calculate_interaction_zscores.R 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. return(df)
  144. }
  145. # Update Gene names using the SGD gene list
  146. update_gene_names <- function(df, sgd_gene_list) {
  147. # Load SGD gene list
  148. genes <- read.delim(file = sgd_gene_list,
  149. quote = "", header = FALSE,
  150. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  151. # Create a named vector for mapping ORF to GeneName
  152. gene_map <- setNames(genes$V5, genes$V4)
  153. # Vectorized match to find the GeneName from gene_map
  154. mapped_genes <- gene_map[df$ORF]
  155. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  156. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  157. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  158. df <- df %>%
  159. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  160. return(df)
  161. }
  162. calculate_summary_stats <- function(df, variables, group_vars) {
  163. summary_stats <- df %>%
  164. group_by(across(all_of(group_vars))) %>%
  165. summarise(
  166. N = n(),
  167. across(all_of(variables),
  168. list(
  169. mean = ~ mean(.x, na.rm = TRUE),
  170. median = ~ median(.x, na.rm = TRUE),
  171. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  172. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  173. sd = ~ sd(.x, na.rm = TRUE),
  174. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  175. ),
  176. .names = "{.fn}_{.col}"
  177. ),
  178. .groups = "drop"
  179. )
  180. # Create a cleaned version of df that doesn't overlap with summary_stats
  181. cleaned_df <- df %>%
  182. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  183. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  184. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  185. }
  186. calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
  187. # Calculate total concentration variables
  188. total_conc_num <- length(unique(df$conc_num))
  189. # Initial calculations
  190. calculations <- df %>%
  191. group_by(across(all_of(group_vars))) %>%
  192. mutate(
  193. NG = sum(NG, na.rm = TRUE),
  194. DB = sum(DB, na.rm = TRUE),
  195. SM = sum(SM, na.rm = TRUE),
  196. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  197. # Calculate raw data
  198. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  199. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  200. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  201. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  202. Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
  203. Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
  204. Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
  205. Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
  206. # Expected values
  207. Exp_L = WT_L + Raw_Shift_L,
  208. Exp_K = WT_K + Raw_Shift_K,
  209. Exp_r = WT_r + Raw_Shift_r,
  210. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  211. # Deltas
  212. Delta_L = mean_L - Exp_L,
  213. Delta_K = mean_K - Exp_K,
  214. Delta_r = mean_r - Exp_r,
  215. Delta_AUC = mean_AUC - Exp_AUC,
  216. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  217. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  218. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  219. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  220. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  221. # Calculate Z-scores
  222. Zscore_L = Delta_L / WT_sd_L,
  223. Zscore_K = Delta_K / WT_sd_K,
  224. Zscore_r = Delta_r / WT_sd_r,
  225. Zscore_AUC = Delta_AUC / WT_sd_AUC
  226. ) %>%
  227. group_modify(~ {
  228. # Perform linear models
  229. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  230. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  231. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  232. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  233. .x %>%
  234. mutate(
  235. lm_intercept_L = coef(lm_L)[1],
  236. lm_slope_L = coef(lm_L)[2],
  237. R_Squared_L = summary(lm_L)$r.squared,
  238. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  239. lm_intercept_K = coef(lm_K)[1],
  240. lm_slope_K = coef(lm_K)[2],
  241. R_Squared_K = summary(lm_K)$r.squared,
  242. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  243. lm_intercept_r = coef(lm_r)[1],
  244. lm_slope_r = coef(lm_r)[2],
  245. R_Squared_r = summary(lm_r)$r.squared,
  246. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  247. lm_intercept_AUC = coef(lm_AUC)[1],
  248. lm_slope_AUC = coef(lm_AUC)[2],
  249. R_Squared_AUC = summary(lm_AUC)$r.squared,
  250. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  251. )
  252. }) %>%
  253. ungroup()
  254. # Summary statistics for lm scores
  255. lm_means_sds <- calculations %>%
  256. group_by(across(all_of(group_vars))) %>%
  257. summarise(
  258. mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
  259. sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
  260. mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
  261. sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
  262. mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
  263. sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
  264. mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  265. sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  266. )
  267. # Continue with gene Z-scores and interactions
  268. calculations <- calculations %>%
  269. left_join(lm_means_sds, by = group_vars) %>%
  270. group_by(across(all_of(group_vars))) %>%
