calculate_interaction_zscores.R 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2, max.print = 1000)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # Prevent .x and .y suffix issues by renaming columns
  152. df_cleaned <- df %>%
  153. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  154. # Join the stats back to the original dataframe
  155. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  156. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  157. }
  158. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  159. # Calculate total concentration variables
  160. total_conc_num <- length(unique(df$conc_num))
  161. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. calculations <- df %>%
  176. mutate(
  177. WT_L = df$mean_L,
  178. WT_K = df$mean_K,
  179. WT_r = df$mean_r,
  180. WT_AUC = df$mean_AUC,
  181. WT_sd_L = df$sd_L,
  182. WT_sd_K = df$sd_K,
  183. WT_sd_r = df$sd_r,
  184. WT_sd_AUC = df$sd_AUC
  185. ) %>%
  186. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  187. mutate(
  188. N = sum(!is.na(L)),
  189. NG = sum(NG, na.rm = TRUE),
  190. DB = sum(DB, na.rm = TRUE),
  191. SM = sum(SM, na.rm = TRUE),
  192. across(all_of(variables), list(
  193. mean = ~mean(., na.rm = TRUE),
  194. median = ~median(., na.rm = TRUE),
  195. max = ~max(., na.rm = TRUE),
  196. min = ~min(., na.rm = TRUE),
  197. sd = ~sd(., na.rm = TRUE),
  198. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  199. ), .names = "{.fn}_{.col}")
  200. ) %>%
  201. ungroup()
  202. calculations <- calculations %>%
  203. group_by(across(all_of(group_vars))) %>%
  204. mutate(
  205. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  206. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  207. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  208. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  209. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  210. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  211. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  212. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  213. )
  214. calculations <- calculations %>%
  215. mutate(
  216. Exp_L = WT_L + Raw_Shift_L,
  217. Delta_L = mean_L - Exp_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Delta_K = mean_K - Exp_K,
  220. Exp_r = WT_r + Raw_Shift_r,
  221. Delta_r = mean_r - Exp_r,
  222. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  223. Delta_AUC = mean_AUC - Exp_AUC
  224. )
  225. calculations <- calculations %>%
  226. mutate(
  227. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  228. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  229. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  230. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  231. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  232. )
  233. interactions <- calculations %>%
  234. mutate(
  235. lm_L = lm(Delta_L ~ conc_num_factor),
  236. lm_K = lm(Delta_K ~ conc_num_factor),
  237. lm_r = lm(Delta_r ~ conc_num_factor),
  238. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  239. Zscore_L = Delta_L / WT_sd_L,
  240. Zscore_K = Delta_K / WT_sd_K,
  241. Zscore_r = Delta_r / WT_sd_r,
  242. Zscore_AUC = Delta_AUC / WT_sd_AUC
  243. )
  244. interactions <- interactions %>%
  245. mutate(
  246. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  247. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  248. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  249. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  250. r_squared_L = summary(lm_L)$r.squared,
  251. r_squared_K = summary(lm_K)$r.squared,
  252. r_squared_r = summary(lm_r)$r.squared,
  253. r_squared_AUC = summary(lm_AUC)$r.squared,
  254. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  255. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  256. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  257. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  258. )
  259. interactions <- interactions %>%
  260. mutate(
  261. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  262. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  263. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  264. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  265. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  266. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  267. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  268. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  269. )
  270. calculations <- calculations %>%
  271. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  272. "mean_L", "mean_K", "mean_r", "mean_AUC",
  273. "median_L", "median_K", "median_r", "median_AUC",
  274. "sd_L", "sd_K", "sd_r", "sd_AUC",
  275. "se_L", "se_K", "se_r", "se_AUC",
  276. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  277. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  278. "WT_L", "WT_K", "WT_r", "WT_AUC", "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  279. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC", "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  280. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  281. "NG", "SM", "DB") %>%
