calculate_interaction_zscores.R 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. calculations <- df %>%
  177. mutate(
  178. WT_L = df$mean_L,
  179. WT_K = df$mean_K,
  180. WT_r = df$mean_r,
  181. WT_AUC = df$mean_AUC,
  182. WT_sd_L = df$sd_L,
  183. WT_sd_K = df$sd_K,
  184. WT_sd_r = df$sd_r,
  185. WT_sd_AUC = df$sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~max(., na.rm = TRUE),
  197. min = ~min(., na.rm = TRUE),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. calculations <- calculations %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. calculations <- calculations %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Delta_L = mean_L - Exp_L,
  219. Exp_K = WT_K + Raw_Shift_K,
  220. Delta_K = mean_K - Exp_K,
  221. Exp_r = WT_r + Raw_Shift_r,
  222. Delta_r = mean_r - Exp_r,
  223. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. calculations <- calculations %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. interactions <- calculations %>%
  235. mutate(
  236. lm_L = lm(Delta_L ~ conc_num_factor),
  237. lm_K = lm(Delta_K ~ conc_num_factor),
  238. lm_r = lm(Delta_r ~ conc_num_factor),
  239. lm_AUC = lm(Delta_AUC ~ conc_num_factor),
  240. Zscore_L = Delta_L / WT_sd_L,
  241. Zscore_K = Delta_K / WT_sd_K,
  242. Zscore_r = Delta_r / WT_sd_r,
  243. Zscore_AUC = Delta_AUC / WT_sd_AUC
  244. )
  245. interactions <- interactions %>%
  246. mutate(
  247. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  248. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  249. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  250. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  251. r_squared_L = summary(lm_L)$r.squared,
  252. r_squared_K = summary(lm_K)$r.squared,
  253. r_squared_r = summary(lm_r)$r.squared,
  254. r_squared_AUC = summary(lm_AUC)$r.squared,
  255. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  256. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  257. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  258. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  259. )
  260. interactions <- interactions %>%
  261. mutate(
  262. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  263. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  264. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  265. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  266. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  267. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  268. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  269. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  270. )
  271. # Declare column order for output
  272. calculations <- calculations %>%
  273. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  274. "mean_L", "mean_K", "mean_r", "mean_AUC",
  275. "median_L", "median_K", "median_r", "median_AUC",
  276. "sd_L", "sd_K", "sd_r", "sd_AUC",
  277. "se_L", "se_K", "se_r", "se_AUC",
  278. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  279. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  280. "WT_L", "WT_K", "WT_r", "WT_AUC", "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  281. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC", "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  282. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  283. "NG", "SM", "DB") %>%
  284. ungroup()
  285. # Also arrange results by Z_lm_L and NG
  286. interactions <- interactions %>%
  287. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  288. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  289. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  290. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  291. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  292. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  293. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  294. "NG", "SM", "DB") %>%
  295. arrange(desc(lm_Score_L)) %>%
  296. arrange(desc(NG)) %>%
  297. ungroup()
  298. return(list(calculations = calculations, interactions = interaction))
  299. }
  300. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  301. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  302. plots <- lapply(plot_configs, function(config) {
  303. # Log configuration details
  304. message("title: ", config$title)
  305. message("plot_type: ", config$plot_type)
  306. message("x_var: ", config$x_var)
  307. message("y_var: ", config$y_var)
  308. message("error_bar: ", config$error_bar)
  309. df <- config$df
  310. # Build the aes mapping depending on whether y_var is present
  311. aes_mapping <- if (is.null(config$y_var)) {
  312. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  313. } else {
  314. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  315. }
  316. # Initialize the plot with ggplot
  317. plot <- ggplot(df, aes_mapping)
  318. # Handle plot types explicitly
  319. if (config$plot_type == "scatter") {
  320. plot <- plot + geom_point(shape = 3)
  321. # Add geom_smooth only if specified
