calculate_interaction_zscores.R 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Summary statistics for lm scores
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  259. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  260. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  261. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  262. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  263. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  264. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  265. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  266. )
  267. # Continue with gene Z-scores and interactions
  268. calculations <- calculations %>%
  269. left_join(lm_means_sds, by = group_vars) %>%
  270. group_by(across(all_of(group_vars))) %>%
  271. mutate(
  272. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  273. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  274. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  275. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  276. )
  277. # Build summary stats (interactions)
  278. interactions <- calculations %>%
  279. group_by(across(all_of(group_vars))) %>%
  280. summarise(
  281. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  282. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  283. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  284. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  285. # Interaction Z-scores
  286. Z_lm_L = first(Z_lm_L),
  287. Z_lm_K = first(Z_lm_K),
  288. Z_lm_r = first(Z_lm_r),
  289. Z_lm_AUC = first(Z_lm_AUC),
  290. # Raw Shifts
  291. Raw_Shift_L = first(Raw_Shift_L),
  292. Raw_Shift_K = first(Raw_Shift_K),
  293. Raw_Shift_r = first(Raw_Shift_r),
  294. Raw_Shift_AUC = first(Raw_Shift_AUC),
  295. # Z Shifts
  296. Z_Shift_L = first(Z_Shift_L),
  297. Z_Shift_K = first(Z_Shift_K),
  298. Z_Shift_r = first(Z_Shift_r),
  299. Z_Shift_AUC = first(Z_Shift_AUC),
  300. # NG, DB, SM values
  301. NG = first(NG),
  302. DB = first(DB),
  303. SM = first(SM)
  304. )
  305. # Creating the final calculations and interactions dataframes with only required columns for csv output
  306. calculations_df <- calculations %>%
  307. select(
  308. all_of(group_vars),
  309. conc_num, conc_num_factor, conc_num_factor_factor,
  310. N, NG, DB, SM,
  311. mean_L, median_L, sd_L, se_L,
  312. mean_K, median_K, sd_K, se_K,
  313. mean_r, median_r, sd_r, se_r,
  314. mean_AUC, median_AUC, sd_AUC, se_AUC,
  315. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  316. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  317. WT_L, WT_K, WT_r, WT_AUC,
  318. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  319. Exp_L, Exp_K, Exp_r, Exp_AUC,
  320. Delta_L, Delta_K, Delta_r, Delta_AUC,
  321. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  322. )
  323. interactions_df <- interactions %>%
  324. select(
  325. all_of(group_vars),
  326. NG, DB, SM,
  327. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  328. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  329. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  330. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  331. )
  332. calculations_no_overlap <- calculations %>%
  333. # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
  334. select(-any_of(c(
  335. "DB", "NG", "SM",
  336. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  337. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  338. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  339. )))
  340. # Use left_join to avoid dimension mismatch issues
  341. full_data <- calculations_no_overlap %>%
  342. left_join(interactions, by = group_vars)
  343. # Return full_data and the two required dataframes (calculations and interactions)
  344. return(list(
  345. calculations = calculations_df,
  346. interactions = interactions_df,
  347. full_data = full_data
  348. ))
  349. }
  350. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  351. message("Generating ", filename, ".pdf and ", filename, ".html")
  352. # Check if we're dealing with multiple plot groups
  353. plot_groups <- if ("plots" %in% names(plot_configs)) {
  354. list(plot_configs) # Single group
  355. } else {
  356. plot_configs # Multiple groups
  357. }
  358. for (group in plot_groups) {
  359. static_plots <- list()
  360. plotly_plots <- list()
  361. grid_layout <- group$grid_layout
  362. plots <- group$plots
  363. for (i in seq_along(plots)) {
  364. config <- plots[[i]]
  365. df <- config$df
  366. if (config$plot_type == "bar") {
  367. if (!is.null(config$color_var)) {
  368. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  369. } else {
  370. aes_mapping <- aes(x = .data[[config$x_var]])
  371. }
  372. } else if (config$plot_type == "density") {
  373. if (!is.null(config$color_var)) {
  374. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  375. } else {
  376. aes_mapping <- aes(x = .data[[config$x_var]])
  377. }
  378. } else {