  271. mutate(
  272. Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
  273. Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
  274. Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
  275. Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
  276. )
  277. # Build summary stats (interactions)
  278. interactions <- calculations %>%
  279. group_by(across(all_of(group_vars))) %>%
  280. summarise(
  281. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  282. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  283. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
  284. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
  285. # Interaction Z-scores
  286. Z_lm_L = first(Z_lm_L),
  287. Z_lm_K = first(Z_lm_K),
  288. Z_lm_r = first(Z_lm_r),
  289. Z_lm_AUC = first(Z_lm_AUC),
  290. # Raw Shifts
  291. Raw_Shift_L = first(Raw_Shift_L),
  292. Raw_Shift_K = first(Raw_Shift_K),
  293. Raw_Shift_r = first(Raw_Shift_r),
  294. Raw_Shift_AUC = first(Raw_Shift_AUC),
  295. # Z Shifts
  296. Z_Shift_L = first(Z_Shift_L),
  297. Z_Shift_K = first(Z_Shift_K),
  298. Z_Shift_r = first(Z_Shift_r),
  299. Z_Shift_AUC = first(Z_Shift_AUC),
  300. # NG, DB, SM values
  301. NG = first(NG),
  302. DB = first(DB),
  303. SM = first(SM)
  304. )
  305. # Creating the final calculations and interactions dataframes with only required columns for csv output
  306. calculations_df <- calculations %>%
  307. select(
  308. all_of(group_vars),
  309. conc_num, conc_num_factor, conc_num_factor_factor,
  310. N, NG, DB, SM,
  311. mean_L, median_L, sd_L, se_L,
  312. mean_K, median_K, sd_K, se_K,
  313. mean_r, median_r, sd_r, se_r,
  314. mean_AUC, median_AUC, sd_AUC, se_AUC,
  315. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  316. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  317. WT_L, WT_K, WT_r, WT_AUC,
  318. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  319. Exp_L, Exp_K, Exp_r, Exp_AUC,
  320. Delta_L, Delta_K, Delta_r, Delta_AUC,
  321. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  322. )
  323. interactions_df <- interactions %>%
  324. select(
  325. all_of(group_vars),
  326. NG, DB, SM,
  327. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  328. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  329. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  330. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
  331. )
  332. calculations_no_overlap <- calculations %>%
  333. # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
  334. select(-any_of(c(
  335. "DB", "NG", "SM",
  336. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  337. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  338. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
  339. )))
  340. # Use left_join to avoid dimension mismatch issues
  341. full_data <- calculations_no_overlap %>%
  342. left_join(interactions, by = group_vars)
  343. # Return full_data and the two required dataframes (calculations and interactions)
  344. return(list(
  345. calculations = calculations_df,
  346. interactions = interactions_df,
  347. full_data = full_data
  348. ))
  349. }
  350. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  351. message("Generating ", filename, ".pdf and ", filename, ".html")
  352. # Check if we're dealing with multiple plot groups
  353. plot_groups <- if ("plots" %in% names(plot_configs)) {
  354. list(plot_configs) # Single group
  355. } else {
  356. plot_configs # Multiple groups
  357. }
  358. for (group in plot_groups) {
  359. static_plots <- list()
  360. plotly_plots <- list()
  361. grid_layout <- group$grid_layout
  362. plots <- group$plots
  363. for (i in seq_along(plots)) {
  364. config <- plots[[i]]
  365. df <- config$df
  366. if (config$plot_type == "bar") {
  367. if (!is.null(config$color_var)) {
  368. aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  369. } else {
  370. aes_mapping <- aes(x = .data[[config$x_var]])
  371. }
  372. } else if (config$plot_type == "density") {
  373. if (!is.null(config$color_var)) {
  374. aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  375. } else {
  376. aes_mapping <- aes(x = .data[[config$x_var]])
  377. }
  378. } else {
  379. # For scatter and other plot types
  380. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  381. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  382. } else if (!is.null(config$y_var)) {
  383. aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  384. } else {
  385. aes_mapping <- aes(x = .data[[config$x_var]])
  386. }
  387. }
  388. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  389. plot <- switch(config$plot_type,
  390. "scatter" = generate_scatter_plot(plot, config),
  391. "box" = generate_boxplot(plot, config),
  392. "density" = plot + geom_density(),
  393. "bar" = plot + geom_bar(),
  394. plot # default (unused)
  395. )
  396. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  397. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  398. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  399. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  400. # Add error bars if specified
  401. if (!is.null(config$error_bar) && config$error_bar) {
  402. error_bar_color <- if (!is.null(config$error_bar_params$color)) {
  403. config$error_bar_params$color
  404. } else {
  405. "red"
  406. }
  407. # Use error_bar_params if provided, otherwise calculate from mean and sd
  408. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  409. plot <- plot + geom_errorbar(aes(