  322. if (!is.null(config$add_smooth) && config$add_smooth) {
  323. plot <- plot + geom_smooth(method = "lm", se = FALSE)
  324. }
  325. } else if (config$plot_type == "rank") {
  326. plot <- plot + geom_point(size = 0.1, shape = 3)
  327. if (!is.null(config$sd_band)) {
  328. for (i in seq_len(config$sd_band)) {
  329. plot <- plot +
  330. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  331. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  332. geom_hline(yintercept = c(-i, i), color = "gray")
  333. }
  334. }
  335. if (!is.null(config$enhancer_label)) {
  336. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label) +
  337. annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  338. }
  339. } else if (config$plot_type == "correlation") {
  340. plot <- plot + geom_point(shape = 3, color = "gray70") +
  341. geom_smooth(method = "lm", color = "tomato3") +
  342. annotate("text", x = 0, y = 0, label = config$correlation_text)
  343. } else if (config$plot_type == "box") {
  344. plot <- plot + geom_boxplot()
  345. } else if (config$plot_type == "density") {
  346. plot <- plot + geom_density()
  347. } else if (config$plot_type == "bar") {
  348. plot <- plot + geom_bar()
  349. } else {
  350. plot <- plot + geom_point(shape = 3) + geom_smooth(method = "lm", se = FALSE)
  351. }
  352. # Handle error bars if needed
  353. if (!is.null(config$error_bar) && config$error_bar) {
  354. y_mean_col <- paste0("mean_", config$y_var)
  355. y_sd_col <- paste0("sd_", config$y_var)
  356. plot <- plot + geom_errorbar(aes(
  357. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  358. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)), width = 0.1) +
  359. geom_point(aes(y = !!sym(y_mean_col)), size = 0.6)
  360. }
  361. # Apply y-limits if provided
  362. if (!is.null(config$ylim_vals)) {
  363. plot <- plot + coord_cartesian(ylim = config$ylim_vals)
  364. }
  365. # Apply titles, labels, and legends
  366. plot <- plot + ggtitle(config$title) +
  367. theme_publication(legend_position = if (!is.null(config$legend_position)) config$legend_position else "bottom") +
  368. xlab(config$x_label %||% "") + ylab(config$y_label %||% "")
  369. # Add any annotations
  370. if (!is.null(config$annotations)) {
  371. for (annotation in config$annotations) {
  372. plot <- plot + geom_text(aes(x = annotation$x, y = annotation$y, label = annotation$label))
  373. }
  374. }
  375. return(plot)
  376. })
  377. # Save the plots as PDF
  378. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  379. lapply(plots, print)
  380. dev.off()
  381. # Convert ggplot to plotly for interactive HTML output
  382. plotly_plots <- lapply(plots, function(plot) suppressWarnings(ggplotly(plot) %>% layout(legend = list(orientation = "h"))))
  383. # Combine plots in grid layout if applicable
  384. combined_plot <- subplot(plotly_plots, nrows = if (!is.null(grid_layout)) grid_layout$nrow else length(plots), margin = 0.05)
  385. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  386. }
  387. generate_interaction_plot_configs <- function(df, variables) {
  388. configs <- list()
  389. for (variable in variables) {
  390. # Define the y-limits based on the variable being plotted
  391. ylim_vals <- switch(variable,
  392. "L" = c(-65, 65),
  393. "K" = c(-65, 65),
  394. "r" = c(-0.65, 0.65),
  395. "AUC" = c(-6500, 6500)
  396. )
  397. # Dynamically generate the column names for standard deviation and delta
  398. wt_sd_col <- paste0("WT_sd_", variable)
  399. delta_var <- paste0("Delta_", variable)
  400. z_shift <- paste0("Z_Shift_", variable)
  401. z_lm <- paste0("Z_lm_", variable)
  402. # Set annotations for ZShift, Z lm Score, NG, DB, SM
  403. annotations <- list(
  404. list(x = 1, y = ifelse(variable == "L", 45, ifelse(variable == "K", 45,
  405. ifelse(variable == "r", 0.45, 4500))), label = paste("ZShift =", round(df[[z_shift]], 2))),
  406. list(x = 1, y = ifelse(variable == "L", 25, ifelse(variable == "K", 25,
  407. ifelse(variable == "r", 0.25, 2500))), label = paste("lm ZScore =", round(df[[z_lm]], 2))),
  408. list(x = 1, y = ifelse(variable == "L", -25, ifelse(variable == "K", -25,
  409. ifelse(variable == "r", -0.25, -2500))), label = paste("NG =", df$NG)),
  410. list(x = 1, y = ifelse(variable == "L", -35, ifelse(variable == "K", -35,
  411. ifelse(variable == "r", -0.35, -3500))), label = paste("DB =", df$DB)),
  412. list(x = 1, y = ifelse(variable == "L", -45, ifelse(variable == "K", -45,
  413. ifelse(variable == "r", -0.45, -4500))), label = paste("SM =", df$SM))
  414. )
  415. # Add scatter plot configuration for this variable
  416. configs[[length(configs) + 1]] <- list(
  417. df = df,
  418. x_var = "conc_num_factor",
  419. y_var = delta_var,
  420. plot_type = "scatter",
  421. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  422. ylim_vals = ylim_vals,
  423. annotations = annotations,
  424. error_bar = list(
  425. ymin = 0 - (2 * df[[wt_sd_col]][1]),
  426. ymax = 0 + (2 * df[[wt_sd_col]][1])
  427. ),