  379. # For other plot types
  380. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  381. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  382. } else if (!is.null(config$y_var)) {
  383. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  384. } else {
  385. aes_mapping <- aes(x = .data[[config$x_var]])
  386. }
  387. }
  388. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  389. plot <- switch(config$plot_type,
  390. "scatter" = generate_scatter_plot(plot, config),
  391. "box" = generate_boxplot(plot, config),
  392. "density" = plot + geom_density(),
  393. "bar" = plot + geom_bar(),
  394. plot # default (unused)
  395. )
  396. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  397. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  398. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  399. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  400. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  401. static_plots[[i]] <- plot
  402. plotly_plots[[i]] <- plotly_plot
  403. }
  404. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  405. if (is.null(grid_layout)) {
  406. for (plot in static_plots) {
  407. print(plot)
  408. }
  409. } else {
  410. grid.arrange(
  411. grobs = static_plots,
  412. ncol = grid_layout$ncol,
  413. nrow = grid_layout$nrow
  414. )
  415. }
  416. dev.off()
  417. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  418. # message("Saving combined HTML file: ", out_html_file)
  419. # htmltools::save_html(
  420. # htmltools::tagList(plotly_plots),
  421. # file = out_html_file
  422. # )
  423. }
  424. }
  425. generate_scatter_plot <- function(plot, config) {
  426. # Define the points
  427. shape <- if (!is.null(config$shape)) config$shape else 3
  428. size <- if (!is.null(config$size)) config$size else 1.5
  429. position <-
  430. if (!is.null(config$position) && config$position == "jitter") {
  431. position_jitter(width = 0.1, height = 0)
  432. } else {
  433. "identity"
  434. }
  435. plot <- plot + geom_point(
  436. shape = shape,
  437. size = size,
  438. position = position
  439. )
  440. if (!is.null(config$cyan_points) && config$cyan_points) {
  441. plot <- plot + geom_point(
  442. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  443. color = "cyan",
  444. shape = 3,
  445. size = 0.5
  446. )
  447. }
  448. # Add Smooth Line if specified
  449. if (!is.null(config$smooth) && config$smooth) {
  450. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  451. if (!is.null(config$lm_line)) {
  452. plot <- plot +
  453. geom_abline(
  454. intercept = config$lm_line$intercept,
  455. slope = config$lm_line$slope,
  456. color = smooth_color
  457. )
  458. } else {
  459. plot <- plot +
  460. geom_smooth(
  461. method = "lm",
  462. se = FALSE,
  463. color = smooth_color
  464. )
  465. }
  466. }
  467. # Add SD Bands if specified
  468. if (!is.null(config$sd_band)) {
  469. plot <- plot +
  470. annotate(
  471. "rect",
  472. xmin = -Inf, xmax = Inf,
  473. ymin = config$sd_band, ymax = Inf,
  474. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  475. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  476. ) +
  477. annotate(
  478. "rect",
  479. xmin = -Inf, xmax = Inf,
  480. ymin = -config$sd_band, ymax = -Inf,
  481. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  482. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  483. ) +
  484. geom_hline(
  485. yintercept = c(-config$sd_band, config$sd_band),
  486. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  487. )
  488. }
  489. # Add Rectangles if specified
  490. if (!is.null(config$rectangles)) {
  491. for (rect in config$rectangles) {
  492. plot <- plot + annotate(
  493. "rect",
  494. xmin = rect$xmin,
  495. xmax = rect$xmax,
  496. ymin = rect$ymin,
  497. ymax = rect$ymax,
  498. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  499. color = ifelse(is.null(rect$color), "black", rect$color),
  500. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  501. )
  502. }
  503. }
  504. # Add error bars if specified
  505. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  506. if (!is.null(config$error_bar_params)) {
  507. error_bar_color <- if (!is.null(config$error_bar_params$color)) {
  508. config$error_bar_params$color
  509. } else {
  510. "red"
  511. }
  512. plot <- plot + geom_errorbar(aes(
  513. ymin = config$error_bar_params$ymin,
  514. ymax = config$error_bar_params$ymax,
  515. color = error_bar_color))
  516. } else {
  517. y_mean_col <- paste0("mean_", config$y_var)
  518. y_sd_col <- paste0("sd_", config$y_var)
  519. plot <- plot + geom_errorbar(aes(
  520. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  521. ymax = !!sym(y_mean_col) + !!sym(y_sd_col),
  522. color = "red"))
  523. }
  524. }
  525. # Customize X-axis if specified
  526. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  527. # Check if x_var is factor or character (for discrete x-axis)
