calculate_interaction_zscores.R 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. # Turn all warnings into errors for development
  22. options(warn = 2)
  23. parse_arguments <- function() {
  24. args <- if (interactive()) {
  25. c(
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  30. "Experiment 1: Doxo versus HLD",
  31. 3,
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  33. "Experiment 2: HLD versus Doxo",
  34. 3
  35. )
  36. } else {
  37. commandArgs(trailingOnly = TRUE)
  38. }
  39. out_dir <- normalizePath(args[1], mustWork = FALSE)
  40. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  41. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  42. # The remaining arguments should be in groups of 3
  43. exp_args <- args[-(1:3)]
  44. if (length(exp_args) %% 3 != 0) {
  45. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  46. }
  47. # Extract the experiments into a list
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. # Extract the trailing number from each path
  57. trailing_numbers <- sapply(experiments, function(x) {
  58. path <- x$path
  59. nums <- gsub("[^0-9]", "", basename(path))
  60. as.integer(nums)
  61. })
  62. # Sort the experiments based on the trailing numbers
  63. sorted_experiments <- experiments[order(trailing_numbers)]
  64. list(
  65. out_dir = out_dir,
  66. sgd_gene_list = sgd_gene_list,
  67. easy_results_file = easy_results_file,
  68. experiments = sorted_experiments
  69. )
  70. }
  71. args <- parse_arguments()
  72. # Should we keep output in exp dirs or combine in the study output dir?
  73. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  74. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  75. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  76. # Ensure that legend_position has a valid value or default to "none"
  77. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. axis.text = element_text(size = rel(1.2)),
  89. axis.line = element_line(colour = "black"),
  90. panel.grid.major = element_line(colour = "#f0f0f0"),
  91. panel.grid.minor = element_blank(),
  92. legend.key = element_rect(colour = NA),
  93. legend.position = legend_position,
  94. legend.direction =
  95. if (legend_position == "right") {
  96. "vertical"
  97. } else if (legend_position == "bottom") {
  98. "horizontal"
  99. } else {
  100. NULL # No legend direction if position is "none" or other values
  101. },
  102. legend.spacing = unit(0, "cm"),
  103. legend.title = element_text(face = "italic", size = rel(1.3)),
  104. legend.text = element_text(size = rel(1.2)),
  105. plot.margin = unit(c(10, 5, 5, 5), "mm")
  106. )
  107. }
  108. scale_fill_publication <- function(...) {
  109. discrete_scale("fill", "Publication", manual_pal(values = c(
  110. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  111. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  112. )), ...)
  113. }
  114. scale_colour_publication <- function(...) {
  115. discrete_scale("colour", "Publication", manual_pal(values = c(
  116. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  117. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  118. )), ...)
  119. }
  120. # Load the initial dataframe from the easy_results_file
  121. load_and_filter_data <- function(easy_results_file, sd = 3) {
  122. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  123. df <- df %>%
  124. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  125. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  126. # Rename columns
  127. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  128. mutate(
  129. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  130. delta_bg = last_bg - first_bg,
  131. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  132. NG = if_else(L == 0 & !is.na(L), 1, 0),
  133. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  134. SM = 0,
  135. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  136. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  137. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  138. conc_num_factor_factor = as.factor(conc_num)
  139. )
  140. return(df)
  141. }
  142. update_gene_names <- function(df, sgd_gene_list) {
  143. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  144. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  145. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  146. df <- df %>%
  147. mutate(
  148. mapped_genes = gene_map[ORF],
  149. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  150. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  151. )
  152. return(df)
  153. }
  154. calculate_summary_stats <- function(df, variables, group_vars) {
  155. summary_stats <- df %>%
  156. group_by(across(all_of(group_vars))) %>%
  157. summarise(
  158. N = n(),
  159. across(all_of(variables),
  160. list(
  161. mean = ~ mean(.x, na.rm = TRUE),
  162. median = ~ median(.x, na.rm = TRUE),
  163. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  164. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  165. sd = ~ sd(.x, na.rm = TRUE),
  166. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  167. ),
  168. .names = "{.fn}_{.col}"
  169. ),
  170. .groups = "drop"
  171. )
  172. # Create a cleaned version of df that doesn't overlap with summary_stats
  173. df_cleaned <- df %>%
  174. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  175. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  176. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  177. }
  178. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  179. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  180. total_conc_num <- length(unique(df$conc_num))
  181. # Calculate WT statistics from df_bg
  182. wt_stats <- df_bg %>%
  183. filter(conc_num == 0) %>%
  184. summarise(
  185. WT_L = mean(mean_L, na.rm = TRUE),
  186. WT_sd_L = mean(sd_L, na.rm = TRUE),
  187. WT_K = mean(mean_K, na.rm = TRUE),
  188. WT_sd_K = mean(sd_K, na.rm = TRUE),
  189. WT_r = mean(mean_r, na.rm = TRUE),
  190. WT_sd_r = mean(sd_r, na.rm = TRUE),
  191. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  192. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE)
  193. )
  194. # Add WT statistics to df
  195. df <- df %>%
  196. mutate(
  197. WT_L = wt_stats$WT_L,
  198. WT_sd_L = wt_stats$WT_sd_L,
  199. WT_K = wt_stats$WT_K,
  200. WT_sd_K = wt_stats$WT_sd_K,
  201. WT_r = wt_stats$WT_r,
  202. WT_sd_r = wt_stats$WT_sd_r,
  203. WT_AUC = wt_stats$WT_AUC,
  204. WT_sd_AUC = wt_stats$WT_sd_AUC
  205. )
  206. # Compute mean values at zero concentration
  207. mean_L_zero_df <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. # Join mean_L_zero_df to df
  218. df <- df %>%
  219. left_join(mean_L_zero_df, by = group_vars)
  220. # Calculate Raw Shifts and Z Shifts
  221. df <- df %>%
  222. mutate(
  223. Raw_Shift_L = mean_L_zero - WT_L,
  224. Raw_Shift_K = mean_K_zero - WT_K,
  225. Raw_Shift_r = mean_r_zero - WT_r,
