calculate_interaction_zscores.R 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("unix")
  10. })
  11. options(warn = 2)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.factor(conc_num)
  115. # conc_num_factor = factor(conc_num, levels = sort(unique(conc_num)))
  116. # conc_num_numeric = as.numeric(conc_num_factor) - 1
  117. )
  118. return(df)
  119. }
  120. # Update Gene names using the SGD gene list
  121. update_gene_names <- function(df, sgd_gene_list) {
  122. # Load SGD gene list
  123. genes <- read.delim(file = sgd_gene_list,
  124. quote = "", header = FALSE,
  125. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  126. # Create a named vector for mapping ORF to GeneName
  127. gene_map <- setNames(genes$V5, genes$V4)
  128. # Vectorized match to find the GeneName from gene_map
  129. mapped_genes <- gene_map[df$ORF]
  130. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  131. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  132. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  133. df <- df %>%
  134. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  135. return(df)
  136. }
  137. # Calculate summary statistics for all variables
  138. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  139. # Summarize the variables within the grouped data
  140. summary_stats <- df %>%
  141. group_by(across(all_of(group_vars))) %>%
  142. summarise(
  143. N = sum(!is.na(L)),
  144. across(all_of(variables), list(
  145. mean = ~mean(., na.rm = TRUE),
  146. median = ~median(., na.rm = TRUE),
  147. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  148. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  149. sd = ~sd(., na.rm = TRUE),
  150. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  151. ), .names = "{.fn}_{.col}")
  152. )
  153. # print(summary_stats)
  154. # Prevent .x and .y suffix issues by renaming columns
  155. df_cleaned <- df %>%
  156. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  157. # Join the stats back to the original dataframe
  158. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  159. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  160. }
  161. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  162. # Calculate total concentration variables
  163. total_conc_num <- length(unique(df$conc_num))
  164. # Pull the background means and standard deviations from zero concentration
  165. bg_means <- list(
  166. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  167. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  168. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  169. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  170. )
  171. bg_sd <- list(
  172. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  173. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  174. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  175. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  176. )
  177. stats <- df %>%
  178. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  179. summarise(
  180. N = sum(!is.na(L)),
  181. NG = sum(NG, na.rm = TRUE),
  182. DB = sum(DB, na.rm = TRUE),
  183. SM = sum(SM, na.rm = TRUE),
  184. across(all_of(variables), list(
  185. mean = ~mean(., na.rm = TRUE),
  186. median = ~median(., na.rm = TRUE),
  187. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  188. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  189. sd = ~sd(., na.rm = TRUE),
  190. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  191. ), .names = "{.fn}_{.col}")
  192. )
  193. stats <- df %>%
  194. group_by(OrfRep, Gene, num) %>%
  195. mutate(
  196. WT_L = mean_L,
  197. WT_K = mean_K,
  198. WT_r = mean_r,
  199. WT_AUC = mean_AUC,
  200. WT_sd_L = sd_L,
  201. WT_sd_K = sd_K,
  202. WT_sd_r = sd_r,
  203. WT_sd_AUC = sd_AUC
  204. )
  205. stats <- stats %>%
  206. mutate(
  207. Raw_Shift_L = first(mean_L) - bg_means$L,
  208. Raw_Shift_K = first(mean_K) - bg_means$K,
  209. Raw_Shift_r = first(mean_r) - bg_means$r,
  210. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  211. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  212. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  213. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  214. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  215. )
  216. stats <- stats %>%
  217. mutate(
  218. Exp_L = WT_L + Raw_Shift_L,
  219. Exp_K = WT_K + Raw_Shift_K,
  220. Exp_r = WT_r + Raw_Shift_r,
  221. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  222. Delta_L = mean_L - Exp_L,
  223. Delta_K = mean_K - Exp_K,
  224. Delta_r = mean_r - Exp_r,
  225. Delta_AUC = mean_AUC - Exp_AUC
  226. )
  227. stats <- stats %>%
  228. mutate(
  229. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  230. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  231. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  232. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  233. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  234. )
  235. stats <- stats %>%
  236. mutate(
  237. Zscore_L = Delta_L / WT_sd_L,
  238. Zscore_K = Delta_K / WT_sd_K,
  239. Zscore_r = Delta_r / WT_sd_r,