  410. ymin = config$error_bar_params$ymin,
  411. ymax = config$error_bar_params$ymax,
  412. color = error_bar_color))
  413. } else {
  414. y_mean_col <- paste0("mean_", config$y_var)
  415. y_sd_col <- paste0("sd_", config$y_var)
  416. plot <- plot + geom_errorbar(aes(
  417. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  418. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  419. color = error_bar_color))
  420. }
  421. }
  422. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  423. static_plots[[i]] <- plot
  424. plotly_plots[[i]] <- plotly_plot
  425. }
  426. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  427. if (is.null(grid_layout)) {
  428. for (plot in static_plots) {
  429. print(plot)
  430. }
  431. } else {
  432. grid.arrange(
  433. grobs = static_plots,
  434. ncol = grid_layout$ncol,
  435. nrow = grid_layout$nrow
  436. )
  437. }
  438. dev.off()
  439. # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  440. # message("Saving combined HTML file: ", out_html_file)
  441. # htmltools::save_html(
  442. # htmltools::tagList(plotly_plots),
  443. # file = out_html_file
  444. # )
  445. }
  446. }
  447. generate_scatter_plot <- function(plot, config) {
  448. # Define the points
  449. shape <- if (!is.null(config$shape)) config$shape else 3
  450. size <- if (!is.null(config$size)) config$size else 1.5
  451. position <-
  452. if (!is.null(config$position) && config$position == "jitter") {
  453. position_jitter(width = 0.2, height = 0)
  454. } else {
  455. "identity"
  456. }
  457. plot <- plot + geom_point(
  458. shape = shape,
  459. size = size,
  460. position = position
  461. )
  462. if (!is.null(config$cyan_points) && config$cyan_points) {
  463. plot <- plot + geom_point(
  464. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  465. color = "cyan",
  466. shape = 3,
  467. size = 0.5
  468. )
  469. }
  470. # Add Smooth Line if specified
  471. if (!is.null(config$smooth) && config$smooth) {
  472. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  473. if (!is.null(config$lm_line)) {
  474. plot <- plot +
  475. geom_abline(
  476. intercept = config$lm_line$intercept,
  477. slope = config$lm_line$slope,
  478. color = smooth_color
  479. )
  480. } else {
  481. plot <- plot +
  482. geom_smooth(
  483. method = "lm",
  484. se = FALSE,
  485. color = smooth_color
  486. )
  487. }
  488. }
  489. # Add SD Bands if specified
  490. if (!is.null(config$sd_band)) {
  491. plot <- plot +
  492. annotate(
  493. "rect",
  494. xmin = -Inf, xmax = Inf,
  495. ymin = config$sd_band, ymax = Inf,
  496. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  497. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  498. ) +
  499. annotate(
  500. "rect",
  501. xmin = -Inf, xmax = Inf,
  502. ymin = -config$sd_band, ymax = -Inf,
  503. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  504. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  505. ) +
  506. geom_hline(
  507. yintercept = c(-config$sd_band, config$sd_band),
  508. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  509. )
  510. }
  511. # Add Rectangles if specified
  512. if (!is.null(config$rectangles)) {
  513. for (rect in config$rectangles) {
  514. plot <- plot + annotate(
  515. "rect",
  516. xmin = rect$xmin,
  517. xmax = rect$xmax,
  518. ymin = rect$ymin,
  519. ymax = rect$ymax,
  520. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  521. color = ifelse(is.null(rect$color), "black", rect$color),
  522. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  523. )
  524. }
  525. }
  526. # Customize X-axis if specified
  527. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  528. # Check if x_var is factor or character (for discrete x-axis)
  529. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  530. plot <- plot +
  531. scale_x_discrete(
  532. name = config$x_label,
  533. breaks = config$x_breaks,
  534. labels = config$x_labels
  535. )
  536. } else {
  537. plot <- plot +
  538. scale_x_continuous(
  539. name = config$x_label,
  540. breaks = config$x_breaks,
  541. labels = config$x_labels
  542. )
  543. }
  544. }
  545. # Set Y-axis limits if specified
  546. if (!is.null(config$ylim_vals)) {
  547. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  548. }
  549. # Add annotations if specified
  550. if (!is.null(config$annotations)) {
  551. for (annotation in config$annotations) {
  552. plot <- plot +
  553. annotate(
  554. "text",
  555. x = annotation$x,
  556. y = annotation$y,
  557. label = annotation$label,
  558. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  559. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  560. size = ifelse(is.null(annotation$size), 6, annotation$size),
  561. color = ifelse(is.null(annotation$color), "black", annotation$color)
  562. )
  563. }
  564. }
  565. return(plot)
  566. }
  567. generate_boxplot <- function(plot, config) {
  568. # Convert x_var to a factor within aes mapping
  569. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  570. # Customize X-axis if specified
  571. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  572. # Check if x_var is factor or character (for discrete x-axis)
  573. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  574. plot <- plot +
  575. scale_x_discrete(
  576. name = config$x_label,
  577. breaks = config$x_breaks,
  578. labels = config$x_labels
  579. )
  580. } else {