  226. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  227. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  228. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  229. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  230. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  231. )
  232. calculations <- df %>%
  233. group_by(across(all_of(group_vars))) %>%
  234. mutate(
  235. NG_sum = sum(NG, na.rm = TRUE),
  236. DB_sum = sum(DB, na.rm = TRUE),
  237. SM_sum = sum(SM, na.rm = TRUE),
  238. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  239. # Expected values
  240. Exp_L = WT_L + Raw_Shift_L,
  241. Exp_K = WT_K + Raw_Shift_K,
  242. Exp_r = WT_r + Raw_Shift_r,
  243. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  244. # Deltas
  245. Delta_L = mean_L - Exp_L,
  246. Delta_K = mean_K - Exp_K,
  247. Delta_r = mean_r - Exp_r,
  248. Delta_AUC = mean_AUC - Exp_AUC,
  249. # Adjust deltas for NG and SM
  250. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  251. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  252. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  253. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  254. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  255. # Calculate Z-scores
  256. Zscore_L = Delta_L / WT_sd_L,
  257. Zscore_K = Delta_K / WT_sd_K,
  258. Zscore_r = Delta_r / WT_sd_r,
  259. Zscore_AUC = Delta_AUC / WT_sd_AUC
  260. ) %>%
  261. group_modify(~ {
  262. # Perform linear models only if there are enough unique conc_num_factor levels
  263. if (length(unique(.x$conc_num_factor)) > 1) {
  264. # Filter and calculate each lm() separately with individual checks for NAs
  265. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  266. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  267. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  268. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  270. .x %>%
  271. mutate(
  272. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  273. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  274. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  275. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  276. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  277. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  278. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  279. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  280. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  281. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  282. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  283. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  284. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  285. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  286. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  287. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  288. )
  289. } else {
  290. # If not enough conc_num_factor levels, set lm-related values to NA
  291. .x %>%
  292. mutate(
  293. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  294. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  295. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  296. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  297. )
  298. }
  299. }) %>%
  300. ungroup()
  301. # For interaction plot error bars
  302. delta_means_sds <- calculations %>%
  303. group_by(across(all_of(group_vars))) %>%
  304. summarise(
  305. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  306. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  307. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  308. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  309. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  310. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  311. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  312. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  313. .groups = "drop"
  314. )
  315. calculations <- calculations %>%
  316. left_join(delta_means_sds, by = group_vars)
  317. # Summary statistics for lm scores
  318. lm_means_sds <- calculations %>%
  319. summarise(
  320. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  321. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  322. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  323. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  324. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  325. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  326. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  327. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  328. .groups = "drop"
  329. )
  330. # Add lm score means and standard deviations to calculations
  331. calculations <- calculations %>%
  332. mutate(
  333. lm_mean_L = lm_means_sds$lm_mean_L,
  334. lm_sd_L = lm_means_sds$lm_sd_L,
  335. lm_mean_K = lm_means_sds$lm_mean_K,
  336. lm_sd_K = lm_means_sds$lm_sd_K,
  337. lm_mean_r = lm_means_sds$lm_mean_r,
  338. lm_sd_r = lm_means_sds$lm_sd_r,
  339. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  340. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  341. )
  342. # Calculate Z-lm scores
  343. calculations <- calculations %>%
  344. mutate(
  345. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  346. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  347. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  348. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  349. )
  350. # Build summary stats (interactions)
  351. interactions <- calculations %>%
  352. group_by(across(all_of(group_vars))) %>%
  353. summarise(
  354. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  355. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  356. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  357. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  358. # Interaction Z-scores
  359. Z_lm_L = first(Z_lm_L),
  360. Z_lm_K = first(Z_lm_K),
  361. Z_lm_r = first(Z_lm_r),
  362. Z_lm_AUC = first(Z_lm_AUC),
  363. # Raw Shifts
  364. Raw_Shift_L = first(Raw_Shift_L),
  365. Raw_Shift_K = first(Raw_Shift_K),
  366. Raw_Shift_r = first(Raw_Shift_r),
  367. Raw_Shift_AUC = first(Raw_Shift_AUC),
  368. # Z Shifts
  369. Z_Shift_L = first(Z_Shift_L),
  370. Z_Shift_K = first(Z_Shift_K),
  371. Z_Shift_r = first(Z_Shift_r),
  372. Z_Shift_AUC = first(Z_Shift_AUC),
  373. # R Squared values
  374. R_Squared_L = first(R_Squared_L),
  375. R_Squared_K = first(R_Squared_K),
  376. R_Squared_r = first(R_Squared_r),
  377. R_Squared_AUC = first(R_Squared_AUC),
  378. # NG, DB, SM values
  379. NG = first(NG),
  380. DB = first(DB),
  381. SM = first(SM),
  382. .groups = "drop"
  383. )
  384. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  385. interactions <- interactions %>%
  386. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  387. mutate(
  388. Overlap = case_when(
  389. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  390. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  391. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  392. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  393. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  394. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  395. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  396. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  397. TRUE ~ "No Effect"
