Formerly X2_RF (reference strains)
  911. df_reference <- df_na_stats %>%
  912. filter(OrfRep == strain) %>%
  913. mutate(SM = 0)
  914. # Formerly X2 (deletion strains)
  915. df_deletion <- df_na_stats %>%
  916. filter(OrfRep != strain) %>%
  917. mutate(SM = 0)
  918. # Set the missing values to the highest theoretical value at each drug conc for L
  919. # Leave other values as 0 for the max/min
  920. reference_strain <- df_reference %>%
  921. group_by(conc_num) %>%
  922. mutate(
  923. max_l_theoretical = max(max_L, na.rm = TRUE),
  924. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  925. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  926. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  927. ungroup()
  928. # Ditto for deletion strains
  929. deletion_strains <- df_deletion %>%
  930. group_by(conc_num) %>%
  931. mutate(
  932. max_l_theoretical = max(max_L, na.rm = TRUE),
  933. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  934. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  935. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  936. ungroup()
  937. # Calculate interactions
  938. interaction_vars <- c("L", "K", "r", "AUC")
  939. message("Calculating interaction scores")
  940. # print("Reference strain:")
  941. # print(head(reference_strain))
  942. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  943. # print("Deletion strains:")
  944. # print(head(deletion_strains))
  945. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  946. zscores_calculations_reference <- reference_results$calculations
  947. zscores_interactions_reference <- reference_results$interactions
  948. zscores_calculations <- deletion_results$calculations
  949. zscores_interactions <- deletion_results$interactions
  950. # Writing Z-Scores to file
  951. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  952. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  953. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  954. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  955. # Create interaction plots
  956. message("Generating interaction plot configurations")
  957. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  958. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  959. message("Generating interaction plots")
  960. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  961. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  962. # Define conditions for enhancers and suppressors
  963. # TODO Add to study config file?
  964. threshold <- 2
  965. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  966. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  967. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  968. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  969. # Subset data
  970. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  971. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  972. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  973. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  974. # Save enhancers and suppressors
  975. message("Writing enhancer/suppressor csv files")
  976. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  977. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  978. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  979. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  980. # Combine conditions for enhancers and suppressors
  981. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  982. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  983. # Save combined enhancers and suppressors
  984. write.csv(enhancers_and_suppressors_L,
  985. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  986. write.csv(enhancers_and_suppressors_K,
  987. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  988. # Handle linear model based enhancers and suppressors
  989. lm_threshold <- 2
  990. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  991. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  992. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  993. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  994. # Save linear model based enhancers and suppressors
  995. message("Writing linear model enhancer/suppressor csv files")
  996. write.csv(enhancers_lm_L,
  997. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  998. write.csv(suppressors_lm_L,
  999. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1000. write.csv(enhancers_lm_K,
  1001. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1002. write.csv(suppressors_lm_K,
  1003. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1004. # TODO needs explanation
  1005. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1006. rank_plot_configs <- c(
  1007. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1008. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1009. )
  1010. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1011. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1012. rank_lm_plot_config <- c(
  1013. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1014. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1015. )
  1016. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1017. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1018. # Formerly X_NArm
  1019. zscores_interactions_filtered <- zscores_interactions %>%
  1020. group_by(across(all_of(orf_group_vars))) %>%
  1021. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1022. # Final filtered correlation calculations and plots
  1023. lm_results <- zscores_interactions_filtered %>%
  1024. summarise(
  1025. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1026. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1027. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1028. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1029. )
  1030. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1031. left_join(lm_results, by = orf_group_vars) %>%
  1032. mutate(
  1033. Overlap = case_when(
  1034. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1035. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1036. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1037. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1038. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1039. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1040. TRUE ~ "No Effect"
  1041. )
  1042. ) %>%
  1043. ungroup()
  1044. rank_plot_configs <- c(
  1045. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1046. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1047. )
  1048. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1049. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1050. rank_lm_plot_configs <- c(
  1051. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1052. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1053. )
  1054. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1055. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1056. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1057. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1058. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1059. })
  1060. })
  1061. }
  1062. main()