  581. plot <- plot +
  582. scale_x_continuous(
  583. name = config$x_label,
  584. breaks = config$x_breaks,
  585. labels = config$x_labels
  586. )
  587. }
  588. }
  589. return(plot)
  590. }
  591. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  592. plot_type = "scatter", stages = c("before", "after")) {
  593. plot_configs <- list()
  594. for (var in variables) {
  595. for (stage in stages) {
  596. df_plot <- if (stage == "before") df_before else df_after
  597. # Check for non-finite values in the y-variable
  598. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  599. # Adjust settings based on plot_type
  600. plot_config <- list(
  601. df = df_plot_filtered,
  602. x_var = "scan",
  603. y_var = var,
  604. plot_type = plot_type,
  605. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  606. color_var = "conc_num_factor_factor",
  607. position = if (plot_type == "scatter") "jitter" else NULL,
  608. size = 0.2,
  609. error_bar = (plot_type == "scatter")
  610. )
  611. # Add config to plots list
  612. plot_configs <- append(plot_configs, list(plot_config))
  613. }
  614. }
  615. return(list(plots = plot_configs))
  616. }
  617. generate_interaction_plot_configs <- function(df, type) {
  618. # Set group_vars based on the type (reference or deletion)
  619. if (type == "reference") {
  620. group_vars <- c("OrfRep", "Gene", "num")
  621. } else if (type == "deletion") {
  622. group_vars <- c("OrfRep", "Gene")
  623. }
  624. # Define the limits for the plots
  625. limits_map <- list(
  626. L = c(0, 130),
  627. K = c(-20, 160),
  628. r = c(0, 1),
  629. AUC = c(0, 12500)
  630. )
  631. delta_limits_map <- list(
  632. L = c(-60, 60),
  633. K = c(-60, 60),
  634. r = c(-0.6, 0.6),
  635. AUC = c(-6000, 6000)
  636. )
  637. overall_plot_configs <- list()
  638. delta_plot_configs <- list()
  639. # Overall statistics plots
  640. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  641. for (var in names(limits_map)) {
  642. y_limits <- limits_map[[var]]
  643. # Use the pre-calculated lm intercept and slope from the dataframe
  644. lm_intercept_col <- paste0("lm_intercept_", var)
  645. lm_slope_col <- paste0("lm_slope_", var)
  646. # Ensure no NA or invalid values in lm_line calculations
  647. intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
  648. slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
  649. plot_config <- list(
  650. df = df,
  651. plot_type = "scatter",
  652. x_var = "conc_num_factor_factor",
  653. y_var = var,
  654. shape = 16,
  655. x_label = unique(df$Drug)[1],
  656. title = sprintf("%s Scatter RF for %s with SD", OrfRep, var),
  657. coord_cartesian = y_limits,
  658. error_bar = TRUE,
  659. error_bar_params = list(
  660. color = "red"
  661. ),
  662. x_breaks = unique(df$conc_num_factor_factor),
  663. x_labels = as.character(unique(df$conc_num)),
  664. position = "jitter",
  665. smooth = TRUE,
  666. lm_line = list(
  667. intercept = intercept_value,
  668. slope = slope_value
  669. )
  670. )
  671. overall_plot_configs <- append(overall_plot_configs, list(plot_config))
  672. }
  673. # Delta interaction plots
  674. grouped_data <- df %>%
  675. group_by(across(all_of(group_vars))) %>%
  676. group_split()
  677. for (group_data in grouped_data) {
  678. OrfRep <- first(group_data$OrfRep)
  679. Gene <- first(group_data$Gene)
  680. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  681. if (type == "reference") {
  682. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  683. } else if (type == "deletion") {
  684. OrfRepTitle <- OrfRep
  685. }
  686. for (var in names(delta_limits_map)) {
  687. y_limits <- delta_limits_map[[var]]
  688. y_span <- y_limits[2] - y_limits[1]
  689. # Error bars
  690. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  691. # Z_Shift and lm values
  692. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  693. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  694. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  695. # NG, DB, SM values
  696. NG_value <- first(group_data$NG, default = 0)
  697. DB_value <- first(group_data$DB, default = 0)
  698. SM_value <- first(group_data$SM, default = 0)
  699. annotations <- list(
  700. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  701. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  702. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  703. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  704. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  705. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  706. )
  707. # lm_line for delta plots
  708. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  709. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  710. plot_config <- list(
  711. df = group_data,
  712. plot_type = "scatter",
  713. x_var = "conc_num_factor_factor",
  714. y_var = var,
  715. x_label = unique(group_data$Drug)[1],
  716. title = paste(OrfRepTitle, Gene, num, sep = " "),
  717. coord_cartesian = y_limits,
  718. annotations = annotations,
  719. error_bar = TRUE,
  720. error_bar_params = list(
  721. ymin = 0 - (2 * WT_sd_value),
  722. ymax = 0 + (2 * WT_sd_value),
  723. color = "black"
  724. ),
  725. smooth = TRUE,
  726. x_breaks = unique(group_data$conc_num_factor_factor),
  727. x_labels = as.character(unique(group_data$conc_num)),
  728. ylim_vals = y_limits,
  729. lm_line = list(
  730. intercept = lm_intercept_value,
  731. slope = lm_slope_value
  732. )