  398. ),
  399. # For correlations
  400. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  401. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  402. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  403. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  404. )
  405. # Creating the final calculations and interactions dataframes with only required columns for csv output
  406. calculations_df <- calculations %>%
  407. select(
  408. all_of(group_vars),
  409. conc_num, conc_num_factor, conc_num_factor_factor, N,
  410. mean_L, median_L, sd_L, se_L,
  411. mean_K, median_K, sd_K, se_K,
  412. mean_r, median_r, sd_r, se_r,
  413. mean_AUC, median_AUC, sd_AUC, se_AUC,
  414. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  415. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  416. WT_L, WT_K, WT_r, WT_AUC,
  417. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  418. Exp_L, Exp_K, Exp_r, Exp_AUC,
  419. Delta_L, Delta_K, Delta_r, Delta_AUC,
  420. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  421. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  422. )
  423. interactions_df <- interactions %>%
  424. select(
  425. all_of(group_vars),
  426. NG, DB, SM,
  427. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  428. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  429. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  430. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  431. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  432. Overlap
  433. )
  434. # Join calculations and interactions to avoid dimension mismatch
  435. calculations_no_overlap <- calculations %>%
  436. select(-any_of(c("DB", "NG", "SM",
  437. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  438. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  439. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  440. full_data <- calculations_no_overlap %>%
  441. left_join(interactions_df, by = group_vars)
  442. # Return final dataframes
  443. return(list(
  444. calculations = calculations_df,
  445. interactions = interactions_df,
  446. full_data = full_data
  447. ))
  448. }
  449. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  450. message("Generating ", filename, ".pdf and ", filename, ".html")
  451. # Check if we're dealing with multiple plot groups
  452. plot_groups <- if ("plots" %in% names(plot_configs)) {
  453. list(plot_configs) # Single group
  454. } else {
  455. plot_configs # Multiple groups
  456. }
  457. # Open the PDF device once for all plots
  458. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  459. # Loop through each plot group
  460. for (group in plot_groups) {
  461. static_plots <- list()
  462. plotly_plots <- list()
  463. # Retrieve grid layout if it exists, otherwise skip
  464. grid_layout <- group$grid_layout
  465. plots <- group$plots
  466. # Only handle grid layout if it exists
  467. if (!is.null(grid_layout)) {
  468. # Set grid_ncol to 1 if not specified
  469. if (is.null(grid_layout$ncol)) {
  470. grid_layout$ncol <- 1
  471. }
  472. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  473. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  474. num_plots <- length(plots)
  475. nrow <- ceiling(num_plots / grid_layout$ncol)
  476. message("No nrow provided, automatically using nrow = ", nrow)
  477. grid_layout$nrow <- nrow
  478. }
  479. # Fill missing spots with nullGrob() if necessary
  480. total_spots <- grid_layout$nrow * grid_layout$ncol
  481. num_plots <- length(plots)
  482. if (num_plots < total_spots) {
  483. message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  484. plots <- c(plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  485. }
  486. }
  487. for (i in seq_along(plots)) {
  488. config <- plots[[i]]
  489. df <- config$df
  490. # Filter points outside of y-limits if specified
  491. if (!is.null(config$ylim_vals)) {
  492. out_of_bounds_df <- df %>%
  493. filter(
  494. is.na(.data[[config$y_var]]) |
  495. .data[[config$y_var]] < config$ylim_vals[1] |
  496. .data[[config$y_var]] > config$ylim_vals[2]
  497. )
  498. # Print rows being filtered out
  499. if (nrow(out_of_bounds_df) > 0) {
  500. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  501. # print(out_of_bounds_df)
  502. }
  503. # Filter the valid data for plotting
  504. df <- df %>%
  505. filter(
  506. !is.na(.data[[config$y_var]]) &
  507. .data[[config$y_var]] >= config$ylim_vals[1] &
  508. .data[[config$y_var]] <= config$ylim_vals[2]
  509. )
  510. }
  511. # Set up aes mapping based on plot type
  512. aes_mapping <- if (config$plot_type == "bar") {
  513. if (!is.null(config$color_var)) {
  514. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  515. } else {
  516. aes(x = .data[[config$x_var]])
  517. }
  518. } else if (config$plot_type == "density") {
  519. if (!is.null(config$color_var)) {
  520. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  521. } else {
  522. aes(x = .data[[config$x_var]])
  523. }
  524. } else {
  525. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  526. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  527. } else if (!is.null(config$y_var)) {
  528. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  529. } else {
  530. aes(x = .data[[config$x_var]])
  531. }
  532. }
  533. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  534. # Add appropriate plot layer or helper function based on plot type
  535. plot <- switch(config$plot_type,
  536. "scatter" = generate_scatter_plot(plot, config),
  537. "box" = generate_boxplot(plot, config),
  538. "density" = plot + geom_density(),
  539. "bar" = plot + geom_bar(),
  540. plot # default (unused)
  541. )
  542. # Add labels and title
  543. if (!is.null(config$title)) {
  544. plot <- plot + ggtitle(config$title)
  545. if (!is.null(config$title_size)) {
  546. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  547. }
  548. }
  549. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  550. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  551. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  552. # Add annotations if specified
  553. if (!is.null(config$annotations)) {
  554. for (annotation in config$annotations) {
  555. plot <- plot +
  556. annotate(
  557. "text",
  558. x = ifelse(is.null(annotation$x), 0, annotation$x),
  559. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  560. label = annotation$label,
  561. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  562. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  563. size = ifelse(is.null(annotation$size), 3, annotation$size),
  564. color = ifelse(is.null(annotation$color), "black", annotation$color)
  565. )
  566. }
  567. }
  568. # Add error bars if specified
  569. if (!is.null(config$error_bar) && config$error_bar) {