  528. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  529. plot <- plot +
  530. scale_x_discrete(
  531. name = config$x_label,
  532. breaks = config$x_breaks,
  533. labels = config$x_labels
  534. )
  535. } else {
  536. plot <- plot +
  537. scale_x_continuous(
  538. name = config$x_label,
  539. breaks = config$x_breaks,
  540. labels = config$x_labels
  541. )
  542. }
  543. }
  544. # Set Y-axis limits if specified
  545. if (!is.null(config$ylim_vals)) {
  546. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  547. }
  548. # Add annotations if specified
  549. if (!is.null(config$annotations)) {
  550. for (annotation in config$annotations) {
  551. plot <- plot +
  552. annotate(
  553. "text",
  554. x = annotation$x,
  555. y = annotation$y,
  556. label = annotation$label,
  557. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  558. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  559. size = ifelse(is.null(annotation$size), 6, annotation$size),
  560. color = ifelse(is.null(annotation$color), "black", annotation$color)
  561. )
  562. }
  563. }
  564. return(plot)
  565. }
  566. generate_boxplot <- function(plot, config) {
  567. # Convert x_var to a factor within aes mapping
  568. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  569. # Customize X-axis if specified
  570. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  571. # Check if x_var is factor or character (for discrete x-axis)
  572. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  573. plot <- plot +
  574. scale_x_discrete(
  575. name = config$x_label,
  576. breaks = config$x_breaks,
  577. labels = config$x_labels
  578. )
  579. } else {
  580. plot <- plot +
  581. scale_x_continuous(
  582. name = config$x_label,
  583. breaks = config$x_breaks,
  584. labels = config$x_labels
  585. )
  586. }
  587. }
  588. return(plot)
  589. }
  590. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  591. plot_type = "scatter", stages = c("before", "after")) {
  592. plot_configs <- list()
  593. for (var in variables) {
  594. for (stage in stages) {
  595. df_plot <- if (stage == "before") df_before else df_after
  596. # Check for non-finite values in the y-variable
  597. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  598. # Adjust settings based on plot_type
  599. plot_config <- list(
  600. df = df_plot_filtered,
  601. x_var = "scan",
  602. y_var = var,
  603. plot_type = plot_type,
  604. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  605. color_var = "conc_num_factor_factor",
  606. position = if (plot_type == "scatter") "jitter" else NULL,
  607. size = 0.2,
  608. error_bar = (plot_type == "scatter")
  609. )
  610. # Add config to plots list
  611. plot_configs <- append(plot_configs, list(plot_config))
  612. }
  613. }
  614. return(list(plots = plot_configs))
  615. }
  616. generate_interaction_plot_configs <- function(df, type) {
  617. # Set group_vars based on the type (reference or deletion)
  618. if (type == "reference") {
  619. group_vars <- c("OrfRep", "Gene", "num")
  620. } else if (type == "deletion") {
  621. group_vars <- c("OrfRep", "Gene")
  622. }
  623. # Define the limits for the plots
  624. limits_map <- list(
  625. L = c(0, 130),
  626. K = c(-20, 160),
  627. r = c(0, 1),
  628. AUC = c(0, 12500)
  629. )
  630. delta_limits_map <- list(
  631. L = c(-60, 60),
  632. K = c(-60, 60),
  633. r = c(-0.6, 0.6),
  634. AUC = c(-6000, 6000)
  635. )
  636. overall_plot_configs <- list()
  637. delta_plot_configs <- list()
  638. # Overall statistics plots
  639. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  640. for (var in names(limits_map)) {
  641. y_limits <- limits_map[[var]]
  642. # Use the pre-calculated lm intercept and slope from the dataframe
  643. lm_intercept_col <- paste0("lm_intercept_", var)
  644. lm_slope_col <- paste0("lm_slope_", var)
  645. # Ensure no NA or invalid values in lm_line calculations
  646. intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
  647. slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
  648. plot_config <- list(
  649. df = df,
  650. plot_type = "scatter",
  651. x_var = "conc_num_factor_factor",
  652. y_var = var,
  653. shape = 16,
  654. x_label = unique(df$Drug)[1],
  655. title = sprintf("%s Scatter RF for %s with SD", OrfRep, var),
  656. coord_cartesian = y_limits,
  657. error_bar = TRUE,
  658. x_breaks = unique(df$conc_num_factor_factor),
  659. x_labels = as.character(unique(df$conc_num)),
  660. position = "jitter",
  661. smooth = TRUE,
  662. lm_line = list(
  663. intercept = intercept_value,
  664. slope = slope_value
  665. )
  666. )
  667. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  668. }
  669. # Delta interaction plots
  670. grouped_data <- df %>%
  671. group_by(across(all_of(group_vars))) %>%
  672. group_split()
  673. for (group_data in grouped_data) {
  674. OrfRep <- first(group_data$OrfRep)
  675. Gene <- first(group_data$Gene)
  676. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  677. if (type == "reference") {