  240. Zscore_AUC = Delta_AUC / WT_sd_AUC
  241. )
  242. # Calculate linear models
  243. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  244. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  245. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  246. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  247. interactions <- stats %>%
  248. group_by(OrfRep, Gene, num) %>%
  249. summarise(
  250. OrfRep = first(OrfRep),
  251. Gene = first(Gene),
  252. num = first(num),
  253. conc_num = first(conc_num),
  254. conc_num_factor = first(conc_num_factor),
  255. Raw_Shift_L = first(Raw_Shift_L),
  256. Raw_Shift_K = first(Raw_Shift_K),
  257. Raw_Shift_r = first(Raw_Shift_r),
  258. Raw_Shift_AUC = first(Raw_Shift_AUC),
  259. Z_Shift_L = first(Z_Shift_L),
  260. Z_Shift_K = first(Z_Shift_K),
  261. Z_Shift_r = first(Z_Shift_r),
  262. Z_Shift_AUC = first(Z_Shift_AUC),
  263. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  264. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  265. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  266. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  267. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  268. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  269. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  270. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  271. R_Squared_L = summary(lm_L)$r.squared,
  272. R_Squared_K = summary(lm_K)$r.squared,
  273. R_Squared_r = summary(lm_r)$r.squared,
  274. R_Squared_AUC = summary(lm_AUC)$r.squared,
  275. lm_intercept_L = coef(lm_L)[1],
  276. lm_slope_L = coef(lm_L)[2],
  277. lm_intercept_K = coef(lm_K)[1],
  278. lm_slope_K = coef(lm_K)[2],
  279. lm_intercept_r = coef(lm_r)[1],
  280. lm_slope_r = coef(lm_r)[2],
  281. lm_intercept_AUC = coef(lm_AUC)[1],
  282. lm_slope_AUC = coef(lm_AUC)[2],
  283. NG = sum(NG, na.rm = TRUE),
  284. DB = sum(DB, na.rm = TRUE),
  285. SM = sum(SM, na.rm = TRUE)
  286. )
  287. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  288. interactions <- interactions %>%
  289. mutate(
  290. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  291. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  292. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  293. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  294. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  295. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  296. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  297. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  298. ) %>%
  299. arrange(desc(Z_lm_L), desc(NG))
  300. # Declare column order for output
  301. calculations <- stats %>%
  302. select(
  303. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  304. "mean_L", "mean_K", "mean_r", "mean_AUC",
  305. "median_L", "median_K", "median_r", "median_AUC",
  306. "sd_L", "sd_K", "sd_r", "sd_AUC",
  307. "se_L", "se_K", "se_r", "se_AUC",
  308. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  309. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  310. "WT_L", "WT_K", "WT_r", "WT_AUC",
  311. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  312. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  313. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  314. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  315. "NG", "SM", "DB")
  316. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  317. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  318. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  319. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  320. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  321. calculations_joined = calculations_joined))
  322. }
  323. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  324. message("Generating ", file_name, ".pdf and ", file_name, ".html")
  325. # Prepare lists to collect plots
  326. static_plots <- list()
  327. plotly_plots <- list()
  328. for (i in seq_along(plot_configs)) {
  329. config <- plot_configs[[i]]
  330. df <- config$df
  331. # Build the aes_mapping based on config
  332. aes_mapping <- if (is.null(config$color_var)) {
  333. if (is.null(config$y_var)) {
  334. aes(x = .data[[config$x_var]])
  335. } else {
  336. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  337. }
  338. } else {
  339. if (is.null(config$y_var)) {
  340. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  341. } else {
  342. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  343. }
  344. }
  345. # Start building the plot with aes_mapping
  346. plot_base <- ggplot(df, aes_mapping)
  347. # Use appropriate helper function based on plot type
  348. plot <- switch(config$plot_type,
  349. "scatter" = generate_scatter_plot(plot_base, config),
  350. "box" = generate_box_plot(plot_base, config),
  351. "density" = plot_base + geom_density(),
  352. "bar" = plot_base + geom_bar(),
  353. plot_base # default case if no type matches
  354. )
  355. # Apply additional settings if provided
  356. if (!is.null(config$legend_position)) {
  357. plot <- plot + theme(legend.position = config$legend_position)
  358. }
  359. # Add title and labels if provided