  570. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  571. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  572. config$error_bar_params$y_mean_col
  573. } else {
  574. paste0("mean_", config$y_var)
  575. }
  576. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  577. config$error_bar_params$y_sd_col
  578. } else {
  579. paste0("sd_", config$y_var)
  580. }
  581. # Use rlang to handle custom error bar calculations
  582. if (!is.null(config$error_bar_params$custom_error_bar)) {
  583. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  584. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  585. plot <- plot + geom_errorbar(
  586. aes(
  587. x = .data[[config$x_var]],
  588. ymin = !!custom_ymin_expr,
  589. ymax = !!custom_ymax_expr
  590. ),
  591. color = config$error_bar_params$color,
  592. linewidth = 0.1
  593. )
  594. } else {
  595. # If no custom error bar formula, use the default or dynamic ones
  596. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  597. plot <- plot + geom_errorbar(
  598. aes(
  599. x = .data[[config$x_var]],
  600. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  601. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  602. color = .data[[config$color_var]]
  603. ),
  604. linewidth = 0.1
  605. )
  606. } else {
  607. plot <- plot + geom_errorbar(
  608. aes(
  609. x = .data[[config$x_var]],
  610. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  611. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  612. ),
  613. color = config$error_bar_params$color,
  614. linewidth = 0.1
  615. )
  616. }
  617. }
  618. # Add the center point if the option is provided
  619. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  620. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  621. plot <- plot + geom_point(
  622. aes(
  623. x = .data[[config$x_var]],
  624. y = .data[[y_mean_col]],
  625. color = .data[[config$color_var]]
  626. ),
  627. shape = 16
  628. )
  629. } else {
  630. plot <- plot + geom_point(
  631. aes(
  632. x = .data[[config$x_var]],
  633. y = .data[[y_mean_col]]
  634. ),
  635. color = config$error_bar_params$color,
  636. shape = 16
  637. )
  638. }
  639. }
  640. }
  641. # Convert ggplot to plotly for interactive version
  642. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  643. # Store both static and interactive versions
  644. static_plots[[i]] <- plot
  645. plotly_plots[[i]] <- plotly_plot
  646. }
  647. # Print the plots in the current group to the PDF
  648. if (is.null(grid_layout)) {
  649. # Print each plot individually on separate pages if no grid layout is specified
  650. for (plot in static_plots) {
  651. print(plot)
  652. }
  653. } else {
  654. # Arrange plots in grid layout on a single page
  655. grid.arrange(
  656. grobs = static_plots,
  657. ncol = grid_layout$ncol,
  658. nrow = grid_layout$nrow
  659. )
  660. }
  661. }
  662. # Close the PDF device after all plots are done
  663. dev.off()
  664. # Save HTML file with interactive plots if needed
  665. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  666. message("Saving combined HTML file: ", out_html_file)
  667. htmltools::save_html(
  668. htmltools::tagList(plotly_plots),
  669. file = out_html_file
  670. )
  671. }
  672. generate_scatter_plot <- function(plot, config) {
  673. # Define the points
  674. shape <- if (!is.null(config$shape)) config$shape else 3
  675. size <- if (!is.null(config$size)) config$size else 1.5
  676. position <-
  677. if (!is.null(config$position) && config$position == "jitter") {
  678. position_jitter(width = 0.4, height = 0.1)
  679. } else {
  680. "identity"
  681. }
  682. plot <- plot + geom_point(
  683. shape = shape,
  684. size = size,
  685. position = position
  686. )
  687. if (!is.null(config$cyan_points) && config$cyan_points) {
  688. plot <- plot + geom_point(
  689. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  690. color = "cyan",
  691. shape = 3,
  692. size = 0.5
  693. )
  694. }
  695. if (!is.null(config$gray_points) && config$gray_points) {
  696. plot <- plot + geom_point(shape = 3, color = "gray70", size = 1)
  697. }
  698. # Add Smooth Line if specified
  699. if (!is.null(config$smooth) && config$smooth) {
  700. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  701. if (!is.null(config$lm_line)) {
  702. plot <- plot +
  703. geom_abline(
  704. intercept = config$lm_line$intercept,
  705. slope = config$lm_line$slope,
  706. color = smooth_color
  707. )
  708. }
  709. # For now I want to try and hardcode it
  710. # else {
  711. # plot <- plot +
  712. # geom_smooth(
  713. # method = "lm",
  714. # se = FALSE,
  715. # color = smooth_color
  716. # )
  717. # }
  718. }
  719. # Add SD Bands if specified
  720. if (!is.null(config$sd_band)) {
  721. plot <- plot +
  722. annotate(
  723. "rect",
  724. xmin = -Inf, xmax = Inf,
  725. ymin = config$sd_band, ymax = Inf,
  726. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  727. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  728. ) +
  729. annotate(
  730. "rect",
  731. xmin = -Inf, xmax = Inf,
  732. ymin = -config$sd_band, ymax = -Inf,
  733. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  734. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  735. ) +
  736. geom_hline(
  737. yintercept = c(-config$sd_band, config$sd_band),
  738. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  739. )
  740. }
  741. # Add Rectangles if specified
  742. if (!is.null(config$rectangles)) {
  743. for (rect in config$rectangles) {
  744. plot <- plot + annotate(
  745. "rect",
  746. xmin = rect$xmin,
  747. xmax = rect$xmax,
  748. ymin = rect$ymin,
  749. ymax = rect$ymax,
  750. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  751. color = ifelse(is.null(rect$color), "black", rect$color),
  752. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  753. )
  754. }
  755. }
  756. # Customize X-axis if specified
  757. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  758. # Check if x_var is factor or character (for discrete x-axis)
  759. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  760. plot <- plot +
  761. scale_x_discrete(
  762. name = config$x_label,
  763. breaks = config$x_breaks,
  764. labels = config$x_labels
  765. )
  766. } else {
  767. plot <- plot +
  768. scale_x_continuous(
  769. name = config$x_label,
  770. breaks = config$x_breaks,
  771. labels = config$x_labels
  772. )
  773. }
  774. }
  775. # Set Y-axis limits if specified
  776. if (!is.null(config$ylim_vals)) {
  777. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  778. }
  779. return(plot)
  780. }
  781. generate_boxplot <- function(plot, config) {
  782. # Convert x_var to a factor within aes mapping
  783. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  784. # Customize X-axis if specified
  785. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  786. # Check if x_var is factor or character (for discrete x-axis)
  787. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  788. plot <- plot +
  789. scale_x_discrete(
  790. name = config$x_label,