  678. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  679. } else if (type == "deletion") {
  680. OrfRepTitle <- OrfRep
  681. }
  682. for (var in names(delta_limits_map)) {
  683. y_limits <- delta_limits_map[[var]]
  684. y_span <- y_limits[2] - y_limits[1]
  685. # Error bars
  686. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  687. # Z_Shift and lm values
  688. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  689. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  690. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  691. # NG, DB, SM values
  692. NG_value <- first(group_data$NG, default = 0)
  693. DB_value <- first(group_data$DB, default = 0)
  694. SM_value <- first(group_data$SM, default = 0)
  695. annotations <- list(
  696. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  697. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  698. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  699. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  700. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  701. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  702. )
  703. # lm_line for delta plots
  704. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  705. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  706. plot_config <- list(
  707. df = group_data,
  708. plot_type = "scatter",
  709. x_var = "conc_num_factor_factor",
  710. y_var = var,
  711. x_label = unique(group_data$Drug)[1],
  712. title = paste(OrfRepTitle, Gene, num, sep = " "),
  713. coord_cartesian = y_limits,
  714. annotations = annotations,
  715. error_bar = TRUE,
  716. error_bar_params = list(
  717. ymin = 0 - (2 * WT_sd_value),
  718. ymax = 0 + (2 * WT_sd_value)
  719. ),
  720. smooth = TRUE,
  721. x_breaks = unique(group_data$conc_num_factor_factor),
  722. x_labels = as.character(unique(group_data$conc_num)),
  723. ylim_vals = y_limits,
  724. lm_line = list(
  725. intercept = lm_intercept_value,
  726. slope = lm_slope_value
  727. )
  728. )
  729. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  730. }
  731. }
  732. # Calculate dynamic grid layout
  733. grid_ncol <- 4
  734. num_plots <- length(delta_plot_configs)
  735. grid_nrow <- ceiling(num_plots / grid_ncol)
  736. return(list(
  737. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  738. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  739. ))
  740. }
  741. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  742. sd_bands <- c(1, 2, 3)
  743. plot_configs <- list()
  744. variables <- c("L", "K")
  745. # Adjust (if necessary) and rank columns
  746. for (variable in variables) {
  747. if (adjust) {
  748. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  749. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  750. }
  751. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  752. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  753. }
  754. # Helper function to create a plot configuration
  755. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  756. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  757. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  758. # Default plot config
  759. plot_config <- list(
  760. df = df,
  761. x_var = rank_var,
  762. y_var = zscore_var,
  763. plot_type = "scatter",
  764. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  765. sd_band = sd_band,
  766. fill_positive = "#542788",
  767. fill_negative = "orange",
  768. alpha_positive = 0.3,
  769. alpha_negative = 0.3,
  770. annotations = NULL,
  771. shape = 3,
  772. size = 0.1,
  773. y_label = y_label,
  774. x_label = "Rank",
  775. legend_position = "none"
  776. )
  777. if (with_annotations) {
  778. # Add specific annotations for plots with annotations
  779. plot_config$annotations <- list(
  780. list(
  781. x = median(df[[rank_var]], na.rm = TRUE),
  782. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  783. label = paste("Deletion Enhancers =", num_enhancers)
  784. ),
  785. list(
  786. x = median(df[[rank_var]], na.rm = TRUE),
  787. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  788. label = paste("Deletion Suppressors =", num_suppressors)
  789. )
  790. )
  791. }
  792. return(plot_config)
  793. }
  794. # Generate plots for each variable
  795. for (variable in variables) {
  796. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  797. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  798. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  799. # Loop through SD bands
  800. for (sd_band in sd_bands) {
  801. # Create plot with annotations
  802. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  803. # Create plot without annotations
  804. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  805. }
  806. }
  807. # Calculate dynamic grid layout based on the number of plots
  808. grid_ncol <- 3
  809. num_plots <- length(plot_configs)