  360. if (!is.null(config$title)) {
  361. plot <- plot + ggtitle(config$title)
  362. }
  363. if (!is.null(config$x_label)) {
  364. plot <- plot + xlab(config$x_label)
  365. }
  366. if (!is.null(config$y_label)) {
  367. plot <- plot + ylab(config$y_label)
  368. }
  369. # Add interactive tooltips for plotly plots
  370. tooltip_vars <- c("x", "y") # default tooltip variables
  371. if (!is.null(config$tooltip_vars)) {
  372. tooltip_vars <- config$tooltip_vars
  373. } else {
  374. # Include default variables based on config
  375. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  376. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  377. } else if (!is.null(config$gene_point) && config$gene_point) {
  378. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  379. } else {
  380. # Include x and y variables by default
  381. tooltip_vars <- c("x", "y")
  382. }
  383. }
  384. # Convert to plotly object
  385. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  386. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  387. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  388. }
  389. # Add plots to lists
  390. static_plots[[i]] <- plot
  391. plotly_plots[[i]] <- plotly_plot
  392. }
  393. # Save static PDF plots
  394. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  395. lapply(static_plots, print)
  396. dev.off()
  397. # Combine and save interactive HTML plots
  398. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plotly_plots), margin = 0.05)
  399. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  400. }
  401. generate_scatter_plot <- function(plot, config) {
  402. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  403. plot <- plot + geom_point(
  404. shape = config$shape %||% 3,
  405. size = config$size %||% 0.2
  406. )
  407. } else if (!is.null(config$gene_point) && config$gene_point) {
  408. plot <- plot + geom_point(
  409. shape = config$shape %||% 3,
  410. size = config$size %||% 0.2,
  411. position = "jitter"
  412. )
  413. } else {
  414. plot <- plot + geom_point(
  415. shape = config$shape %||% 3,
  416. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
  417. )
  418. }
  419. # Add smooth line if specified
  420. if (!is.null(config$add_smooth) && config$add_smooth) {
  421. plot <- if (!is.null(config$lm_line)) {
  422. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  423. } else {
  424. plot + geom_smooth(method = "lm", se = FALSE)
  425. }
  426. }
  427. # Add SD bands (iterate over sd_band only here)
  428. if (!is.null(config$sd_band)) {
  429. for (i in config$sd_band) {
  430. plot <- plot +
  431. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  432. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  433. geom_hline(yintercept = c(-i, i), color = "gray")
  434. }
  435. }
  436. # Add error bars if specified
  437. if (!is.null(config$error_bar) && config$error_bar) {
  438. y_mean_col <- paste0("mean_", config$y_var)
  439. y_sd_col <- paste0("sd_", config$y_var)
  440. plot <- plot + geom_errorbar(
  441. aes(
  442. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  443. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  444. ),
  445. alpha = 0.3
  446. )
  447. }
  448. # Add x-axis customization if specified
  449. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  450. plot <- plot + scale_x_discrete(
  451. name = config$x_label,
  452. breaks = config$x_breaks,
  453. labels = config$x_labels
  454. )
  455. }
  456. # Use coord_cartesian for zooming in without removing data outside the range
  457. if (!is.null(config$coord_cartesian)) {
  458. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  459. }
  460. # Use scale_y_continuous for setting the y-axis limits
  461. if (!is.null(config$ylim_vals)) {
  462. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  463. }
  464. # Add annotations if specified
  465. if (!is.null(config$annotations)) {
  466. for (annotation in config$annotations) {
  467. plot <- plot + annotate("text",
  468. x = annotation$x,
  469. y = annotation$y,
  470. label = annotation$label,
  471. na.rm = TRUE)
  472. }
  473. }
  474. # Add titles and themes if specified
  475. if (!is.null(config$title)) {
  476. plot <- plot + ggtitle(config$title)
  477. }
  478. if (!is.null(config$legend_position)) {
  479. plot <- plot + theme(legend.position = config$legend_position)
  480. }
  481. return(plot)
  482. }
  483. generate_box_plot <- function(plot, config) {
  484. plot <- plot + geom_boxplot()
  485. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  486. plot <- plot + scale_x_discrete(
  487. name = config$x_label,
  488. breaks = config$x_breaks,
  489. labels = config$x_labels
  490. )
  491. }
  492. if (!is.null(config$coord_cartesian)) {
  493. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  494. }
  495. return(plot)
  496. }
  497. generate_interaction_plot_configs <- function(df, variables) {
  498. configs <- list()
  499. limits_map <- list(
  500. L = c(-65, 65),
  501. K = c(-65, 65),
  502. r = c(-0.65, 0.65),
  503. AUC = c(-6500, 6500)
  504. )
  505. # Define functions to generate annotation labels