  733. )
  734. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  735. }
  736. }
  737. # Calculate dynamic grid layout
  738. grid_ncol <- 4
  739. num_plots <- length(delta_plot_configs)
  740. grid_nrow <- ceiling(num_plots / grid_ncol)
  741. return(list(
  742. list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
  743. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  744. ))
  745. }
  746. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  747. sd_bands <- c(1, 2, 3)
  748. plot_configs <- list()
  749. variables <- c("L", "K")
  750. # Adjust (if necessary) and rank columns
  751. for (variable in variables) {
  752. if (adjust) {
  753. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  754. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  755. }
  756. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  757. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  758. }
  759. # Helper function to create a plot configuration
  760. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  761. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  762. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  763. # Default plot config
  764. plot_config <- list(
  765. df = df,
  766. x_var = rank_var,
  767. y_var = zscore_var,
  768. plot_type = "scatter",
  769. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  770. sd_band = sd_band,
  771. fill_positive = "#542788",
  772. fill_negative = "orange",
  773. alpha_positive = 0.3,
  774. alpha_negative = 0.3,
  775. annotations = NULL,
  776. shape = 3,
  777. size = 0.1,
  778. y_label = y_label,
  779. x_label = "Rank",
  780. legend_position = "none"
  781. )
  782. if (with_annotations) {
  783. # Add specific annotations for plots with annotations
  784. plot_config$annotations <- list(
  785. list(
  786. x = median(df[[rank_var]], na.rm = TRUE),
  787. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  788. label = paste("Deletion Enhancers =", num_enhancers)
  789. ),
  790. list(
  791. x = median(df[[rank_var]], na.rm = TRUE),
  792. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  793. label = paste("Deletion Suppressors =", num_suppressors)
  794. )
  795. )
  796. }
  797. return(plot_config)
  798. }
  799. # Generate plots for each variable
  800. for (variable in variables) {
  801. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  802. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  803. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  804. # Loop through SD bands
  805. for (sd_band in sd_bands) {
  806. # Create plot with annotations
  807. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  808. # Create plot without annotations
  809. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  810. }
  811. }
  812. # Calculate dynamic grid layout based on the number of plots
  813. grid_ncol <- 3
  814. num_plots <- length(plot_configs)
  815. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  816. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  817. }
  818. generate_correlation_plot_configs <- function(df, correlation_stats) {
  819. # Define relationships for different-variable correlations
  820. relationships <- list(
  821. list(x = "L", y = "K"),
  822. list(x = "L", y = "r"),
  823. list(x = "L", y = "AUC"),
  824. list(x = "K", y = "r"),
  825. list(x = "K", y = "AUC"),
  826. list(x = "r", y = "AUC")
  827. )
  828. plot_configs <- list()
  829. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  830. highlight_cyan_options <- c(FALSE, TRUE)
  831. for (highlight_cyan in highlight_cyan_options) {
  832. for (rel in relationships) {
  833. # Extract relevant variable names for Z_lm values
  834. x_var <- paste0("Z_lm_", rel$x)
  835. y_var <- paste0("Z_lm_", rel$y)
  836. # Access the correlation statistics from the correlation_stats list
  837. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  838. stats <- correlation_stats[[relationship_name]]
  839. intercept <- stats$intercept
  840. slope <- stats$slope
  841. r_squared <- stats$r_squared
  842. # Generate the label for the plot
  843. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  844. # Construct plot config
  845. plot_config <- list(
  846. df = df,
  847. x_var = x_var,
  848. y_var = y_var,
  849. plot_type = "scatter",
  850. title = plot_label,
  851. annotations = list(
  852. list(
  853. x = mean(df[[x_var]], na.rm = TRUE),
  854. y = mean(df[[y_var]], na.rm = TRUE),
  855. label = paste("R-squared =", round(r_squared, 3))
  856. )
  857. ),
  858. smooth = TRUE,
  859. smooth_color = "tomato3",
  860. lm_line = list(
  861. intercept = intercept,
  862. slope = slope
  863. ),
  864. shape = 3,
  865. size = 0.5,
  866. color_var = "Overlap",
  867. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  868. )
  869. plot_configs <- append(plot_configs, list(plot_config))
  870. }
  871. }
  872. return(list(plots = plot_configs))
  873. }
  874. main <- function() {
  875. lapply(names(args$experiments), function(exp_name) {
  876. exp <- args$experiments[[exp_name]]
  877. exp_path <- exp$path
  878. exp_sd <- exp$sd
  879. out_dir <- file.path(exp_path, "zscores")
  880. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  881. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  882. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  883. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  884. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  885. message("Loading and filtering data for experiment: ", exp_name)