  810. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  811. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  812. }
  813. generate_correlation_plot_configs <- function(df, correlation_stats) {
  814. # Define relationships for different-variable correlations
  815. relationships <- list(
  816. list(x = "L", y = "K"),
  817. list(x = "L", y = "r"),
  818. list(x = "L", y = "AUC"),
  819. list(x = "K", y = "r"),
  820. list(x = "K", y = "AUC"),
  821. list(x = "r", y = "AUC")
  822. )
  823. plot_configs <- list()
  824. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  825. highlight_cyan_options <- c(FALSE, TRUE)
  826. for (highlight_cyan in highlight_cyan_options) {
  827. for (rel in relationships) {
  828. # Extract relevant variable names for Z_lm values
  829. x_var <- paste0("Z_lm_", rel$x)
  830. y_var <- paste0("Z_lm_", rel$y)
  831. # Access the correlation statistics from the correlation_stats list
  832. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  833. stats <- correlation_stats[[relationship_name]]
  834. intercept <- stats$intercept
  835. slope <- stats$slope
  836. r_squared <- stats$r_squared
  837. # Generate the label for the plot
  838. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  839. # Construct plot config
  840. plot_config <- list(
  841. df = df,
  842. x_var = x_var,
  843. y_var = y_var,
  844. plot_type = "scatter",
  845. title = plot_label,
  846. annotations = list(
  847. list(
  848. x = mean(df[[x_var]], na.rm = TRUE),
  849. y = mean(df[[y_var]], na.rm = TRUE),
  850. label = paste("R-squared =", round(r_squared, 3))
  851. )
  852. ),
  853. smooth = TRUE,
  854. smooth_color = "tomato3",
  855. lm_line = list(
  856. intercept = intercept,
  857. slope = slope
  858. ),
  859. shape = 3,
  860. size = 0.5,
  861. color_var = "Overlap",
  862. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  863. )
  864. plot_configs <- append(plot_configs, list(plot_config))
  865. }
  866. }
  867. return(list(plots = plot_configs))
  868. }
  869. main <- function() {
  870. lapply(names(args$experiments), function(exp_name) {
  871. exp <- args$experiments[[exp_name]]
  872. exp_path <- exp$path
  873. exp_sd <- exp$sd
  874. out_dir <- file.path(exp_path, "zscores")
  875. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  876. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  877. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  878. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  879. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  880. message("Loading and filtering data for experiment: ", exp_name)
  881. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  882. update_gene_names(args$sgd_gene_list) %>%
  883. as_tibble()
  884. # Filter rows above delta background tolerance
  885. df_above_tolerance <- df %>% filter(DB == 1)
  886. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  887. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  888. # Save some constants
  889. max_conc <- max(df$conc_num_factor)
  890. message("Calculating summary statistics before quality control")
  891. df_stats <- calculate_summary_stats(
  892. df = df,
  893. variables = summary_vars,
  894. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  895. message("Calculating summary statistics after quality control")
  896. ss <- calculate_summary_stats(
  897. df = df_na,
  898. variables = summary_vars,
  899. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  900. df_na_ss <- ss$summary_stats
  901. df_na_stats <- ss$df_with_stats
  902. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  903. # For plotting (ggplot warns on NAs)
  904. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  905. df_na_stats <- df_na_stats %>%
  906. mutate(
  907. WT_L = mean_L,
  908. WT_K = mean_K,
  909. WT_r = mean_r,
  910. WT_AUC = mean_AUC,
  911. WT_sd_L = sd_L,
  912. WT_sd_K = sd_K,
  913. WT_sd_r = sd_r,
  914. WT_sd_AUC = sd_AUC
  915. )
  916. # Pull the background means and standard deviations from zero concentration for interactions
  917. bg_stats <- df_na_stats %>%
  918. filter(conc_num == 0) %>%
  919. summarise(
  920. mean_L = first(mean_L),
  921. mean_K = first(mean_K),
  922. mean_r = first(mean_r),
  923. mean_AUC = first(mean_AUC),
  924. sd_L = first(sd_L),
  925. sd_K = first(sd_K),
  926. sd_r = first(sd_r),
  927. sd_AUC = first(sd_AUC)
  928. )
  929. message("Calculating summary statistics after quality control excluding zero values")
  930. df_no_zeros_stats <- calculate_summary_stats(
  931. df = df_no_zeros,
  932. variables = summary_vars,
  933. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  934. )$df_with_stats
  935. message("Filtering by 2SD of K")
  936. df_na_within_2sd_k <- df_na_stats %>%
  937. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  938. df_na_outside_2sd_k <- df_na_stats %>%
  939. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  940. message("Calculating summary statistics for L within 2SD of K")