  282. ungroup()
  283. # Arrange results by Z_lm_L and NG
  284. interactions <- interactions %>%
  285. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  286. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  287. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  288. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  289. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  290. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  291. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  292. "NG", "SM", "DB") %>%
  293. arrange(desc(lm_Score_L)) %>%
  294. arrange(desc(NG)) %>%
  295. ungroup()
  296. return(list(calculations = calculations, interactions = interaction))
  297. }
  298. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  299. # Helper function for plot type logic
  300. apply_plot_type <- function(plot, config) {
  301. switch(config$plot_type,
  302. "rank" = {
  303. plot <- plot + geom_point(size = 0.1, shape = 3)
  304. if (!is.null(config$sd_band)) {
  305. for (i in seq_len(config$sd_band)) {
  306. plot <- plot +
  307. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  308. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  309. geom_hline(yintercept = c(-i, i), color = "gray")
  310. }
  311. }
  312. plot
  313. },
  314. "correlation" = {
  315. plot + geom_point(shape = 3, color = "gray70") + geom_smooth(method = "lm", color = "tomato3") +
  316. annotate("text", x = 0, y = 0, label = config$correlation_text)
  317. },
  318. "box" = plot + geom_boxplot(),
  319. "density" = plot + geom_density(),
  320. "bar" = plot + geom_bar(stat = "identity"),
  321. plot + geom_point(shape = 3) + geom_smooth(method = "lm", se = FALSE) # Default scatter plot
  322. )
  323. }
  324. # Helper function for error bars
  325. apply_error_bars <- function(plot, config) {
  326. if (!is.null(config$error_bar) && config$error_bar) {
  327. y_mean_col <- paste0("mean_", config$y_var)
  328. y_sd_col <- paste0("sd_", config$y_var)
  329. plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  330. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
  331. geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
  332. }
  333. plot
  334. }
  335. # Helper function for annotations
  336. apply_annotations <- function(plot, config) {
  337. if (!is.null(config$annotations)) {
  338. plot <- plot + geom_text(aes(x = config$annotations$x, y = config$annotations$y, label = config$annotations$label))
  339. }
  340. plot
  341. }
  342. # Generate each plot
  343. plots <- lapply(plot_configs, function(config) {
  344. plot <- ggplot(config$df, aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var))))
  345. plot <- apply_plot_type(plot, config)
  346. plot <- apply_error_bars(plot, config)
  347. # Apply y-limits if provided
  348. if (!is.null(config$ylim_vals)) {
  349. plot <- plot + coord_cartesian(ylim = config$ylim_vals)
  350. }
  351. # Apply labels, titles, and legends
  352. plot <- plot + ggtitle(config$title) +
  353. theme_publication(legend_position = if (!is.null(config$legend_position)) config$legend_position else "bottom") +
  354. xlab(config$x_label %||% "") + ylab(config$y_label %||% "")
  355. plot <- apply_annotations(plot, config)
  356. return(plot)
  357. })
  358. # Save plots to PDF
  359. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  360. lapply(plots, print)
  361. dev.off()
  362. # Generate Plotly versions for interactive HTML
  363. plotly_plots <- lapply(plots, function(plot) suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h"))))
  364. # Handle grid layout
  365. combined_plot <- subplot(plotly_plots, nrows = if (!is.null(grid_layout)) grid_layout$nrow else length(plots), margin = 0.05)
  366. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  367. }
  368. generate_interaction_plot_configs <- function(df, variables) {
  369. configs <- list()
  370. for (variable in variables) {
  371. # Define the y-limits based on the variable being plotted
  372. ylim_vals <- switch(variable,
  373. "L" = c(-65, 65),
  374. "K" = c(-65, 65),
  375. "r" = c(-0.65, 0.65),
  376. "AUC" = c(-6500, 6500)
  377. )
  378. # Dynamically generate the column names for standard deviation and delta
  379. wt_sd_col <- paste0("WT_sd_", variable)
  380. delta_var <- paste0("Delta_", variable)
  381. z_shift <- paste0("Z_Shift_", variable)
  382. z_lm <- paste0("Z_lm_", variable)
  383. # Set annotations for ZShift, Z lm Score, NG, DB, SM
  384. annotations <- list(
  385. list(x = 1, y = ifelse(variable == "L", 45, ifelse(variable == "K", 45,
  386. ifelse(variable == "r", 0.45, 4500))), label = paste("ZShift =", round(df[[z_shift]], 2))),
  387. list(x = 1, y = ifelse(variable == "L", 25, ifelse(variable == "K", 25,
  388. ifelse(variable == "r", 0.25, 2500))), label = paste("lm ZScore =", round(df[[z_lm]], 2))),
  389. list(x = 1, y = ifelse(variable == "L", -25, ifelse(variable == "K", -25,
  390. ifelse(variable == "r", -0.25, -2500))), label = paste("NG =", df$NG)),