  886. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  887. update_gene_names(args$sgd_gene_list) %>%
  888. as_tibble()
  889. # Filter rows above delta background tolerance
  890. df_above_tolerance <- df %>% filter(DB == 1)
  891. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  892. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  893. # Save some constants
  894. max_conc <- max(df$conc_num_factor)
  895. message("Calculating summary statistics before quality control")
  896. df_stats <- calculate_summary_stats(
  897. df = df,
  898. variables = summary_vars,
  899. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
  900. message("Calculating summary statistics after quality control")
  901. ss <- calculate_summary_stats(
  902. df = df_na,
  903. variables = summary_vars,
  904. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  905. df_na_ss <- ss$summary_stats
  906. df_na_stats <- ss$df_with_stats
  907. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  908. # For plotting (ggplot warns on NAs)
  909. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  910. df_na_stats <- df_na_stats %>%
  911. mutate(
  912. WT_L = mean_L,
  913. WT_K = mean_K,
  914. WT_r = mean_r,
  915. WT_AUC = mean_AUC,
  916. WT_sd_L = sd_L,
  917. WT_sd_K = sd_K,
  918. WT_sd_r = sd_r,
  919. WT_sd_AUC = sd_AUC
  920. )
  921. # Pull the background means and standard deviations from zero concentration for interactions
  922. bg_stats <- df_na_stats %>%
  923. filter(conc_num == 0) %>%
  924. summarise(
  925. mean_L = first(mean_L),
  926. mean_K = first(mean_K),
  927. mean_r = first(mean_r),
  928. mean_AUC = first(mean_AUC),
  929. sd_L = first(sd_L),
  930. sd_K = first(sd_K),
  931. sd_r = first(sd_r),
  932. sd_AUC = first(sd_AUC)
  933. )
  934. message("Calculating summary statistics after quality control excluding zero values")
  935. df_no_zeros_stats <- calculate_summary_stats(
  936. df = df_no_zeros,
  937. variables = summary_vars,
  938. group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
  939. )$df_with_stats
  940. message("Filtering by 2SD of K")
  941. df_na_within_2sd_k <- df_na_stats %>%
  942. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  943. df_na_outside_2sd_k <- df_na_stats %>%
  944. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  945. message("Calculating summary statistics for L within 2SD of K")
  946. # TODO We're omitting the original z_max calculation, not sure if needed?
  947. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
  948. write.csv(ss,
  949. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  950. row.names = FALSE)
  951. message("Calculating summary statistics for L outside 2SD of K")
  952. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
  953. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  954. write.csv(ss$summary_stats,
  955. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  956. row.names = FALSE)
  957. # Each list of plots corresponds to a file
  958. l_vs_k_plot_configs <- list(
  959. plots = list(
  960. list(
  961. df = df,
  962. x_var = "L",
  963. y_var = "K",
  964. plot_type = "scatter",
  965. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  966. title = "Raw L vs K before quality control",
  967. color_var = "conc_num_factor_factor",
  968. error_bar = FALSE,
  969. legend_position = "right"
  970. )
  971. )
  972. )
  973. frequency_delta_bg_plot_configs <- list(
  974. plots = list(
  975. list(
  976. df = df_stats,
  977. x_var = "delta_bg",
  978. y_var = NULL,
  979. plot_type = "density",
  980. title = "Density plot for Delta Background by [Drug] (All Data)",
  981. color_var = "conc_num_factor_factor",
  982. x_label = "Delta Background",
  983. y_label = "Density",
  984. error_bar = FALSE,
  985. legend_position = "right"
  986. ),
  987. list(
  988. df = df_stats,
  989. x_var = "delta_bg",
  990. y_var = NULL,
  991. plot_type = "bar",
  992. title = "Bar plot for Delta Background by [Drug] (All Data)",
  993. color_var = "conc_num_factor_factor",
  994. x_label = "Delta Background",
  995. y_label = "Count",
  996. error_bar = FALSE,
  997. legend_position = "right"
  998. )
  999. )
  1000. )
  1001. above_threshold_plot_configs <- list(
  1002. plots = list(
  1003. list(
  1004. df = df_above_tolerance,
  1005. x_var = "L",
  1006. y_var = "K",
  1007. plot_type = "scatter",
  1008. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1009. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1010. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1011. color_var = "conc_num_factor_factor",
  1012. position = "jitter",
  1013. annotations = list(
  1014. list(
  1015. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1016. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1017. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1018. )
  1019. ),
  1020. error_bar = FALSE,
  1021. legend_position = "right"
  1022. )
  1023. )
  1024. )
  1025. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1026. variables = summary_vars,
  1027. df_before = df_stats,
  1028. df_after = df_na_stats_filtered
  1029. )
  1030. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1031. variables = summary_vars,
  1032. df_before = df_stats,
  1033. df_after = df_na_stats_filtered,
  1034. plot_type = "box"
  1035. )
  1036. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1037. variables = summary_vars,
  1038. stages = c("after"), # Only after QC