  506. annotation_labels <- list(
  507. ZShift = function(df, var) {
  508. val <- df[[paste0("Z_Shift_", var)]]
  509. paste("ZShift =", round(val, 2))
  510. },
  511. lm_ZScore = function(df, var) {
  512. val <- df[[paste0("Z_lm_", var)]]
  513. paste("lm ZScore =", round(val, 2))
  514. },
  515. NG = function(df, var) paste("NG =", df$NG),
  516. DB = function(df, var) paste("DB =", df$DB),
  517. SM = function(df, var) paste("SM =", df$SM)
  518. )
  519. results <- filter_data_for_plots(df, variables, limits_map)
  520. df_filtered <- results$df_filtered
  521. lm_lines <- filtered_results$lm_lines
  522. # Iterate over each variable to create plot configurations
  523. for (variable in variables) {
  524. # Calculate x and y positions for annotations based on filtered data
  525. x_levels <- levels(df_filtered$conc_num_factor)
  526. num_levels <- length(x_levels)
  527. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis positions
  528. y_range <- limits_map[[variable]]
  529. y_min <- min(y_range)
  530. y_max <- max(y_range)
  531. y_span <- y_max - y_min
  532. # Adjust y positions as fractions of y-span
  533. annotation_positions <- list(
  534. ZShift = y_max - 0.1 * y_span,
  535. lm_ZScore = y_max - 0.2 * y_span,
  536. NG = y_min + 0.2 * y_span,
  537. DB = y_min + 0.1 * y_span,
  538. SM = y_min + 0.05 * y_span
  539. )
  540. # Generate annotations
  541. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  542. y_pos <- annotation_positions[[annotation_name]]
  543. label_func <- annotation_labels[[annotation_name]]
  544. if (!is.null(label_func)) {
  545. label <- label_func(df_filtered, variable)
  546. list(x = x_pos, y = y_pos, label = label)
  547. } else {
  548. message(paste("Warning: No annotation function found for", annotation_name))
  549. NULL
  550. }
  551. })
  552. # Remove NULL annotations
  553. annotations <- Filter(Negate(is.null), annotations)
  554. # Create scatter plot config
  555. configs[[length(configs) + 1]] <- list(
  556. df = df_filtered,
  557. x_var = "conc_num_factor",
  558. y_var = variable,
  559. plot_type = "scatter",
  560. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filteredGene[1]),
  561. ylim_vals = y_range,
  562. annotations = annotations,
  563. lm_line = lm_lines[[variable]],
  564. error_bar = TRUE,
  565. x_breaks = levels(df_filtered$conc_num_factor),
  566. x_labels = levels(df_filtered$conc_num_factor),
  567. x_label = unique(df$Drug[1]),
  568. position = "jitter",
  569. coord_cartesian = y_range # Use the actual y-limits
  570. )
  571. # Create box plot config
  572. configs[[length(configs) + 1]] <- list(
  573. df = df_filtered,
  574. x_var = "conc_num_factor",
  575. y_var = variable,
  576. plot_type = "box",
  577. title = sprintf("%s %s (Boxplot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  578. ylim_vals = y_range,
  579. annotations = annotations,
  580. error_bar = FALSE,
  581. x_breaks = levels(df_filtered$conc_num_factor),
  582. x_labels = levels(df_filtered$conc_num_factor),
  583. x_label = unique(df_filtered$Drug[1]),
  584. coord_cartesian = y_range
  585. )
  586. }
  587. return(configs)
  588. }
  589. generate_rank_plot_configs <- function(df, interaction_vars, rank_vars = c("L", "K"), is_lm = FALSE, adjust = FALSE) {
  590. for (var in interaction_vars) {
  591. avg_zscore_col <- paste0("Avg_Zscore_", var)
  592. z_lm_col <- paste0("Z_lm_", var)
  593. rank_col <- paste0("Rank_", var)
  594. rank_lm_col <- paste0("Rank_lm_", var)
  595. if (adjust) {
  596. # Replace NA with 0.001 for interaction variables
  597. df[[avg_zscore_col]] <- if_else(is.na(df[[avg_zscore_col]]), 0.001, df[[avg_zscore_col]])
  598. df[[z_lm_col]] <- if_else(is.na(df[[z_lm_col]]), 0.001, df[[z_lm_col]])
  599. }
  600. # Compute ranks for interaction variables
  601. df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
  602. df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
  603. }
  604. # Initialize list to store plot configurations
  605. configs <- list()
  606. # Generate plot configurations for rank variables (L and K) with sd bands
  607. for (var in rank_vars) {
  608. if (is_lm) {
  609. rank_var <- paste0("Rank_lm_", var)
  610. zscore_var <- paste0("Z_lm_", var)
  611. plot_title_prefix <- "Interaction Z score vs. Rank for"
  612. } else {
  613. rank_var <- paste0("Rank_", var)
  614. zscore_var <- paste0("Avg_Zscore_", var)
  615. plot_title_prefix <- "Average Z score vs. Rank for"
  616. }
  617. # Create plot configurations for each SD band
  618. for (sd_band in c(1, 2, 3)) {
  619. # Annotated version
  620. configs[[length(configs) + 1]] <- list(
  621. df = df,
  622. x_var = rank_var,
  623. y_var = zscore_var,
  624. plot_type = "scatter",
  625. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  626. sd_band = sd_band,
  627. enhancer_label = list(
  628. x = nrow(df) / 2,
  629. y = 10,
  630. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  631. ),
  632. suppressor_label = list(
  633. x = nrow(df) / 2,
  634. y = -10,
  635. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  636. ),
  637. shape = 3,
  638. size = 0.1