  941. # TODO We're omitting the original z_max calculation, not sure if needed?
  942. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  943. write.csv(ss,
  944. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  945. row.names = FALSE)
  946. message("Calculating summary statistics for L outside 2SD of K")
  947. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  948. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  949. write.csv(ss$summary_stats,
  950. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  951. row.names = FALSE)
  952. # Each list of plots corresponds to a file
  953. l_vs_k_plot_configs <- list(
  954. plots = list(
  955. list(
  956. df = df,
  957. x_var = "L",
  958. y_var = "K",
  959. plot_type = "scatter",
  960. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  961. title = "Raw L vs K before quality control",
  962. color_var = "conc_num_factor_factor",
  963. error_bar = FALSE,
  964. legend_position = "right"
  965. )
  966. )
  967. )
  968. frequency_delta_bg_plot_configs <- list(
  969. plots = list(
  970. list(
  971. df = df_stats,
  972. x_var = "delta_bg",
  973. y_var = NULL,
  974. plot_type = "density",
  975. title = "Density plot for Delta Background by [Drug] (All Data)",
  976. color_var = "conc_num_factor_factor",
  977. x_label = "Delta Background",
  978. y_label = "Density",
  979. error_bar = FALSE,
  980. legend_position = "right"
  981. ),
  982. list(
  983. df = df_stats,
  984. x_var = "delta_bg",
  985. y_var = NULL,
  986. plot_type = "bar",
  987. title = "Bar plot for Delta Background by [Drug] (All Data)",
  988. color_var = "conc_num_factor_factor",
  989. x_label = "Delta Background",
  990. y_label = "Count",
  991. error_bar = FALSE,
  992. legend_position = "right"
  993. )
  994. )
  995. )
  996. above_threshold_plot_configs <- list(
  997. plots = list(
  998. list(
  999. df = df_above_tolerance,
  1000. x_var = "L",
  1001. y_var = "K",
  1002. plot_type = "scatter",
  1003. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1004. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1005. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1006. color_var = "conc_num_factor_factor",
  1007. position = "jitter",
  1008. annotations = list(
  1009. list(
  1010. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1011. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1012. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1013. )
  1014. ),
  1015. error_bar = FALSE,
  1016. legend_position = "right"
  1017. )
  1018. )
  1019. )
  1020. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1021. variables = summary_vars,
  1022. df_before = df_stats,
  1023. df_after = df_na_stats_filtered
  1024. )
  1025. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1026. variables = summary_vars,
  1027. df_before = df_stats,
  1028. df_after = df_na_stats_filtered,
  1029. plot_type = "box"
  1030. )
  1031. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1032. variables = summary_vars,
  1033. stages = c("after"), # Only after QC
  1034. df_after = df_no_zeros_stats
  1035. )
  1036. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1037. variables = summary_vars,
  1038. stages = c("after"), # Only after QC
  1039. df_after = df_no_zeros_stats,
  1040. plot_type = "box"
  1041. )
  1042. l_outside_2sd_k_plot_configs <- list(
  1043. plots = list(
  1044. list(
  1045. df = df_na_l_outside_2sd_k_stats,
  1046. x_var = "L",
  1047. y_var = "K",
  1048. plot_type = "scatter",
  1049. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1050. color_var = "conc_num_factor_factor",
  1051. position = "jitter",
  1052. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1053. annotations = list(
  1054. list(
  1055. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1056. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1057. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1058. )
  1059. ),
  1060. error_bar = FALSE,
  1061. legend_position = "right"
  1062. )
  1063. )
  1064. )
  1065. delta_bg_outside_2sd_k_plot_configs <- list(
  1066. plots = list(
  1067. list(
  1068. df = df_na_l_outside_2sd_k_stats,
  1069. x_var = "delta_bg",
  1070. y_var = "K",
  1071. plot_type = "scatter",
  1072. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1073. color_var = "conc_num_factor_factor",
  1074. position = "jitter",
  1075. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1076. annotations = list(
  1077. list(
  1078. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1079. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1080. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1081. )
  1082. ),
  1083. error_bar = FALSE,
  1084. legend_position = "right"
  1085. )
  1086. )
  1087. )
  1088. message("Generating quality control plots in parallel")
  1089. # future::plan(future::multicore, workers = parallel::detectCores())
  1090. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1091. plot_configs <- list(