  1039. df_after = df_no_zeros_stats
  1040. )
  1041. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1042. variables = summary_vars,
  1043. stages = c("after"), # Only after QC
  1044. df_after = df_no_zeros_stats,
  1045. plot_type = "box"
  1046. )
  1047. l_outside_2sd_k_plot_configs <- list(
  1048. plots = list(
  1049. list(
  1050. df = df_na_l_outside_2sd_k_stats,
  1051. x_var = "L",
  1052. y_var = "K",
  1053. plot_type = "scatter",
  1054. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1055. color_var = "conc_num_factor_factor",
  1056. position = "jitter",
  1057. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1058. annotations = list(
  1059. list(
  1060. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1061. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1062. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1063. )
  1064. ),
  1065. error_bar = FALSE,
  1066. legend_position = "right"
  1067. )
  1068. )
  1069. )
  1070. delta_bg_outside_2sd_k_plot_configs <- list(
  1071. plots = list(
  1072. list(
  1073. df = df_na_l_outside_2sd_k_stats,
  1074. x_var = "delta_bg",
  1075. y_var = "K",
  1076. plot_type = "scatter",
  1077. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1078. color_var = "conc_num_factor_factor",
  1079. position = "jitter",
  1080. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1081. annotations = list(
  1082. list(
  1083. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1084. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1085. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1086. )
  1087. ),
  1088. error_bar = FALSE,
  1089. legend_position = "right"
  1090. )
  1091. )
  1092. )
  1093. message("Generating quality control plots in parallel")
  1094. # future::plan(future::multicore, workers = parallel::detectCores())
  1095. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1096. plot_configs <- list(
  1097. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1098. plot_configs = l_vs_k_plot_configs),
  1099. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1100. plot_configs = frequency_delta_bg_plot_configs),
  1101. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1102. plot_configs = above_threshold_plot_configs),
  1103. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1104. plot_configs = plate_analysis_plot_configs),
  1105. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1106. plot_configs = plate_analysis_boxplot_configs),
  1107. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1108. plot_configs = plate_analysis_no_zeros_plot_configs),
  1109. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1110. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1111. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1112. plot_configs = l_outside_2sd_k_plot_configs),
  1113. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1114. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1115. )
  1116. # Generating quality control plots in parallel
  1117. # furrr::future_map(plot_configs, function(config) {
  1118. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1119. # }, .options = furrr_options(seed = TRUE))
  1120. # Process background strains
  1121. bg_strains <- c("YDL227C")
  1122. lapply(bg_strains, function(strain) {
  1123. message("Processing background strain: ", strain)
  1124. # Handle missing data by setting zero values to NA
  1125. # and then removing any rows with NA in L col
  1126. df_bg <- df_na %>%
  1127. filter(OrfRep == strain) %>%
  1128. mutate(
  1129. L = if_else(L == 0, NA, L),
  1130. K = if_else(K == 0, NA, K),
  1131. r = if_else(r == 0, NA, r),
  1132. AUC = if_else(AUC == 0, NA, AUC)
  1133. ) %>%
  1134. filter(!is.na(L))
  1135. # Recalculate summary statistics for the background strain
  1136. message("Calculating summary statistics for background strain")
  1137. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
  1138. summary_stats_bg <- ss_bg$summary_stats
  1139. write.csv(summary_stats_bg,
  1140. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1141. row.names = FALSE)
  1142. # Set the missing values to the highest theoretical value at each drug conc for L
  1143. # Leave other values as 0 for the max/min
  1144. df_reference <- df_na_stats %>% # formerly X2_RF
  1145. filter(OrfRep == strain) %>%
  1146. filter(!is.na(L)) %>%
  1147. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1148. mutate(
  1149. max_l_theoretical = max(max_L, na.rm = TRUE),
  1150. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1151. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1152. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1153. ungroup()
  1154. # Ditto for deletion strains
  1155. df_deletion <- df_na_stats %>% # formerly X2
  1156. filter(OrfRep != strain) %>%
  1157. filter(!is.na(L)) %>%
  1158. mutate(SM = 0) %>%
  1159. group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
  1160. mutate(
  1161. max_l_theoretical = max(max_L, na.rm = TRUE),
  1162. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1163. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1164. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1165. ungroup()
  1166. message("Calculating reference strain interaction scores")
  1167. df_reference_stats <- calculate_summary_stats(
  1168. df = df_reference,
  1169. variables = interaction_vars,
  1170. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1171. )$df_with_stats