  428. x_breaks = unique(df$conc_num_factor),
  429. x_labels = unique(as.character(df$conc_num)),
  430. x_label = unique(df$Drug[1])
  431. )
  432. # Add box plot configuration for this variable
  433. configs[[length(configs) + 1]] <- list(
  434. df = df,
  435. x_var = "conc_num_factor",
  436. y_var = variable,
  437. plot_type = "box",
  438. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  439. ylim_vals = ylim_vals,
  440. annotations = annotations,
  441. error_bar = FALSE, # Boxplots typically don't need error bars
  442. x_breaks = unique(df$conc_num_factor),
  443. x_labels = unique(as.character(df$conc_num)),
  444. x_label = unique(df$Drug[1])
  445. )
  446. }
  447. return(configs)
  448. }
  449. # Adjust missing values and calculate ranks
  450. adjust_missing_and_rank <- function(df, variables) {
  451. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  452. df <- df %>%
  453. mutate(across(all_of(variables), list(
  454. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  455. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  456. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  457. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  458. ), .names = "{fn}_{col}"))
  459. return(df)
  460. }
  461. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  462. configs <- list()
  463. # Adjust titles for _lm plots if is_lm is TRUE
  464. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  465. # Annotated version (with text)
  466. for (sd_band in c(1, 2, 3)) {
  467. configs[[length(configs) + 1]] <- list(
  468. df = df,
  469. x_var = rank_var,
  470. y_var = zscore_var,
  471. plot_type = "rank",
  472. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  473. sd_band = sd_band,
  474. enhancer_label = list(
  475. x = nrow(df) / 2, y = 10,
  476. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  477. ),
  478. suppressor_label = list(
  479. x = nrow(df) / 2, y = -10,
  480. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  481. )
  482. )
  483. return(configs)
  484. }
  485. # Non-annotated version (_notext)
  486. for (sd_band in c(1, 2, 3)) {
  487. configs[[length(configs) + 1]] <- list(
  488. df = df,
  489. x_var = rank_var,
  490. y_var = zscore_var,
  491. plot_type = "rank",
  492. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  493. sd_band = sd_band,
  494. enhancer_label = NULL, # No annotations for _notext
  495. suppressor_label = NULL # No annotations for _notext
  496. )
  497. }
  498. return(configs)
  499. }
  500. generate_correlation_plot_configs <- function(df, variables) {
  501. configs <- list()
  502. for (variable in variables) {
  503. z_lm_var <- paste0("Z_lm_", variable)
  504. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  505. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  506. configs[[length(configs) + 1]] <- list(
  507. df = df,
  508. x_var = avg_zscore_var,
  509. y_var = z_lm_var,
  510. plot_type = "correlation",
  511. title = paste("Avg Zscore vs lm", variable),
  512. color_var = "Overlap",
  513. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  514. legend_position = "right"
  515. )
  516. }
  517. return(configs)
  518. }
  519. main <- function() {
  520. lapply(names(args$experiments), function(exp_name) {
  521. exp <- args$experiments[[exp_name]]
  522. exp_path <- exp$path
  523. exp_sd <- exp$sd
  524. out_dir <- file.path(exp_path, "zscores")
  525. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  526. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  527. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  528. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  529. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  530. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  531. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  532. message("Loading and filtering data")
  533. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  534. df <- update_gene_names(df, args$sgd_gene_list)
  535. df <- as_tibble(df)
  536. # Filter rows that are above tolerance for quality control plots
  537. df_above_tolerance <- df %>% filter(DB == 1)
  538. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  539. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  540. # Remove rows with 0 values in L
  541. df_no_zeros <- df_na %>% filter(L > 0)
  542. # Set some constants
  543. max_conc <- max(df$conc_num_factor)
  544. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  545. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  546. message("Calculating summary statistics before quality control")
  547. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  548. df_ss <- ss$summary_stats
  549. df_stats <- ss$df_with_stats
  550. df_filtered_stats <- df_stats %>%
  551. {
  552. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  553. if (nrow(non_finite_rows) > 0) {
  554. message("Removed the following non-finite rows:")
  555. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  556. }
  557. filter(., if_all(c(L), is.finite))