  791. breaks = config$x_breaks,
  792. labels = config$x_labels
  793. )
  794. } else {
  795. plot <- plot +
  796. scale_x_continuous(
  797. name = config$x_label,
  798. breaks = config$x_breaks,
  799. labels = config$x_labels
  800. )
  801. }
  802. }
  803. return(plot)
  804. }
  805. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  806. plot_type = "scatter", stages = c("before", "after")) {
  807. plot_configs <- list()
  808. for (var in variables) {
  809. for (stage in stages) {
  810. df_plot <- if (stage == "before") df_before else df_after
  811. # Check for non-finite values in the y-variable
  812. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  813. # Adjust settings based on plot_type
  814. plot_config <- list(
  815. df = df_plot_filtered,
  816. x_var = "scan",
  817. y_var = var,
  818. plot_type = plot_type,
  819. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  820. color_var = "conc_num_factor_factor",
  821. size = 0.2,
  822. error_bar = (plot_type == "scatter"),
  823. legend_position = "bottom"
  824. )
  825. # Add config to plots list
  826. plot_configs <- append(plot_configs, list(plot_config))
  827. }
  828. }
  829. return(list(plots = plot_configs))
  830. }
  831. generate_interaction_plot_configs <- function(df_summary, df_interaction, type) {
  832. # Define the y-limits for the plots
  833. limits_map <- list(
  834. L = c(0, 130),
  835. K = c(-20, 160),
  836. r = c(0, 1),
  837. AUC = c(0, 12500)
  838. )
  839. stats_plot_configs <- list()
  840. stats_boxplot_configs <- list()
  841. delta_plot_configs <- list()
  842. # Overall statistics plots
  843. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  844. for (plot_type in c("scatter", "box")) {
  845. for (var in names(limits_map)) {
  846. y_limits <- limits_map[[var]]
  847. y_span <- y_limits[2] - y_limits[1]
  848. # Common plot configuration
  849. plot_config <- list(
  850. df = df_summary,
  851. plot_type = plot_type,
  852. x_var = "conc_num_factor_factor",
  853. y_var = var,
  854. shape = 16,
  855. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  856. coord_cartesian = y_limits,
  857. x_breaks = unique(df_summary$conc_num_factor_factor),
  858. x_labels = as.character(unique(df_summary$conc_num))
  859. )
  860. # Add specific configurations for scatter and box plots
  861. if (plot_type == "scatter") {
  862. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  863. plot_config$error_bar <- TRUE
  864. plot_config$error_bar_params <- list(
  865. color = "red",
  866. mean_point = TRUE,
  867. y_mean_col = paste0("mean_mean_", var),
  868. y_sd_col = paste0("mean_sd_", var)
  869. )
  870. plot_config$position <- "jitter"
  871. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  872. annotations <- list(
  873. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  874. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  875. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  876. )
  877. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  878. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  879. annotations <- append(annotations, list(
  880. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  881. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  882. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  883. ))
  884. }
  885. plot_config$annotations <- annotations
  886. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  887. } else if (plot_type == "box") {
  888. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  889. plot_config$position <- "dodge"
  890. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  891. }
  892. }
  893. }
  894. # Delta interaction plots
  895. if (type == "reference") {
  896. group_vars <- c("OrfRep", "Gene", "num")
  897. } else if (type == "deletion") {
  898. group_vars <- c("OrfRep", "Gene")
  899. }
  900. delta_limits_map <- list(
  901. L = c(-60, 60),
  902. K = c(-60, 60),
  903. r = c(-0.6, 0.6),
  904. AUC = c(-6000, 6000)
  905. )
  906. grouped_data <- df_interaction %>%
  907. group_by(across(all_of(group_vars))) %>%
  908. group_split()
  909. for (group_data in grouped_data) {
  910. OrfRep <- first(group_data$OrfRep)
  911. Gene <- first(group_data$Gene)
  912. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  913. if (type == "reference") {
  914. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  915. } else if (type == "deletion") {
  916. OrfRepTitle <- OrfRep
  917. }
  918. for (var in names(delta_limits_map)) {
  919. y_limits <- delta_limits_map[[var]]
  920. y_span <- y_limits[2] - y_limits[1]
  921. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  922. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  923. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  924. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  925. NG_value <- first(group_data$NG, default = 0)
  926. DB_value <- first(group_data$DB, default = 0)
  927. SM_value <- first(group_data$SM, default = 0)
  928. lm_intercept_col <- paste0("lm_intercept_", var)
  929. lm_slope_col <- paste0("lm_slope_", var)
  930. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  931. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  932. plot_config <- list(
  933. df = group_data,
  934. plot_type = "scatter",
  935. x_var = "conc_num_factor_factor",
  936. y_var = paste0("Delta_", var),
  937. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  938. shape = 16,
  939. title = paste(OrfRepTitle, Gene, sep = " "),
  940. title_size = rel(1.3),
  941. coord_cartesian = y_limits,
  942. annotations = list(
  943. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  944. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  945. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  946. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  947. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  948. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  949. ),
  950. error_bar = TRUE,
  951. error_bar_params = list(
  952. custom_error_bar = list(
  953. ymin = paste0("0 - 2 * WT_sd_", var),
  954. ymax = paste0("0 + 2 * WT_sd_", var)
  955. ),
  956. color = "gray"
  957. ),
  958. x_breaks = unique(group_data$conc_num_factor_factor),
  959. x_labels = as.character(unique(group_data$conc_num)),
  960. ylim_vals = y_limits,
  961. y_filter = FALSE,
  962. smooth = TRUE,
  963. lm_line = list(
  964. intercept = lm_intercept_value,
  965. slope = lm_slope_value,
  966. color = "blue"
  967. )
  968. )
  969. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  970. }
  971. }
  972. # Group delta plots in chunks of 12
  973. chunk_size <- 12
  974. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  975. return(c(
  976. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  977. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  978. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  979. ))
  980. }
  981. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  982. sd_bands <- c(1, 2, 3)
  983. plot_configs <- list()
  984. variables <- c("L", "K")
