calculate_interaction_zscores.R 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("future")
  10. library("furrr")
  11. library("purrr")
  12. })
  13. # These parallelization libraries are very noisy
  14. suppressPackageStartupMessages({
  15. library("future")
  16. library("furrr")
  17. library("purrr")
  18. })
  19. options(warn = 2)
  20. # Constants for configuration
  21. plot_width <- 14
  22. plot_height <- 9
  23. base_size <- 14
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. list(
  57. out_dir = out_dir,
  58. sgd_gene_list = sgd_gene_list,
  59. easy_results_file = easy_results_file,
  60. experiments = experiments
  61. )
  62. }
  63. args <- parse_arguments()
  64. # Should we keep output in exp dirs or combine in the study output dir?
  65. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  66. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  67. # Define themes and scales
  68. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  69. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  70. theme_foundation %+replace%
  71. theme(
  72. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  73. text = element_text(),
  74. panel.background = element_rect(colour = NA),
  75. plot.background = element_rect(colour = NA),
  76. panel.border = element_rect(colour = NA),
  77. axis.title = element_text(face = "bold", size = rel(1)),
  78. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  79. axis.title.x = element_text(vjust = -0.2, size = 18),
  80. axis.line = element_line(colour = "black"),
  81. axis.text.x = element_text(size = 16),
  82. axis.text.y = element_text(size = 16),
  83. panel.grid.major = element_line(colour = "#f0f0f0"),
  84. panel.grid.minor = element_blank(),
  85. legend.key = element_rect(colour = NA),
  86. legend.position = legend_position,
  87. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  88. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  89. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  90. strip.text = element_text(face = "bold")
  91. )
  92. }
  93. scale_fill_publication <- function(...) {
  94. discrete_scale("fill", "Publication", manual_pal(values = c(
  95. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  96. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  97. )), ...)
  98. }
  99. scale_colour_publication <- function(...) {
  100. discrete_scale("colour", "Publication", manual_pal(values = c(
  101. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  102. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  103. )), ...)
  104. }
  105. # Load the initial dataframe from the easy_results_file
  106. load_and_process_data <- function(easy_results_file, sd = 3) {
  107. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  108. df <- df %>%
  109. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  110. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  111. # Rename columns
  112. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  113. mutate(
  114. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  115. delta_bg = last_bg - first_bg,
  116. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  117. NG = if_else(L == 0 & !is.na(L), 1, 0),
  118. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  119. SM = 0,
  120. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  121. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  122. ) %>%
  123. mutate(
  124. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  125. )
  126. return(df)
  127. }
  128. # Update Gene names using the SGD gene list
  129. update_gene_names <- function(df, sgd_gene_list) {
  130. # Load SGD gene list
  131. genes <- read.delim(file = sgd_gene_list,
  132. quote = "", header = FALSE,
  133. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  134. # Create a named vector for mapping ORF to GeneName
  135. gene_map <- setNames(genes$V5, genes$V4)
  136. # Vectorized match to find the GeneName from gene_map
  137. mapped_genes <- gene_map[df$ORF]
  138. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  139. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  140. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  141. df <- df %>%
  142. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  143. return(df)
  144. }
  145. calculate_summary_stats <- function(df, variables, group_vars) {
  146. summary_stats <- df %>%
  147. group_by(across(all_of(group_vars))) %>%
  148. summarise(
  149. N = n(),
  150. across(
  151. all_of(variables),
  152. list(
  153. mean = ~mean(., na.rm = TRUE),
  154. median = ~median(., na.rm = TRUE),
  155. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  156. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  157. sd = ~sd(., na.rm = TRUE),
  158. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # TODO non-standard SE, needs explanation
  159. ),
  160. .names = "{.fn}_{.col}"
  161. ),
  162. .groups = "drop"
  163. )
  164. # Create a cleaned version of df that doesn't overlap with summary_stats
  165. cleaned_df <- df %>%
  166. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  167. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  168. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  169. }
  170. calculate_interaction_scores <- function(df, max_conc, variables = c("L", "K", "r", "AUC")) {