  391. list(x = 1, y = ifelse(variable == "L", -35, ifelse(variable == "K", -35,
  392. ifelse(variable == "r", -0.35, -3500))), label = paste("DB =", df$DB)),
  393. list(x = 1, y = ifelse(variable == "L", -45, ifelse(variable == "K", -45,
  394. ifelse(variable == "r", -0.45, -4500))), label = paste("SM =", df$SM))
  395. )
  396. # Add scatter plot configuration for this variable
  397. configs[[length(configs) + 1]] <- list(
  398. df = df,
  399. x_var = "conc_num_factor",
  400. y_var = delta_var,
  401. plot_type = "scatter",
  402. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  403. ylim_vals = ylim_vals,
  404. annotations = annotations,
  405. error_bar = list(
  406. ymin = 0 - (2 * df[[wt_sd_col]][1]),
  407. ymax = 0 + (2 * df[[wt_sd_col]][1])
  408. ),
  409. x_breaks = unique(df$conc_num_factor),
  410. x_labels = unique(as.character(df$conc_num)),
  411. x_label = unique(df$Drug[1])
  412. )
  413. # Add box plot configuration for this variable
  414. configs[[length(configs) + 1]] <- list(
  415. df = df,
  416. x_var = "conc_num_factor",
  417. y_var = variable,
  418. plot_type = "box",
  419. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  420. ylim_vals = ylim_vals,
  421. annotations = annotations,
  422. error_bar = FALSE, # Boxplots typically don't need error bars
  423. x_breaks = unique(df$conc_num_factor),
  424. x_labels = unique(as.character(df$conc_num)),
  425. x_label = unique(df$Drug[1])
  426. )
  427. }
  428. return(configs)
  429. }
  430. # Adjust missing values and calculate ranks
  431. adjust_missing_and_rank <- function(df, variables) {
  432. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  433. df <- df %>%
  434. mutate(across(all_of(variables), list(
  435. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  436. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  437. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  438. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  439. ), .names = "{fn}_{col}"))
  440. return(df)
  441. }
  442. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  443. configs <- list()
  444. # Adjust titles for _lm plots if is_lm is TRUE
  445. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  446. # Annotated version (with text)
  447. for (sd_band in c(1, 2, 3)) {
  448. configs[[length(configs) + 1]] <- list(
  449. df = df,
  450. x_var = rank_var,
  451. y_var = zscore_var,
  452. plot_type = "rank",
  453. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  454. sd_band = sd_band,
  455. enhancer_label = list(
  456. x = nrow(df) / 2, y = 10,
  457. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  458. ),
  459. suppressor_label = list(
  460. x = nrow(df) / 2, y = -10,
  461. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  462. )
  463. )
  464. return(configs)
  465. }
  466. # Non-annotated version (_notext)
  467. for (sd_band in c(1, 2, 3)) {
  468. configs[[length(configs) + 1]] <- list(
  469. df = df,
  470. x_var = rank_var,
  471. y_var = zscore_var,
  472. plot_type = "rank",
  473. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  474. sd_band = sd_band,
  475. enhancer_label = NULL, # No annotations for _notext
  476. suppressor_label = NULL # No annotations for _notext
  477. )
  478. }
  479. return(configs)
  480. }
  481. generate_correlation_plot_configs <- function(df, variables) {
  482. configs <- list()
  483. for (variable in variables) {
  484. z_lm_var <- paste0("Z_lm_", variable)
  485. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  486. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  487. configs[[length(configs) + 1]] <- list(
  488. df = df,
  489. x_var = avg_zscore_var,
  490. y_var = z_lm_var,
  491. plot_type = "correlation",
  492. title = paste("Avg Zscore vs lm", variable),
  493. color_var = "Overlap",
  494. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  495. legend_position = "right"
  496. )
  497. }
  498. return(configs)
  499. }
  500. main <- function() {
  501. lapply(names(args$experiments), function(exp_name) {
  502. exp <- args$experiments[[exp_name]]
  503. exp_path <- exp$path
  504. exp_sd <- exp$sd
  505. out_dir <- file.path(exp_path, "zscores")
  506. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  507. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  508. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  509. # Load and process data
  510. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  511. df <- update_gene_names(df, args$sgd_gene_list)
  512. max_conc <- max(df$conc_num_factor)
  513. # QC steps and filtering
  514. df_above_tolerance <- df %>% filter(DB == 1)
  515. # Calculate the half-medians for `L` and `K` for rows above tolerance
  516. L_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  517. K_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  518. # Get the number of rows that are above tolerance
  519. rows_to_remove <- nrow(df_above_tolerance)
  520. # Set L, r, K, and AUC to NA for rows that are above tolerance
  521. df_na <- df %>% mutate(across(c(L, r, AUC, K), ~ ifelse(DB == 1, NA, .)))