  985. # Adjust (if necessary) and rank columns
  986. for (variable in variables) {
  987. if (adjust) {
  988. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  989. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  990. }
  991. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  992. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  993. }
  994. # Helper function to create a plot configuration
  995. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  996. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  997. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  998. # Default plot config
  999. plot_config <- list(
  1000. df = df,
  1001. x_var = rank_var,
  1002. y_var = zscore_var,
  1003. x_label = "Rank",
  1004. plot_type = "scatter",
  1005. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  1006. sd_band = sd_band,
  1007. fill_positive = "#542788",
  1008. fill_negative = "orange",
  1009. alpha_positive = 0.3,
  1010. alpha_negative = 0.3,
  1011. shape = 3,
  1012. size = 0.1,
  1013. y_label = y_label,
  1014. x_label = "Rank",
  1015. legend_position = "none"
  1016. )
  1017. if (with_annotations) {
  1018. # Add specific annotations for plots with annotations
  1019. plot_config$annotations <- list(
  1020. list(
  1021. x = nrow(df) / 2,
  1022. y = 10,
  1023. label = paste("Deletion Enhancers =", num_enhancers)
  1024. ),
  1025. list(
  1026. x = nrow(df) / 2,
  1027. y = -10,
  1028. label = paste("Deletion Suppressors =", num_suppressors)
  1029. )
  1030. )
  1031. }
  1032. return(plot_config)
  1033. }
  1034. # Generate plots for each variable
  1035. for (variable in variables) {
  1036. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1037. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1038. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1039. # Loop through SD bands
  1040. for (sd_band in sd_bands) {
  1041. # Create plot with annotations
  1042. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  1043. # Create plot without annotations
  1044. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  1045. }
  1046. }
  1047. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  1048. }
  1049. generate_correlation_plot_configs <- function(df) {
  1050. # Define relationships for different-variable correlations
  1051. relationships <- list(
  1052. list(x = "L", y = "K"),
  1053. list(x = "L", y = "r"),
  1054. list(x = "L", y = "AUC"),
  1055. list(x = "K", y = "r"),
  1056. list(x = "K", y = "AUC"),
  1057. list(x = "r", y = "AUC")
  1058. )
  1059. plot_configs <- list()
  1060. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1061. highlight_cyan_options <- c(FALSE, TRUE)
  1062. for (highlight_cyan in highlight_cyan_options) {
  1063. for (rel in relationships) {
  1064. # Extract relevant variable names for Z_lm values
  1065. x_var <- paste0("Z_lm_", rel$x)
  1066. y_var <- paste0("Z_lm_", rel$y)
  1067. # Access the correlation statistics from the correlation_stats list
  1068. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1069. stats <- correlation_stats[[relationship_name]]
  1070. intercept <- stats$intercept
  1071. slope <- stats$slope
  1072. r_squared <- stats$r_squared
  1073. # Generate the label for the plot
  1074. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1075. # Construct plot config
  1076. plot_config <- list(
  1077. df = df,
  1078. x_var = x_var,
  1079. y_var = y_var,
  1080. plot_type = "scatter",
  1081. title = plot_label,
  1082. annotations = list(
  1083. list(
  1084. x = mean(df[[x_var]], na.rm = TRUE),
  1085. y = mean(df[[y_var]], na.rm = TRUE),
  1086. label = paste("R-squared =", round(r_squared, 3))
  1087. )
  1088. ),
  1089. smooth = TRUE,
  1090. smooth_color = "tomato3",
  1091. lm_line = list(
  1092. intercept = intercept,
  1093. slope = slope
  1094. ),
  1095. shape = 3,
  1096. size = 0.5,
  1097. color_var = "Overlap",
  1098. cyan_points = highlight_cyan, # include cyan points or not based on the loop
  1099. gray_points = TRUE
  1100. )
  1101. plot_configs <- append(plot_configs, list(plot_config))
  1102. }
  1103. }
  1104. return(list(plots = plot_configs))
  1105. }
  1106. main <- function() {
  1107. lapply(names(args$experiments), function(exp_name) {
  1108. exp <- args$experiments[[exp_name]]
  1109. exp_path <- exp$path
  1110. exp_sd <- exp$sd
  1111. out_dir <- file.path(exp_path, "zscores")
  1112. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1113. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1114. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1115. # Each list of plots corresponds to a separate file
  1116. message("Loading and filtering data for experiment: ", exp_name)
  1117. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1118. update_gene_names(args$sgd_gene_list) %>%
  1119. as_tibble()
  1120. l_vs_k_plot_configs <- list(
  1121. plots = list(
  1122. list(
  1123. df = df,
  1124. x_var = "L",
  1125. y_var = "K",
  1126. plot_type = "scatter",
  1127. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1128. title = "Raw L vs K before quality control",
  1129. color_var = "conc_num_factor_factor",
  1130. error_bar = FALSE,
  1131. legend_position = "right"
  1132. )
  1133. )
  1134. )
  1135. message("Calculating summary statistics before quality control")
  1136. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1137. df = df,
  1138. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1139. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1140. frequency_delta_bg_plot_configs <- list(
  1141. plots = list(
  1142. list(
  1143. df = df_stats,
  1144. x_var = "delta_bg",
  1145. y_var = NULL,
  1146. plot_type = "density",
  1147. title = "Density plot for Delta Background by [Drug] (All Data)",
  1148. color_var = "conc_num_factor_factor",
  1149. x_label = "Delta Background",
  1150. y_label = "Density",
  1151. error_bar = FALSE,
  1152. legend_position = "right"
  1153. ),
  1154. list(
  1155. df = df_stats,
  1156. x_var = "delta_bg",
  1157. y_var = NULL,
  1158. plot_type = "bar",
  1159. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1160. color_var = "conc_num_factor_factor",
  1161. x_label = "Delta Background",
  1162. y_label = "Count",
  1163. error_bar = FALSE,
  1164. legend_position = "right"
  1165. )
  1166. )
  1167. )
  1168. message("Filtering rows above delta background tolerance for plotting")
  1169. df_above_tolerance <- df %>% filter(DB == 1)
  1170. above_threshold_plot_configs <- list(
  1171. plots = list(
  1172. list(
  1173. df = df_above_tolerance,
  1174. x_var = "L",
  1175. y_var = "K",
  1176. plot_type = "scatter",
  1177. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1178. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1179. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1180. color_var = "conc_num_factor_factor",
  1181. position = "jitter",
  1182. annotations = list(
  1183. list(
  1184. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1185. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1186. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1187. )