  639. )
  640. # Non-annotated version (_notext)
  641. configs[[length(configs) + 1]] <- list(
  642. df = df,
  643. x_var = rank_var,
  644. y_var = zscore_var,
  645. plot_type = "scatter",
  646. title = paste(plot_title_prefix, var, "above", sd_band, "SD No Annotations"),
  647. sd_band = sd_band,
  648. enhancer_label = NULL,
  649. suppressor_label = NULL,
  650. shape = 3,
  651. size = 0.1
  652. )
  653. }
  654. }
  655. return(configs)
  656. }
  657. generate_correlation_plot_configs <- function(df, variables) {
  658. configs <- list()
  659. for (variable in variables) {
  660. z_lm_var <- paste0("Z_lm_", variable)
  661. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  662. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  663. configs[[length(configs) + 1]] <- list(
  664. df = df,
  665. x_var = avg_zscore_var,
  666. y_var = z_lm_var,
  667. plot_type = "scatter",
  668. title = paste("Avg Zscore vs lm", variable),
  669. color_var = "Overlap",
  670. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  671. shape = 3,
  672. geom_smooth = TRUE,
  673. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  674. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  675. legend_position = "right"
  676. )
  677. }
  678. return(configs)
  679. }
  680. filter_and_print_non_finite <- function(df, vars_to_check, print_vars) {
  681. non_finite_rows <- df %>% filter(if_any(all_of(vars_to_check), ~ !is.finite(.)))
  682. if (nrow(non_finite_rows) > 0) {
  683. message("Removing the following non-finite rows:")
  684. print(non_finite_rows %>% select(all_of(print_vars)), n = 200)
  685. }
  686. df %>% filter(if_all(all_of(vars_to_check), is.finite))
  687. }
  688. filter_data_for_plots <- function(df, variables, limits_map) {
  689. # Initialize lists to store lm lines and filtered data
  690. lm_lines <- list()
  691. # Print out NA and out-of-range data separately
  692. for (variable in variables) {
  693. # Get y-limits for the variable
  694. ylim_vals <- limits_map[[variable]]
  695. # Extract precomputed linear model coefficients
  696. lm_lines[[variable]] <- list(
  697. intercept = df[[paste0("lm_intercept_", variable)]],
  698. slope = df[[paste0("lm_slope_", variable)]]
  699. )
  700. # Convert variable name to symbol for dplyr
  701. y_var_sym <- sym(variable)
  702. # Identify missing data and print it
  703. missing_data <- df %>% filter(is.na(!!y_var_sym))
  704. if (nrow(missing_data) > 0) {
  705. message("Missing data for variable ", variable, ":")
  706. print(missing_data)
  707. }
  708. # Identify out-of-range data and print it
  709. out_of_range_data <- df %>% filter(
  710. !is.na(!!y_var_sym) &
  711. (!!y_var_sym < min(ylim_vals, na.rm = TRUE) | !!y_var_sym > max(ylim_vals, na.rm = TRUE))
  712. )
  713. if (nrow(out_of_range_data) > 0) {
  714. message("Out-of-range data for variable ", variable, ":")
  715. print(out_of_range_data)
  716. }
  717. }
  718. # Perform all filtering at once for all variables
  719. df_filtered <- df %>% filter(across(all_of(variables), ~ !is.na(.))) %>%
  720. filter(across(all_of(variables), ~ between(., limits_map[[cur_column()]][1], limits_map[[cur_column()]][2]), .names = "filter_{col}"))
  721. # Return the filtered dataframe and lm lines
  722. return(list(
  723. df_filtered = df_filtered,
  724. lm_lines = lm_lines
  725. ))
  726. }
  727. main <- function() {
  728. lapply(names(args$experiments), function(exp_name) {
  729. exp <- args$experiments[[exp_name]]
  730. exp_path <- exp$path
  731. exp_sd <- exp$sd
  732. out_dir <- file.path(exp_path, "zscores")
  733. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  734. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  735. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  736. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  737. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  738. orf_group_vars <- c("OrfRep", "Gene", "num")
  739. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  740. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  741. message("Loading and filtering data for experiment: ", exp_name)
  742. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  743. update_gene_names(args$sgd_gene_list) %>%
  744. as_tibble()
  745. # Quality Control: Filter rows above tolerance
  746. df_above_tolerance <- df %>% filter(DB == 1)
  747. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  748. df_no_zeros <- df_na %>% filter(L > 0)
  749. # Save some constants
  750. max_conc <- max(df$conc_num)
  751. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  752. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  753. message("Calculating summary statistics before quality control")
  754. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  755. df_stats <- ss$df_with_stats
  756. df_filtered_stats <- filter_and_print_non_finite(df_stats, "L", print_vars)
  757. message("Calculating summary statistics after quality control")
  758. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  759. df_na_ss <- ss$summary_stats
  760. df_na_stats <- ss$df_with_stats