  558. }
  559. message("Calculating summary statistics after quality control")
  560. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  561. df_na_ss <- ss$summary_stats
  562. df_na_stats <- ss$df_with_stats
  563. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  564. # Filter out non-finite rows for plotting
  565. df_na_filtered_stats <- df_na_stats %>%
  566. {
  567. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  568. if (nrow(non_finite_rows) > 0) {
  569. message("Removed the following non-finite rows:")
  570. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  571. }
  572. filter(., if_all(c(L), is.finite))
  573. }
  574. message("Calculating summary statistics after quality control excluding zero values")
  575. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  576. df_no_zeros_stats <- ss$df_with_stats
  577. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  578. {
  579. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  580. if (nrow(non_finite_rows) > 0) {
  581. message("Removed the following non-finite rows:")
  582. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  583. }
  584. filter(., if_all(c(L), is.finite))
  585. }
  586. message("Filtering by 2SD of K")
  587. df_na_within_2sd_k <- df_na_stats %>%
  588. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  589. df_na_outside_2sd_k <- df_na_stats %>%
  590. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  591. message("Calculating summary statistics for L within 2SD of K")
  592. # TODO We're omitting the original z_max calculation, not sure if needed?
  593. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  594. l_within_2sd_k_ss <- ss$summary_stats
  595. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  596. write.csv(l_within_2sd_k_ss,
  597. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  598. message("Calculating summary statistics for L outside 2SD of K")
  599. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  600. l_outside_2sd_k_ss <- ss$summary_stats
  601. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  602. write.csv(l_outside_2sd_k_ss,
  603. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  604. # Each plots list corresponds to a file
  605. message("Generating QC plot configurations")
  606. l_vs_k_plots <- list(
  607. list(
  608. df = df,
  609. x_var = "L",
  610. y_var = "K",
  611. plot_type = "scatter",
  612. title = "Raw L vs K before quality control",
  613. color_var = "conc_num",
  614. legend_position = "right"
  615. )
  616. )
  617. above_threshold_plots <- list(
  618. list(
  619. df = df_above_tolerance,
  620. x_var = "L",
  621. y_var = "K",
  622. plot_type = "scatter",
  623. title = paste("Raw L vs K for strains above delta background threshold of",
  624. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  625. color_var = "conc_num",
  626. annotations = list(
  627. x = l_half_median,
  628. y = k_half_median,
  629. label = paste("Strains above delta background tolerance =", nrow(df_above_tolerance))
  630. ),
  631. error_bar = FALSE,
  632. legend_position = "right"
  633. )
  634. )
  635. frequency_delta_bg_plots <- list(
  636. list(df = df_filtered_stats, x_var = "delta_bg", y_var = NULL, plot_type = "density",
  637. title = "Plate analysis by Drug Conc for delta background before quality control",
  638. color_var = "conc_num",
  639. x_label = "Delta Background",
  640. y_label = "Density",
  641. error_bar = FALSE,
  642. legend_position = "right"),
  643. list(df = df_filtered_stats, x_var = "delta_bg", y_var = NULL, plot_type = "bar",
  644. title = "Plate analysis by Drug Conc for delta background before quality control",
  645. color_var = "conc_num",
  646. x_label = "Delta Background",
  647. y_label = "Count",
  648. error_bar = FALSE,
  649. legend_position = "right")
  650. )
  651. plate_analysis_plots <- list()
  652. for (var in summary_vars) {
  653. for (stage in c("before", "after")) {
  654. if (stage == "before") {
  655. df_plot <- df_filtered_stats
  656. } else {
  657. df_plot <- df_na_filtered_stats
  658. }
  659. config <- list(
  660. df = df_plot,
  661. x_var = "scan",
  662. y_var = var,
  663. plot_type = "scatter",
  664. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  665. error_bar = TRUE, color_var = "conc_num")
  666. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  667. }
  668. }
  669. plate_analysis_boxplots <- list()
  670. for (var in summary_vars) {
  671. for (stage in c("before", "after")) {
  672. if (stage == "before") {
  673. df_plot <- df_filtered_stats
  674. } else {
  675. df_plot <- df_na_filtered_stats
  676. }
  677. config <- list(
  678. df = df_plot,
  679. x_var = "scan",
  680. y_var = var,
  681. plot_type = "box",
  682. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  683. error_bar = FALSE, color_var = "conc_num")
  684. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  685. }
  686. }
  687. plate_analysis_no_zeros_plots <- list()
  688. for (var in summary_vars) {