  1188. ),
  1189. error_bar = FALSE,
  1190. legend_position = "right"
  1191. )
  1192. )
  1193. )
  1194. message("Setting rows above delta background tolerance to NA")
  1195. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1196. message("Calculating summary statistics across all strains")
  1197. ss <- calculate_summary_stats(
  1198. df = df_na,
  1199. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1200. group_vars = c("conc_num", "conc_num_factor_factor"))
  1201. df_na_ss <- ss$summary_stats
  1202. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1203. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1204. # This can help bypass missing values ggplot warnings during testing
  1205. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1206. message("Calculating summary statistics excluding zero values")
  1207. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1208. df_no_zeros_stats <- calculate_summary_stats(
  1209. df = df_no_zeros,
  1210. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1211. group_vars = c("conc_num", "conc_num_factor_factor")
  1212. )$df_with_stats
  1213. message("Filtering by 2SD of K")
  1214. df_na_within_2sd_k <- df_na_stats %>%
  1215. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1216. df_na_outside_2sd_k <- df_na_stats %>%
  1217. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1218. message("Calculating summary statistics for L within 2SD of K")
  1219. # TODO We're omitting the original z_max calculation, not sure if needed?
  1220. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1221. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1222. write.csv(ss,
  1223. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1224. row.names = FALSE)
  1225. message("Calculating summary statistics for L outside 2SD of K")
  1226. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1227. group_vars = c("conc_num", "conc_num_factor_factor"))
  1228. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1229. write.csv(ss$summary_stats,
  1230. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1231. row.names = FALSE)
  1232. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1233. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1234. df_before = df_stats,
  1235. df_after = df_na_stats_filtered
  1236. )
  1237. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1238. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1239. df_before = df_stats,
  1240. df_after = df_na_stats_filtered,
  1241. plot_type = "box"
  1242. )
  1243. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1244. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1245. stages = c("after"), # Only after QC
  1246. df_after = df_no_zeros_stats
  1247. )
  1248. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1249. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1250. stages = c("after"), # Only after QC
  1251. df_after = df_no_zeros_stats,
  1252. plot_type = "box"
  1253. )
  1254. l_outside_2sd_k_plot_configs <- list(
  1255. plots = list(
  1256. list(
  1257. df = df_na_l_outside_2sd_k_stats,
  1258. x_var = "L",
  1259. y_var = "K",
  1260. plot_type = "scatter",
  1261. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1262. color_var = "conc_num_factor_factor",
  1263. position = "jitter",
  1264. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1265. annotations = list(
  1266. list(
  1267. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1268. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1269. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1270. )
  1271. ),
  1272. error_bar = FALSE,
  1273. legend_position = "right"
  1274. )
  1275. )
  1276. )
  1277. delta_bg_outside_2sd_k_plot_configs <- list(
  1278. plots = list(
  1279. list(
  1280. df = df_na_l_outside_2sd_k_stats,
  1281. x_var = "delta_bg",
  1282. x_label = "Delta Background",
  1283. y_var = "K",
  1284. plot_type = "scatter",
  1285. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1286. color_var = "conc_num_factor_factor",
  1287. position = "jitter",
  1288. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1289. annotations = list(
  1290. list(
  1291. x = 0.05,
  1292. y = 0.95,
  1293. hjust = 0,
  1294. vjust = 1,
  1295. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1296. size = 5
  1297. )
  1298. ),
  1299. error_bar = FALSE,
  1300. legend_position = "right"
  1301. )
  1302. )
  1303. )
  1304. message("Generating quality control plots in parallel")
  1305. # future::plan(future::multicore, workers = parallel::detectCores())
  1306. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1307. plot_configs <- list(
  1308. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1309. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1310. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1311. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1312. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1313. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1314. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1315. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1316. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1317. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1318. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1319. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1320. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1321. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1322. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1323. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1324. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1325. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1326. )
  1327. # Parallelize background and quality control plot generation
  1328. # furrr::future_map(plot_configs, function(config) {
  1329. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1330. # page_width = config$page_width, page_height = config$page_height)
  1331. # }, .options = furrr_options(seed = TRUE))
  1332. # Loop over background strains
  1333. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1334. # have to rename or group the output files by dir or something so they don't get clobbered
  1335. bg_strains <- c("YDL227C")
  1336. lapply(bg_strains, function(strain) {
  1337. message("Processing background strain: ", strain)
  1338. # Handle missing data by setting zero values to NA
  1339. # and then removing any rows with NA in L col
  1340. df_bg <- df_na %>%
  1341. filter(OrfRep == strain) %>%
  1342. mutate(
  1343. L = if_else(L == 0, NA, L),
  1344. K = if_else(K == 0, NA, K),
  1345. r = if_else(r == 0, NA, r),
  1346. AUC = if_else(AUC == 0, NA, AUC)
  1347. ) %>%
  1348. filter(!is.na(L))
  1349. message("Calculating background strain summary statistics")
  1350. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1351. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1352. summary_stats_bg <- ss_bg$summary_stats
  1353. df_bg_stats <- ss_bg$df_with_stats