  1092. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1093. plot_configs = l_vs_k_plot_configs),
  1094. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1095. plot_configs = frequency_delta_bg_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1097. plot_configs = above_threshold_plot_configs),
  1098. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1099. plot_configs = plate_analysis_plot_configs),
  1100. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1101. plot_configs = plate_analysis_boxplot_configs),
  1102. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1103. plot_configs = plate_analysis_no_zeros_plot_configs),
  1104. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1105. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1106. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1107. plot_configs = l_outside_2sd_k_plot_configs),
  1108. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1109. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1110. )
  1111. # Generating quality control plots in parallel
  1112. # furrr::future_map(plot_configs, function(config) {
  1113. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1114. # }, .options = furrr_options(seed = TRUE))
  1115. # Process background strains
  1116. bg_strains <- c("YDL227C")
  1117. lapply(bg_strains, function(strain) {
  1118. message("Processing background strain: ", strain)
  1119. # Handle missing data by setting zero values to NA
  1120. # and then removing any rows with NA in L col
  1121. df_bg <- df_na %>%
  1122. filter(OrfRep == strain) %>%
  1123. mutate(
  1124. L = if_else(L == 0, NA, L),
  1125. K = if_else(K == 0, NA, K),
  1126. r = if_else(r == 0, NA, r),
  1127. AUC = if_else(AUC == 0, NA, AUC)
  1128. ) %>%
  1129. filter(!is.na(L))
  1130. # Recalculate summary statistics for the background strain
  1131. message("Calculating summary statistics for background strain")
  1132. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1133. summary_stats_bg <- ss_bg$summary_stats
  1134. write.csv(summary_stats_bg,
  1135. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1136. row.names = FALSE)
  1137. # Set the missing values to the highest theoretical value at each drug conc for L
  1138. # Leave other values as 0 for the max/min
  1139. df_reference <- df_na_stats %>% # formerly X2_RF
  1140. filter(OrfRep == strain) %>%
  1141. filter(!is.na(L)) %>%
  1142. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1143. mutate(
  1144. max_l_theoretical = max(max_L, na.rm = TRUE),
  1145. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1146. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1147. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1148. ungroup()
  1149. # Ditto for deletion strains
  1150. df_deletion <- df_na_stats %>% # formerly X2
  1151. filter(OrfRep != strain) %>%
  1152. filter(!is.na(L)) %>%
  1153. mutate(SM = 0) %>%
  1154. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1155. mutate(
  1156. max_l_theoretical = max(max_L, na.rm = TRUE),
  1157. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1158. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1159. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1160. ungroup()
  1161. message("Calculating reference strain interaction scores")
  1162. df_reference_stats <- calculate_summary_stats(
  1163. df = df_reference,
  1164. variables = interaction_vars,
  1165. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1166. )$df_with_stats
  1167. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1168. zscore_calculations_reference <- reference_results$calculations
  1169. zscore_interactions_reference <- reference_results$interactions
  1170. zscore_interactions_reference_joined <- reference_results$full_data
  1171. message("Calculating deletion strain(s) interactions scores")
  1172. df_deletion_stats <- calculate_summary_stats(
  1173. df = df_deletion,
  1174. variables = interaction_vars,
  1175. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1176. )$df_with_stats
  1177. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1178. zscore_calculations <- deletion_results$calculations
  1179. zscore_interactions <- deletion_results$interactions
  1180. zscore_interactions_joined <- deletion_results$full_data
  1181. # Writing Z-Scores to file
  1182. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1183. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1184. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1185. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1186. # Create interaction plots
  1187. message("Generating reference interaction plots")
  1188. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1189. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1190. message("Generating deletion interaction plots")
  1191. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1192. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1193. # Define conditions for enhancers and suppressors
  1194. # TODO Add to study config?