  761. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  762. # Filter out non-finite rows for plotting
  763. df_na_filtered_stats <- filter_and_print_non_finite(df_na_stats, "L", print_vars)
  764. message("Calculating summary statistics after quality control excluding zero values")
  765. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  766. df_no_zeros_stats <- ss$df_with_stats
  767. df_no_zeros_filtered_stats <- filter_and_print_non_finite(df_no_zeros_stats, "L", print_vars)
  768. message("Filtering by 2SD of K")
  769. df_na_within_2sd_k <- df_na_stats %>%
  770. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  771. df_na_outside_2sd_k <- df_na_stats %>%
  772. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  773. message("Calculating summary statistics for L within 2SD of K")
  774. # TODO We're omitting the original z_max calculation, not sure if needed?
  775. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  776. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  777. write.csv(ss$summary_stats, file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  778. message("Calculating summary statistics for L outside 2SD of K")
  779. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  780. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  781. write.csv(ss$summary_stats, file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  782. # Each plots list corresponds to a file
  783. l_vs_k_plots <- list(
  784. list(
  785. df = df,
  786. x_var = "L",
  787. y_var = "K",
  788. plot_type = "scatter",
  789. delta_bg_point = TRUE,
  790. title = "Raw L vs K before quality control",
  791. color_var = "conc_num_factor",
  792. error_bar = FALSE,
  793. legend_position = "right"
  794. )
  795. )
  796. frequency_delta_bg_plots <- list(
  797. list(
  798. df = df_filtered_stats,
  799. x_var = "delta_bg",
  800. y_var = NULL,
  801. plot_type = "density",
  802. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  803. color_var = "conc_num_factor",
  804. x_label = "Delta Background",
  805. y_label = "Density",
  806. error_bar = FALSE,
  807. legend_position = "right"),
  808. list(
  809. df = df_filtered_stats,
  810. x_var = "delta_bg",
  811. y_var = NULL,
  812. plot_type = "bar",
  813. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  814. color_var = "conc_num_factor",
  815. x_label = "Delta Background",
  816. y_label = "Count",
  817. error_bar = FALSE,
  818. legend_position = "right")
  819. )
  820. above_threshold_plots <- list(
  821. list(
  822. df = df_above_tolerance,
  823. x_var = "L",
  824. y_var = "K",
  825. plot_type = "scatter",
  826. delta_bg_point = TRUE,
  827. title = paste("Raw L vs K for strains above Delta Background threshold of",
  828. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  829. color_var = "conc_num_factor",
  830. position = "jitter",
  831. annotations = list(
  832. list(
  833. x = l_half_median,
  834. y = k_half_median,
  835. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  836. )
  837. ),
  838. error_bar = FALSE,
  839. legend_position = "right"
  840. )
  841. )
  842. plate_analysis_plots <- list()
  843. for (var in summary_vars) {
  844. for (stage in c("before", "after")) {
  845. if (stage == "before") {
  846. df_plot <- df_filtered_stats
  847. } else {
  848. df_plot <- df_na_filtered_stats
  849. }
  850. config <- list(
  851. df = df_plot,
  852. x_var = "scan",
  853. y_var = var,
  854. plot_type = "scatter",
  855. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  856. error_bar = TRUE,
  857. color_var = "conc_num_factor",
  858. position = "jitter")
  859. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  860. }
  861. }
  862. plate_analysis_boxplots <- list()
  863. for (var in summary_vars) {
  864. for (stage in c("before", "after")) {
  865. if (stage == "before") {
  866. df_plot <- df_filtered_stats
  867. } else {
  868. df_plot <- df_na_filtered_stats
  869. }
  870. config <- list(
  871. df = df_plot,
  872. x_var = "scan",
  873. y_var = var,
  874. plot_type = "box",
  875. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  876. error_bar = FALSE,
  877. color_var = "conc_num_factor")
  878. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  879. }
  880. }
  881. plate_analysis_no_zeros_plots <- list()
  882. for (var in summary_vars) {
  883. config <- list(
  884. df = df_no_zeros_filtered_stats,
  885. x_var = "scan",
  886. y_var = var,
  887. plot_type = "scatter",
  888. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  889. error_bar = TRUE,
  890. color_var = "conc_num_factor",
  891. position = "jitter")
  892. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  893. }
  894. plate_analysis_no_zeros_boxplots <- list()
  895. for (var in summary_vars) {
  896. config <- list(
  897. df = df_no_zeros_filtered_stats,
  898. x_var = "scan",
  899. y_var = var,
  900. plot_type = "box",
  901. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  902. error_bar = FALSE,
  903. color_var = "conc_num_factor"
  904. )
  905. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  906. }
  907. l_outside_2sd_k_plots <- list(
  908. list(