  522. # Calculate summary statistics for all strains, including both background and the deletions
  523. message("Calculating summary statistics for all strains")
  524. variables <- c("L", "K", "r", "AUC")
  525. ss <- calculate_summary_stats(df_na, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  526. summary_stats <- ss$summary_stats
  527. df_na_stats <- ss$df_with_stats
  528. write.csv(summary_stats, file = file.path(out_dir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE)
  529. # print("Summary stats:")
  530. # print(head(summary_stats), width = 200)
  531. # Remove rows with 0 values in L
  532. df_no_zeros <- df_na %>% filter(L > 0)
  533. # Additional filtering for non-finite values
  534. # Filter and print non-finite rows, then filter and keep only finite rows
  535. df_na_filtered <- df_na %>%
  536. {
  537. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  538. if (nrow(non_finite_rows) > 0) {
  539. message("Removing non-finite rows:\n")
  540. print(head(non_finite_rows, n = 10))
  541. }
  542. filter(., if_all(c(L), is.finite))
  543. }
  544. # Filter data within and outside 2SD
  545. message("Filtering by 2SD of K")
  546. df_na_within_2sd_k <- df_na_stats %>%
  547. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  548. df_na_outside_2sd_k <- df_na_stats %>%
  549. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  550. # Summary statistics for within and outside 2SD of K
  551. message("Calculating summary statistics for L within 2SD of K")
  552. # TODO We're omitting the original z_max calculation, not sure if needed?
  553. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  554. l_within_2sd_k_stats <- ss$summary_stats
  555. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  556. message("Calculating summary statistics for L outside 2SD of K")
  557. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  558. l_outside_2sd_k_stats <- ss$summary_stats
  559. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  560. # Write CSV files
  561. write.csv(l_within_2sd_k_stats, file = file.path(out_dir_qc, "Max_Observed_L_Vals_for_spots_within_2sd_k.csv"), row.names = FALSE)
  562. write.csv(l_outside_2sd_k_stats, file = file.path(out_dir, "Max_Observed_L_Vals_for_spots_outside_2sd_k.csv"), row.names = FALSE)
  563. # Plot configurations
  564. # Each plots list corresponds to a file
  565. message("Generating QC plot configurations")
  566. l_vs_k_plots <- list(
  567. list(df = df, x_var = "L", y_var = "K", plot_type = "scatter",
  568. title = "Raw L vs K before QC",
  569. color_var = "conc_num",
  570. legend_position = "right"
  571. )
  572. )
  573. above_threshold_plots <- list(
  574. list(df = df_above_tolerance, x_var = "L", y_var = "K", plot_type = "scatter",
  575. title = paste("Raw L vs K for strains above delta background threshold of", df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  576. color_var = "conc_num",
  577. annotations = list(
  578. list(
  579. x = L_half_median,
  580. y = K_half_median,
  581. label = paste("Strains above delta background tolerance =", nrow(df_above_tolerance))
  582. )
  583. ),
  584. error_bar = FALSE,
  585. legend_position = "right"
  586. )
  587. )
  588. frequency_delta_bg_plots <- list(
  589. list(df = df, x_var = "delta_bg", y_var = NULL, plot_type = "density",
  590. title = "Density plot for Delta Background by Conc All Data",
  591. color_var = "conc_num",
  592. x_label = "Delta Background",
  593. y_label = "Density",
  594. error_bar = FALSE,
  595. legend_position = "right"
  596. ),
  597. list(df = df, x_var = "delta_bg", y_var = NULL, plot_type = "bar",
  598. title = "Bar plot for Delta Background by Conc All Data",
  599. color_var = "conc_num",
  600. x_label = "Delta Background",
  601. y_label = "Count",
  602. error_bar = FALSE,
  603. legend_position = "right"
  604. )
  605. )
  606. plate_analysis_plots <- list()
  607. for (plot_type in c("scatter", "box")) {
  608. variables <- c("L", "K", "r", "AUC", "delta_bg")
  609. for (var in variables) {
  610. for (stage in c("before", "after")) {
  611. if (stage == "before") {
  612. df_plot <- df
  613. } else {
  614. df_plot <- df_na # TODO use df_na_filtered if necessary
  615. }
  616. # Set error_bar = TRUE only for scatter plots
  617. error_bar <- ifelse(plot_type == "scatter", TRUE, FALSE)
  618. # Create the plot configuration
  619. plot_config <- list(df = df_plot, x_var = "scan", y_var = var, plot_type = plot_type,
  620. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  621. error_bar = error_bar, color_var = "conc_num")
  622. plate_analysis_plots <- append(plate_analysis_plots, list(plot_config))
  623. }
  624. }
  625. }
  626. plate_analysis_no_zero_plots <- list()
  627. for (plot_type in c("scatter", "box")) {
  628. variables <- c("L", "K", "r", "AUC", "delta_bg")
  629. for (var in variables) {