  171. # Calculate total concentration variables
  172. total_conc_num <- length(unique(df$conc_num))
  173. # Pull the background means and standard deviations from zero concentration
  174. bg_means <- list(
  175. L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
  176. K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
  177. r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
  178. AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
  179. )
  180. bg_sd <- list(
  181. L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
  182. K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
  183. r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
  184. AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
  185. )
  186. calculations <- calculate_summary_stats(
  187. df = df,
  188. variables = variables,
  189. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  190. )$df_with_stats
  191. calculations <- calculations %>%
  192. group_by(OrfRep, Gene, num) %>%
  193. mutate(
  194. NG = sum(NG, na.rm = TRUE),
  195. DB = sum(DB, na.rm = TRUE),
  196. SM = sum(SM, na.rm = TRUE),
  197. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  198. # Store the background data
  199. WT_L = bg_means$L,
  200. WT_K = bg_means$K,
  201. WT_r = bg_means$r,
  202. WT_AUC = bg_means$AUC,
  203. WT_sd_L = bg_sd$L,
  204. WT_sd_K = bg_sd$K,
  205. WT_sd_r = bg_sd$r,
  206. WT_sd_AUC = bg_sd$AUC,
  207. Raw_Shift_L = first(mean_L) - bg_means$L,
  208. Raw_Shift_K = first(mean_K) - bg_means$K,
  209. Raw_Shift_r = first(mean_r) - bg_means$r,
  210. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  211. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  212. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  213. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  214. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC,
  215. Exp_L = WT_L + Raw_Shift_L,
  216. Exp_K = WT_K + Raw_Shift_K,
  217. Exp_r = WT_r + Raw_Shift_r,
  218. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  219. Delta_L = mean_L - Exp_L,
  220. Delta_K = mean_K - Exp_K,
  221. Delta_r = mean_r - Exp_r,
  222. Delta_AUC = mean_AUC - Exp_AUC,
  223. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  224. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  225. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  226. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  227. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  228. # Calculate Z-scores
  229. Zscore_L = Delta_L / WT_sd_L,
  230. Zscore_K = Delta_K / WT_sd_K,
  231. Zscore_r = Delta_r / WT_sd_r,
  232. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  233. # Fit linear models and store in list-columns
  234. gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
  235. gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
  236. gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
  237. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
  238. # Extract coefficients using purrr::map_dbl
  239. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  240. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  241. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  242. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  243. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  244. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  245. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  246. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  247. # Calculate lm_Score_* based on coefficients
  248. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  249. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  250. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  251. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  252. # Calculate R-squared values
  253. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  254. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  255. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  256. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared),
  257. # Calculate Z_lm_* Scores
  258. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  259. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  260. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  261. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  262. ) %>%
  263. ungroup()
  264. # Summarize some of the stats
  265. interactions <- calculations %>%
  266. group_by(OrfRep, Gene, num) %>%
  267. mutate(
  268. # Calculate raw shifts
  269. Raw_Shift_L = first(Raw_Shift_L),
  270. Raw_Shift_K = first(Raw_Shift_K),
  271. Raw_Shift_r = first(Raw_Shift_r),
  272. Raw_Shift_AUC = first(Raw_Shift_AUC),
  273. # Calculate Z-shifts
  274. Z_Shift_L = first(Z_Shift_L),
  275. Z_Shift_K = first(Z_Shift_K),
  276. Z_Shift_r = first(Z_Shift_r),
  277. Z_Shift_AUC = first(Z_Shift_AUC),
  278. # Sum Z-scores
  279. Sum_Z_Score_L = sum(Zscore_L),
  280. Sum_Z_Score_K = sum(Zscore_K),
  281. Sum_Z_Score_r = sum(Zscore_r),
  282. Sum_Z_Score_AUC = sum(Zscore_AUC),
  283. # Calculate Average Z-scores
  284. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  285. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  286. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  287. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  288. ) %>%
  289. arrange(desc(Z_lm_L), desc(NG)) %>%