  689. config <- list(
  690. df = df_no_zeros_filtered_stats,
  691. x_var = "scan",
  692. y_var = var,
  693. plot_type = "scatter",
  694. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  695. error_bar = TRUE,
  696. color_var = "conc_num")
  697. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  698. }
  699. plate_analysis_no_zeros_boxplots <- list()
  700. for (var in summary_vars) {
  701. # Create the plot configuration
  702. config <- list(
  703. df = df_no_zeros_filtered_stats,
  704. x_var = "scan",
  705. y_var = var,
  706. plot_type = "box",
  707. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  708. error_bar = FALSE,
  709. color_var = "conc_num"
  710. )
  711. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  712. }
  713. l_outside_2sd_k_plots <- list(
  714. list(
  715. df = df_na_l_outside_2sd_k_stats,
  716. x_var = "L",
  717. y_var = "K",
  718. plot_type = "scatter",
  719. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  720. color_var = "conc_num",
  721. legend_position = "right"
  722. )
  723. )
  724. delta_bg_outside_2sd_k_plots <- list(
  725. list(
  726. df = df_na_l_outside_2sd_k_stats,
  727. x_var = "delta_bg",
  728. y_var = "K",
  729. plot_type = "scatter",
  730. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  731. color_var = "conc_num",
  732. legend_position = "right"
  733. )
  734. )
  735. message("Generating QC plots")
  736. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  737. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  738. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  739. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  740. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  741. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  742. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  743. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  744. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  745. # Clean up
  746. rm(df, df_above_tolerance, df_no_zeros)
  747. # TODO: Originally this filtered L NA's
  748. # Let's try to avoid for now since stats have already been calculated
  749. # Process background strains
  750. bg_strains <- c("YDL227C")
  751. lapply(bg_strains, function(strain) {
  752. message("Processing background strain: ", strain)
  753. # Handle missing data by setting zero values to NA
  754. # and then removing any rows with NA in L col
  755. df_bg <- df_na %>%
  756. filter(OrfRep == strain) %>%
  757. mutate(
  758. L = if_else(L == 0, NA, L),
  759. K = if_else(K == 0, NA, K),
  760. r = if_else(r == 0, NA, r),
  761. AUC = if_else(AUC == 0, NA, AUC)
  762. ) %>%
  763. filter(!is.na(L))
  764. # Recalculate summary statistics for the background strain
  765. message("Calculating summary statistics for background strain")
  766. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  767. summary_stats_bg <- ss_bg$summary_stats
  768. # df_bg_stats <- ss_bg$df_with_stats
  769. write.csv(summary_stats_bg,
  770. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  771. row.names = FALSE)
  772. # Filter reference and deletion strains
  773. # Formerly X2_RF (reference strains)
  774. df_reference <- df_na_stats %>%
  775. filter(OrfRep == strain) %>%
  776. mutate(SM = 0)
  777. # Formerly X2 (deletion strains)
  778. df_deletion <- df_na_stats %>%
  779. filter(OrfRep != strain) %>%
  780. mutate(SM = 0)
  781. # Set the missing values to the highest theoretical value at each drug conc for L
  782. # Leave other values as 0 for the max/min
  783. reference_strain <- df_reference %>%
  784. group_by(conc_num) %>%
  785. mutate(
  786. max_l_theoretical = max(max_L, na.rm = TRUE),
  787. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  788. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  789. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  790. ungroup()
  791. # Ditto for deletion strains
  792. deletion_strains <- df_deletion %>%
  793. group_by(conc_num) %>%
  794. mutate(
  795. max_l_theoretical = max(max_L, na.rm = TRUE),
  796. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  797. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  798. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  799. ungroup()
  800. # Calculate interactions
  801. interaction_vars <- c("L", "K", "r", "AUC")
  802. message("Calculating interaction scores")
  803. # print("Reference strain:")
  804. # print(head(reference_strain))
  805. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  806. # print("Deletion strains:")
  807. # print(head(deletion_strains))
  808. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  809. zscores_calculations_reference <- reference_results$calculations
  810. zscores_interactions_reference <- reference_results$interactions
  811. zscores_calculations <- deletion_results$calculations
  812. zscores_interactions <- deletion_results$interactions
  813. # Writing Z-Scores to file