  1172. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1173. zscore_calculations_reference <- reference_results$calculations
  1174. zscore_interactions_reference <- reference_results$interactions
  1175. zscore_interactions_reference_joined <- reference_results$full_data
  1176. message("Calculating deletion strain(s) interactions scores")
  1177. df_deletion_stats <- calculate_summary_stats(
  1178. df = df_deletion,
  1179. variables = interaction_vars,
  1180. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1181. )$df_with_stats
  1182. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene"))
  1183. zscore_calculations <- deletion_results$calculations
  1184. zscore_interactions <- deletion_results$interactions
  1185. zscore_interactions_joined <- deletion_results$full_data
  1186. # Writing Z-Scores to file
  1187. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1188. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1189. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1190. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1191. # Create interaction plots
  1192. message("Generating reference interaction plots")
  1193. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1194. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1195. message("Generating deletion interaction plots")
  1196. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1197. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1198. # Define conditions for enhancers and suppressors
  1199. # TODO Add to study config?
  1200. threshold <- 2
  1201. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1202. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1203. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1204. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1205. # Subset data
  1206. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1207. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1208. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1209. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1210. # Save enhancers and suppressors
  1211. message("Writing enhancer/suppressor csv files")
  1212. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1213. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1214. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1215. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1216. # Combine conditions for enhancers and suppressors
  1217. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1218. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1219. # Save combined enhancers and suppressors
  1220. write.csv(enhancers_and_suppressors_L,
  1221. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1222. write.csv(enhancers_and_suppressors_K,
  1223. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1224. # Handle linear model based enhancers and suppressors
  1225. lm_threshold <- 2 # TODO add to study config?
  1226. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1227. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1228. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1229. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1230. # Save linear model based enhancers and suppressors
  1231. message("Writing linear model enhancer/suppressor csv files")
  1232. write.csv(enhancers_lm_L,
  1233. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1234. write.csv(suppressors_lm_L,
  1235. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1236. write.csv(enhancers_lm_K,
  1237. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1238. write.csv(suppressors_lm_K,
  1239. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1240. message("Generating rank plots")
  1241. rank_plot_configs <- generate_rank_plot_configs(
  1242. df = zscore_interactions_joined,
  1243. is_lm = FALSE,
  1244. adjust = TRUE
  1245. )
  1246. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1247. plot_configs = rank_plot_configs)
  1248. message("Generating ranked linear model plots")
  1249. rank_lm_plot_configs <- generate_rank_plot_configs(
  1250. df = zscore_interactions_joined,
  1251. is_lm = TRUE,
  1252. adjust = TRUE
  1253. )
  1254. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1255. plot_configs = rank_lm_plot_configs)
  1256. message("Generating filtered ranked plots")
  1257. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1258. df = zscore_interactions_filtered,
  1259. is_lm = FALSE,
  1260. adjust = FALSE,
  1261. overlap_color = TRUE
  1262. )
  1263. generate_and_save_plots(
  1264. out_dir = out_dir,
  1265. filename = "RankPlots_na_rm",
  1266. plot_configs = rank_plot_filtered_configs)
  1267. message("Generating filtered ranked linear model plots")
  1268. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1269. df = zscore_interactions_filtered,
  1270. is_lm = TRUE,
  1271. adjust = FALSE,
  1272. overlap_color = TRUE
  1273. )
  1274. generate_and_save_plots(
  1275. out_dir = out_dir,
  1276. filename = "rank_plots_lm_na_rm",
  1277. plot_configs = rank_plot_lm_filtered_configs)
  1278. message("Generating correlation curve parameter pair plots")
  1279. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1280. generate_and_save_plots(
  1281. out_dir = out_dir,
  1282. filename = "correlation_cpps",
  1283. plot_configs = correlation_plot_configs,
  1284. )
  1285. })
  1286. })
  1287. }
  1288. main()
  1289. # For future simplification of joined dataframes
  1290. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))