  290. ungroup()
  291. # Declare column order for output
  292. calculations <- calculations %>%
  293. select(
  294. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  295. "mean_L", "mean_K", "mean_r", "mean_AUC",
  296. "median_L", "median_K", "median_r", "median_AUC",
  297. "sd_L", "sd_K", "sd_r", "sd_AUC",
  298. "se_L", "se_K", "se_r", "se_AUC",
  299. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  300. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  301. "WT_L", "WT_K", "WT_r", "WT_AUC",
  302. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  303. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  304. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  305. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  306. "NG", "SM", "DB")
  307. interactions <- interactions %>%
  308. select(
  309. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  310. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  311. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  312. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  313. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  314. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  315. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  316. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  317. cleaned_df <- df %>%
  318. select(-any_of(
  319. setdiff(intersect(names(df), names(interactions)),
  320. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  321. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  322. return(list(
  323. calculations = calculations,
  324. interactions = interactions,
  325. interactions_joined = interactions_joined))
  326. }
  327. generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
  328. message("Generating ", filename, ".pdf and ", filename, ".html")
  329. # Prepare lists to collect plots
  330. static_plots <- list()
  331. plotly_plots <- list()
  332. for (i in seq_along(plot_configs)) {
  333. config <- plot_configs[[i]]
  334. df <- config$df
  335. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  336. if (is.null(config$color_var)) {
  337. aes(x = .data[[config$x_var]])
  338. } else {
  339. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  340. }
  341. } else if (is.null(config$color_var)) {
  342. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  343. } else {
  344. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  345. }
  346. # Start building the plot with aes_mapping
  347. plot_base <- ggplot(df, aes_mapping)
  348. # Use appropriate helper function based on plot type
  349. plot <- switch(config$plot_type,
  350. "scatter" = generate_scatter_plot(plot_base, config),
  351. "box" = generate_box_plot(plot_base, config),
  352. "density" = plot_base + geom_density(),
  353. "bar" = plot_base + geom_bar(),
  354. plot_base # default case if no type matches
  355. )
  356. # Apply additional settings
  357. if (!is.null(config$legend_position)) {
  358. plot <- plot + theme(legend.position = config$legend_position)
  359. }
  360. # Add title and labels
  361. if (!is.null(config$title)) {
  362. plot <- plot + ggtitle(config$title)
  363. }
  364. if (!is.null(config$x_label)) {
  365. plot <- plot + xlab(config$x_label)
  366. }
  367. if (!is.null(config$y_label)) {
  368. plot <- plot + ylab(config$y_label)
  369. }
  370. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  371. if (is.null(config$color_var)) {
  372. plot <- plot + scale_color_discrete(guide = "none")
  373. }
  374. # Add interactive tooltips for plotly
  375. tooltip_vars <- c()
  376. if (config$plot_type == "scatter") {
  377. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  378. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  379. } else if (!is.null(config$gene_point) && config$gene_point) {
  380. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  381. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  382. tooltip_vars <- c(config$x_var, config$y_var)
  383. }
  384. }
  385. # Convert to plotly object
  386. if (length(tooltip_vars) > 0) {
  387. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  388. } else {
  389. plotly_plot <- ggplotly(plot, tooltip = "none")
  390. }
  391. # Adjust legend position if specified
  392. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  393. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  394. }
  395. # Add plots to lists
  396. static_plots[[i]] <- plot
  397. plotly_plots[[i]] <- plotly_plot
  398. }
  399. # Save static PDF plots
  400. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
  401. lapply(static_plots, print)
  402. dev.off()
  403. # Combine and save interactive HTML plots
  404. combined_plot <- subplot(
  405. plotly_plots,
  406. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  407. grid_layout$nrow
  408. } else {
  409. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  410. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  411. },
  412. margin = 0.05
  413. )
  414. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  415. }
  416. generate_scatter_plot <- function(plot, config) {
  417. shape <- if (!is.null(config$shape)) config$shape else 3
  418. size <- if (!is.null(config$size)) config$size else 0.1
  419. position <-
  420. if (!is.null(config$position) && config$position == "jitter") {