  909. df = df_na_l_outside_2sd_k_stats,
  910. x_var = "L",
  911. y_var = "K",
  912. plot_type = "scatter",
  913. delta_bg_point = TRUE,
  914. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  915. color_var = "conc_num_factor",
  916. position = "jitter",
  917. legend_position = "right"
  918. )
  919. )
  920. delta_bg_outside_2sd_k_plots <- list(
  921. list(
  922. df = df_na_l_outside_2sd_k_stats,
  923. x_var = "delta_bg",
  924. y_var = "K",
  925. plot_type = "scatter",
  926. gene_point = TRUE,
  927. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  928. color_var = "conc_num_factor",
  929. position = "jitter",
  930. legend_position = "right"
  931. )
  932. )
  933. message("Generating quality control plots")
  934. # generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  935. # generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  936. # generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  937. # generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  938. # generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  939. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  940. # generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  941. # generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  942. # generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  943. # TODO: Originally this filtered L NA's
  944. # Let's try to avoid for now since stats have already been calculated
  945. # Process background strains
  946. bg_strains <- c("YDL227C")
  947. lapply(bg_strains, function(strain) {
  948. message("Processing background strain: ", strain)
  949. # Handle missing data by setting zero values to NA
  950. # and then removing any rows with NA in L col
  951. df_bg <- df_na %>%
  952. filter(OrfRep == strain) %>%
  953. mutate(
  954. L = if_else(L == 0, NA, L),
  955. K = if_else(K == 0, NA, K),
  956. r = if_else(r == 0, NA, r),
  957. AUC = if_else(AUC == 0, NA, AUC)
  958. ) %>%
  959. filter(!is.na(L))
  960. # Recalculate summary statistics for the background strain
  961. message("Calculating summary statistics for background strain")
  962. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  963. summary_stats_bg <- ss_bg$summary_stats
  964. # df_bg_stats <- ss_bg$df_with_stats
  965. write.csv(summary_stats_bg,
  966. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  967. row.names = FALSE)
  968. # Filter reference and deletion strains
  969. # Formerly X2_RF (reference strains)
  970. df_reference <- df_na_stats %>%
  971. filter(OrfRep == strain) %>%
  972. mutate(SM = 0)
  973. # Formerly X2 (deletion strains)
  974. df_deletion <- df_na_stats %>%
  975. filter(OrfRep != strain) %>%
  976. mutate(SM = 0)
  977. # Set the missing values to the highest theoretical value at each drug conc for L
  978. # Leave other values as 0 for the max/min
  979. reference_strain <- df_reference %>%
  980. group_by(conc_num) %>%
  981. mutate(
  982. max_l_theoretical = max(max_L, na.rm = TRUE),
  983. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  984. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  985. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  986. ungroup()
  987. # Ditto for deletion strains
  988. deletion_strains <- df_deletion %>%
  989. group_by(conc_num) %>%
  990. mutate(
  991. max_l_theoretical = max(max_L, na.rm = TRUE),
  992. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  993. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  994. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  995. ungroup()
  996. message("Calculating interaction scores")
  997. interaction_vars <- c("L", "K", "r", "AUC")
  998. message("Calculating reference strain(s)")
  999. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  1000. zscores_calculations_reference <- reference_results$calculations
  1001. zscores_interactions_reference <- reference_results$interactions
  1002. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1003. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1004. message("Calculating deletion strain(s)")
  1005. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  1006. zscores_calculations <- deletion_results$calculations
  1007. zscores_interactions <- deletion_results$interactions
  1008. zscores_calculations_joined <- deletion_results$calculations_joined
  1009. zscores_interactions_joined <- deletion_results$interactions_joined
  1010. # Writing Z-Scores to file
  1011. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1012. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1013. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1014. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1015. # Create interaction plots
  1016. message("Generating reference interaction plots")
  1017. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1018. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1019. message("Generating deletion interaction plots")
  1020. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1021. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1022. # Define conditions for enhancers and suppressors
  1023. # TODO Add to study config file?