  630. # Set error_bar = TRUE only for scatter plots
  631. error_bar <- ifelse(plot_type == "scatter", TRUE, FALSE)
  632. # Create the plot configuration
  633. plot_config <- list(
  634. df = df_no_zeros,
  635. x_var = "scan",
  636. y_var = var,
  637. plot_type = plot_type,
  638. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  639. error_bar = error_bar,
  640. color_var = "conc_num"
  641. )
  642. plate_analysis_plots <- append(plate_analysis_plots, list(plot_config))
  643. }
  644. }
  645. l_outside_2sd_k_plots <- list(
  646. list(df = df_na_l_outside_2sd_k_stats, x_var = "l", y_var = "K", plot_type = "scatter",
  647. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  648. color_var = "conc_num",
  649. legend_position = "right"
  650. )
  651. )
  652. delta_bg_outside_2sd_k_plots <- list(
  653. list(df = df_na_l_outside_2sd_k_stats, x_var = "delta_bg", y_var = "K", plot_type = "scatter",
  654. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  655. color_var = "conc_num",
  656. legend_position = "right"
  657. )
  658. )
  659. # Generate and save plots for each QC step
  660. message("Generating QC plots")
  661. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  662. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  663. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  664. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  665. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  666. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  667. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  668. # Clean up
  669. rm(df, df_above_tolerance, df_no_zeros)
  670. # TODO: Originally this filtered L NA's
  671. # Let's try to avoid for now since stats have already been calculated
  672. # Process background strains
  673. bg_strains <- c("YDL227C")
  674. lapply(bg_strains, function(strain) {
  675. message("Processing background strain: ", strain)
  676. # Handle missing data by setting zero values to NA
  677. # and then removing any rows with NA in L col
  678. df_bg <- df_na %>%
  679. filter(OrfRep == strain) %>%
  680. mutate(
  681. L = if_else(L == 0, NA, L),
  682. K = if_else(K == 0, NA, K),
  683. r = if_else(r == 0, NA, r),
  684. AUC = if_else(AUC == 0, NA, AUC)
  685. ) %>%
  686. filter(!is.na(L))
  687. # Recalculate summary statistics for the background strain
  688. message("Calculating summary statistics for background strain")
  689. ss_bg <- calculate_summary_stats(df_bg, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  690. summary_stats_bg <- ss_bg$summary_stats
  691. # df_bg_stats <- ss_bg$df_with_stats
  692. write.csv(summary_stats_bg,
  693. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  694. row.names = FALSE)
  695. # Filter reference and deletion strains
  696. # Formerly X2_RF (reference strains)
  697. df_reference <- df_na_stats %>%
  698. filter(OrfRep == strain) %>%
  699. mutate(SM = 0)
  700. # Formerly X2 (deletion strains)
  701. df_deletion <- df_na_stats %>%
  702. filter(OrfRep != strain) %>%
  703. mutate(SM = 0)
  704. # Set the missing values to the highest theoretical value at each drug conc for L
  705. # Leave other values as 0 for the max/min
  706. reference_strain <- df_reference %>%
  707. group_by(conc_num) %>%
  708. mutate(
  709. max_l_theoretical = max(max_L, na.rm = TRUE),
  710. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  711. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  712. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  713. ungroup()
  714. # Ditto for deletion strains
  715. deletion_strains <- df_deletion %>%
  716. group_by(conc_num) %>%
  717. mutate(
  718. max_l_theoretical = max(max_L, na.rm = TRUE),
  719. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  720. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  721. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  722. ungroup()
  723. # Calculate interactions
  724. variables <- c("L", "K", "r", "AUC")
  725. message("Calculating interaction scores")
  726. # print("Reference strain:")
  727. # print(head(reference_strain))
  728. reference_results <- calculate_interaction_scores(reference_strain, max_conc, variables)
  729. # print("Deletion strains:")
  730. # print(head(deletion_strains))
  731. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, variables)
  732. zscores_calculations_reference <- reference_results$calculations
  733. zscores_interactions_reference <- reference_results$interactions
  734. zscores_calculations <- deletion_results$calculations
  735. zscores_interactions <- deletion_results$interactions
  736. # Writing Z-Scores to file
  737. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  738. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  739. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  740. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  741. # Create interaction plots