  814. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  815. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  816. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  817. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  818. # Create interaction plots
  819. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  820. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  821. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  822. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  823. # Define conditions for enhancers and suppressors
  824. # TODO Add to study config file?
  825. threshold <- 2
  826. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  827. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  828. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  829. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  830. # Subset data
  831. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  832. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  833. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  834. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  835. # Save enhancers and suppressors
  836. message("Writing enhancer/suppressor csv files")
  837. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  838. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  839. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  840. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  841. # Combine conditions for enhancers and suppressors
  842. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  843. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  844. # Save combined enhancers and suppressors
  845. write.csv(enhancers_and_suppressors_L,
  846. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  847. write.csv(enhancers_and_suppressors_K,
  848. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  849. # Handle linear model based enhancers and suppressors
  850. lm_threshold <- 2
  851. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  852. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  853. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  854. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  855. # Save linear model based enhancers and suppressors
  856. message("Writing linear model enhancer/suppressor csv files")
  857. write.csv(enhancers_lm_L,
  858. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  859. write.csv(suppressors_lm_L,
  860. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  861. write.csv(enhancers_lm_K,
  862. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  863. write.csv(suppressors_lm_K,
  864. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  865. # TODO needs explanation
  866. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  867. rank_plot_configs <- c(
  868. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  869. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  870. )
  871. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  872. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  873. rank_lm_plot_config <- c(
  874. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  875. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  876. )
  877. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  878. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  879. # Formerly X_NArm
  880. zscores_interactions_filtered <- zscores_interactions %>%
  881. group_by(across(all_of(group_vars))) %>%
  882. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  883. # Final filtered correlation calculations and plots
  884. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  885. mutate(
  886. Overlap = case_when(
  887. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  888. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  889. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  890. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  891. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  892. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  893. TRUE ~ "No Effect"
  894. ),
  895. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  896. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  897. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  898. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  899. ) %>%
  900. ungroup()
  901. rank_plot_configs <- c(
  902. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  903. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  904. )
  905. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  906. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  907. rank_lm_plot_configs <- c(
  908. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  909. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  910. )
  911. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  912. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  913. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  914. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  915. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  916. })
  917. })
  918. }
  919. main()