  1195. threshold <- 2
  1196. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1197. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1198. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1199. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1200. # Subset data
  1201. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1202. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1203. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1204. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1205. # Save enhancers and suppressors
  1206. message("Writing enhancer/suppressor csv files")
  1207. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1208. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1209. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1210. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1211. # Combine conditions for enhancers and suppressors
  1212. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1213. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1214. # Save combined enhancers and suppressors
  1215. write.csv(enhancers_and_suppressors_L,
  1216. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1217. write.csv(enhancers_and_suppressors_K,
  1218. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1219. # Handle linear model based enhancers and suppressors
  1220. lm_threshold <- 2 # TODO add to study config?
  1221. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1222. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1223. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1224. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1225. # Save linear model based enhancers and suppressors
  1226. message("Writing linear model enhancer/suppressor csv files")
  1227. write.csv(enhancers_lm_L,
  1228. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1229. write.csv(suppressors_lm_L,
  1230. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1231. write.csv(enhancers_lm_K,
  1232. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1233. write.csv(suppressors_lm_K,
  1234. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1235. message("Generating rank plots")
  1236. rank_plot_configs <- generate_rank_plot_configs(
  1237. df = zscore_interactions_joined,
  1238. is_lm = FALSE,
  1239. adjust = TRUE
  1240. )
  1241. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1242. plot_configs = rank_plot_configs)
  1243. message("Generating ranked linear model plots")
  1244. rank_lm_plot_configs <- generate_rank_plot_configs(
  1245. df = zscore_interactions_joined,
  1246. is_lm = TRUE,
  1247. adjust = TRUE
  1248. )
  1249. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1250. plot_configs = rank_lm_plot_configs)
  1251. message("Generating filtered ranked plots")
  1252. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1253. df = zscore_interactions_filtered,
  1254. is_lm = FALSE,
  1255. adjust = FALSE,
  1256. overlap_color = TRUE
  1257. )
  1258. generate_and_save_plots(
  1259. out_dir = out_dir,
  1260. filename = "RankPlots_na_rm",
  1261. plot_configs = rank_plot_filtered_configs)
  1262. message("Generating filtered ranked linear model plots")
  1263. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1264. df = zscore_interactions_filtered,
  1265. is_lm = TRUE,
  1266. adjust = FALSE,
  1267. overlap_color = TRUE
  1268. )
  1269. generate_and_save_plots(
  1270. out_dir = out_dir,
  1271. filename = "rank_plots_lm_na_rm",
  1272. plot_configs = rank_plot_lm_filtered_configs)
  1273. message("Generating correlation curve parameter pair plots")
  1274. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1275. generate_and_save_plots(
  1276. out_dir = out_dir,
  1277. filename = "correlation_cpps",
  1278. plot_configs = correlation_plot_configs,
  1279. )
  1280. })
  1281. })
  1282. }
  1283. main()
  1284. # For future simplification of joined dataframes
  1285. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))