  742. reference_plot_configs <- generate_interaction_plot_configs(df_reference, variables)
  743. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, variables)
  744. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  745. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  746. # Define conditions for enhancers and suppressors
  747. # TODO Add to study config file?
  748. threshold <- 2
  749. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  750. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  751. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  752. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  753. # Subset data
  754. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  755. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  756. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  757. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  758. # Save enhancers and suppressors
  759. message("Writing enhancer/suppressor csv files")
  760. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  761. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  762. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  763. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  764. # Combine conditions for enhancers and suppressors
  765. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  766. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  767. # Save combined enhancers and suppressors
  768. write.csv(enhancers_and_suppressors_L,
  769. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  770. write.csv(enhancers_and_suppressors_K,
  771. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  772. # Handle linear model based enhancers and suppressors
  773. lm_threshold <- 2
  774. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  775. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  776. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  777. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  778. # Save linear model based enhancers and suppressors
  779. message("Writing linear model enhancer/suppressor csv files")
  780. write.csv(enhancers_lm_L,
  781. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  782. write.csv(suppressors_lm_L,
  783. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  784. write.csv(enhancers_lm_K,
  785. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  786. write.csv(suppressors_lm_K,
  787. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  788. # TODO needs explanation
  789. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  790. rank_plot_configs <- c(
  791. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  792. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  793. )
  794. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  795. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  796. rank_lm_plot_config <- c(
  797. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  798. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  799. )
  800. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  801. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  802. # Formerly X_NArm
  803. zscores_interactions_filtered <- zscores_interactions %>%
  804. group_by(across(all_of(group_vars))) %>%
  805. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  806. # Final filtered correaltion calculations and plots
  807. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  808. mutate(
  809. Overlap = case_when(
  810. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  811. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  812. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  813. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  814. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  815. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  816. TRUE ~ "No Effect"
  817. ),
  818. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  819. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  820. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  821. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  822. ) %>%
  823. ungroup()
  824. rank_plot_configs <- c(
  825. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  826. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  827. )
  828. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  829. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  830. rank_lm_plot_configs <- c(
  831. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  832. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  833. )
  834. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  835. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  836. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, variables)
  837. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  838. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  839. })
  840. })
  841. }
  842. main()