  1024. threshold <- 2
  1025. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1026. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1027. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1028. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1029. # Subset data
  1030. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1031. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1032. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1033. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1034. # Save enhancers and suppressors
  1035. message("Writing enhancer/suppressor csv files")
  1036. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1037. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1038. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1039. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1040. # Combine conditions for enhancers and suppressors
  1041. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1042. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1043. # Save combined enhancers and suppressors
  1044. write.csv(enhancers_and_suppressors_L,
  1045. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1046. write.csv(enhancers_and_suppressors_K,
  1047. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1048. # Handle linear model based enhancers and suppressors
  1049. lm_threshold <- 2
  1050. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1051. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1052. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1053. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1054. # Save linear model based enhancers and suppressors
  1055. message("Writing linear model enhancer/suppressor csv files")
  1056. write.csv(enhancers_lm_L,
  1057. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1058. write.csv(suppressors_lm_L,
  1059. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1060. write.csv(enhancers_lm_K,
  1061. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1062. write.csv(suppressors_lm_K,
  1063. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1064. message("Generating rank plots")
  1065. # Generate rank plots for L and K using standard ranks
  1066. rank_plot_configs <- generate_rank_plot_configs(
  1067. df = zscores_interactions,
  1068. interaction_vars = interaction_vars,
  1069. is_lm = FALSE,
  1070. adjust = TRUE
  1071. )
  1072. # Save the generated rank plots for L and K
  1073. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1074. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1075. message("Generating ranked linear model plots")
  1076. # Generate rank plots for L and K using linear model (`lm`) ranks
  1077. rank_lm_plot_configs <- generate_rank_plot_configs(
  1078. df = zscores_interactions,
  1079. interaction_vars = interaction_vars,
  1080. is_lm = TRUE,
  1081. adjust = TRUE
  1082. )
  1083. # Save the linear model based rank plots for L and K
  1084. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1085. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1086. message("Filtering and reranking plots")
  1087. # Filter rows where either Z_lm_L or Avg_Zscore_L is not NA
  1088. # Formerly X_NArm
  1089. zscores_interactions_filtered <- zscores_interactions %>%
  1090. group_by(across(all_of(orf_group_vars))) %>%
  1091. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  1092. ungroup() %>%
  1093. rowwise() %>%
  1094. mutate(
  1095. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1096. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1097. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1098. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
  1099. Overlap = case_when(
  1100. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1101. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1102. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1103. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1104. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1105. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1106. TRUE ~ "No Effect"
  1107. )
  1108. ) %>%
  1109. ungroup()
  1110. message("Generating filtered ranked plots")
  1111. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1112. df = zscores_interactions_filtered,
  1113. interaction_vars = interaction_vars,
  1114. is_lm = FALSE,
  1115. adjust = FALSE
  1116. )
  1117. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_na_rm",
  1118. plot_configs = rank_plot_filtered_configs,
  1119. grid_layout = list(ncol = 3, nrow = 2))
  1120. message("Generating filtered ranked linear model plots")
  1121. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1122. df = zscores_interactions_filtered,
  1123. interaction_vars = interaction_vars,
  1124. is_lm = TRUE,
  1125. adjust = FALSE
  1126. )
  1127. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm_na_rm",
  1128. plot_configs = rank_plot_lm_filtered_configs,
  1129. grid_layout = list(ncol = 3, nrow = 2))
  1130. message("Generating correlation plots")
  1131. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1132. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1133. plot_configs = correlation_plot_configs,
  1134. grid_layout = list(ncol = 2, nrow = 2))
  1135. })
  1136. })
  1137. }
  1138. main()