  1354. write.csv(
  1355. summary_stats_bg,
  1356. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1357. row.names = FALSE)
  1358. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1359. df_reference <- df_na_stats %>% # formerly X2_RF
  1360. filter(OrfRep == strain) %>%
  1361. filter(!is.na(L)) %>%
  1362. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1363. mutate(
  1364. max_l_theoretical = max(max_L, na.rm = TRUE),
  1365. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1366. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1367. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1368. ungroup()
  1369. message("Calculating reference strain summary statistics")
  1370. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1371. df = df_reference,
  1372. variables = c("L", "K", "r", "AUC"),
  1373. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1374. )$df_with_stats
  1375. # Summarise statistics for error bars
  1376. df_reference_summary_stats <- df_reference_summary_stats %>%
  1377. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1378. mutate(
  1379. mean_mean_L = first(mean_L),
  1380. mean_sd_L = first(sd_L),
  1381. mean_mean_K = first(mean_K),
  1382. mean_sd_K = first(sd_K),
  1383. mean_mean_r = first(mean_r),
  1384. mean_sd_r = first(sd_r),
  1385. mean_mean_AUC = first(mean_AUC),
  1386. mean_sd_AUC = first(sd_AUC),
  1387. .groups = "drop"
  1388. )
  1389. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1390. df_reference_interaction_stats <- calculate_summary_stats(
  1391. df = df_reference,
  1392. variables = c("L", "K", "r", "AUC"),
  1393. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1394. )$df_with_stats
  1395. message("Calculating reference strain interaction scores")
  1396. results <- calculate_interaction_scores(df_reference_interaction_stats,
  1397. df_bg_stats, group_vars = c("OrfRep", "Gene", "num", "Drug"))
  1398. df_reference_calculations <- results$calculations
  1399. df_reference_interactions <- results$interactions
  1400. df_reference_interactions_joined <- results$full_data
  1401. write.csv(df_reference_calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1402. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1403. message("Generating reference interaction plots")
  1404. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1405. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1406. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1407. df_deletion <- df_na_stats %>% # formerly X2
  1408. filter(OrfRep != strain) %>%
  1409. filter(!is.na(L)) %>%
  1410. group_by(OrfRep, Gene, conc_num) %>%
  1411. mutate(
  1412. max_l_theoretical = max(max_L, na.rm = TRUE),
  1413. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1414. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1415. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1416. ungroup()
  1417. message("Calculating deletion strain(s) interaction summary statistics")
  1418. df_deletion_stats <- calculate_summary_stats(
  1419. df = df_deletion,
  1420. variables = c("L", "K", "r", "AUC"),
  1421. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1422. )$df_with_stats
  1423. message("Calculating deletion strain(s) interactions scores")
  1424. results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1425. df_calculations <- results$calculations
  1426. df_interactions <- results$interactions
  1427. df_interactions_joined <- results$full_data
  1428. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1429. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1430. message("Generating deletion interaction plots")
  1431. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1432. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1433. message("Writing enhancer/suppressor csv files")
  1434. interaction_threshold <- 2 # TODO add to study config?
  1435. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1436. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1437. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1438. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1439. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1440. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1441. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1442. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1443. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1444. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1445. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1446. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1447. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1448. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1449. write.csv(enhancers_and_suppressors_L,
  1450. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1451. write.csv(enhancers_and_suppressors_K,
  1452. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1453. message("Writing linear model enhancer/suppressor csv files")
  1454. lm_interaction_threshold <- 2 # TODO add to study config?
  1455. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1456. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1457. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1458. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1459. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1460. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1461. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1462. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1463. message("Generating rank plots")
  1464. rank_plot_configs <- generate_rank_plot_configs(
  1465. df_interactions_joined,
  1466. is_lm = FALSE,
  1467. adjust = TRUE
  1468. )
  1469. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1470. page_width = 18, page_height = 12)
  1471. message("Generating ranked linear model plots")
  1472. rank_lm_plot_configs <- generate_rank_plot_configs(
  1473. df_interactions_joined,
  1474. is_lm = TRUE,
  1475. adjust = TRUE
  1476. )
  1477. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1478. page_width = 18, page_height = 12)
  1479. message("Generating filtered ranked plots")
  1480. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1481. df_interactions_joined,
  1482. is_lm = FALSE,
  1483. adjust = FALSE,
  1484. overlap_color = TRUE
  1485. )
  1486. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1487. page_width = 18, page_height = 12)
  1488. message("Generating filtered ranked linear model plots")
  1489. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1490. df_interactions_joined,
  1491. is_lm = TRUE,
  1492. adjust = FALSE,
  1493. overlap_color = TRUE
  1494. )
  1495. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1496. page_width = 18, page_height = 12)
  1497. message("Generating correlation curve parameter pair plots")
  1498. correlation_plot_configs <- generate_correlation_plot_configs(
  1499. df_interactions_joined
  1500. )
  1501. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1502. page_width = 10, page_height = 7)
  1503. })
  1504. })
  1505. }
  1506. main()