  421. position_jitter(width = 0.1, height = 0)
  422. } else {
  423. "identity"
  424. }
  425. plot <- plot + geom_point(
  426. shape = shape,
  427. size = size,
  428. position = position
  429. )
  430. if (!is.null(config$cyan_points) && config$cyan_points) {
  431. plot <- plot + geom_point(
  432. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  433. color = "cyan",
  434. shape = 3,
  435. size = 0.5
  436. )
  437. }
  438. # Add Smooth Line if specified
  439. if (!is.null(config$smooth) && config$smooth) {
  440. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  441. if (!is.null(config$lm_line)) {
  442. plot <- plot +
  443. geom_abline(
  444. intercept = config$lm_line$intercept,
  445. slope = config$lm_line$slope,
  446. color = smooth_color
  447. )
  448. } else {
  449. plot <- plot +
  450. geom_smooth(
  451. method = "lm",
  452. se = FALSE,
  453. color = smooth_color
  454. )
  455. }
  456. }
  457. # Add SD Bands if specified
  458. if (!is.null(config$sd_band)) {
  459. plot <- plot +
  460. annotate(
  461. "rect",
  462. xmin = -Inf, xmax = Inf,
  463. ymin = config$sd_band, ymax = Inf,
  464. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  465. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  466. ) +
  467. annotate(
  468. "rect",
  469. xmin = -Inf, xmax = Inf,
  470. ymin = -config$sd_band, ymax = -Inf,
  471. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  472. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  473. ) +
  474. geom_hline(
  475. yintercept = c(-config$sd_band, config$sd_band),
  476. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  477. )
  478. }
  479. # Add Rectangles if specified
  480. if (!is.null(config$rectangles)) {
  481. for (rect in config$rectangles) {
  482. plot <- plot + annotate(
  483. "rect",
  484. xmin = rect$xmin,
  485. xmax = rect$xmax,
  486. ymin = rect$ymin,
  487. ymax = rect$ymax,
  488. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  489. color = ifelse(is.null(rect$color), "black", rect$color),
  490. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  491. )
  492. }
  493. }
  494. # Add Error Bars if specified
  495. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  496. y_mean_col <- paste0("mean_", config$y_var)
  497. y_sd_col <- paste0("sd_", config$y_var)
  498. plot <- plot +
  499. geom_errorbar(
  500. aes(
  501. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  502. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  503. ),
  504. alpha = 0.3
  505. )
  506. }
  507. # Customize X-axis if specified
  508. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  509. plot <- plot +
  510. scale_x_discrete(
  511. name = config$x_label,
  512. breaks = config$x_breaks,
  513. labels = config$x_labels
  514. )
  515. }
  516. # Apply coord_cartesian if specified
  517. if (!is.null(config$coord_cartesian)) {
  518. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  519. }
  520. # Set Y-axis limits if specified
  521. if (!is.null(config$ylim_vals)) {
  522. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  523. }
  524. # Add Annotations if specified
  525. if (!is.null(config$annotations)) {
  526. for (annotation in config$annotations) {
  527. plot <- plot +
  528. annotate(
  529. "text",
  530. x = annotation$x,
  531. y = annotation$y,
  532. label = annotation$label,
  533. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  534. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  535. size = ifelse(is.null(annotation$size), 4, annotation$size),
  536. color = ifelse(is.null(annotation$color), "black", annotation$color)
  537. )
  538. }
  539. }
  540. # Add Title if specified
  541. if (!is.null(config$title)) {
  542. plot <- plot + ggtitle(config$title)
  543. }
  544. # Adjust Legend Position if specified
  545. if (!is.null(config$legend_position)) {
  546. plot <- plot + theme(legend.position = config$legend_position)
  547. }
  548. return(plot)
  549. }
  550. generate_box_plot <- function(plot, config) {
  551. plot <- plot + geom_boxplot()
  552. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  553. plot <- plot + scale_x_discrete(
  554. name = config$x_label,
  555. breaks = config$x_breaks,
  556. labels = config$x_labels
  557. )
  558. }
  559. if (!is.null(config$coord_cartesian)) {
  560. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  561. }
  562. return(plot)
  563. }
  564. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  565. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  566. plots <- list()
  567. for (var in variables) {
  568. for (stage in stages) {
  569. df_plot <- if (stage == "before") df_before else df_after
  570. # Adjust settings based on plot_type
  571. if (plot_type == "scatter") {
  572. error_bar <- TRUE
  573. position <- "jitter"
  574. } else if (plot_type == "box") {
  575. error_bar <- FALSE
  576. position <- NULL
  577. }
  578. config <- list(
  579. df = df_plot,
  580. x_var = "scan",
  581. y_var = var,
  582. plot_type = plot_type,
  583. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  584. error_bar = error_bar,
  585. color_var = "conc_num_factor",
  586. position = position
  587. )
  588. plots <- append(plots, list(config))
  589. }
  590. }
  591. return(plots)
  592. }
  593. generate_interaction_plot_configs <- function(df, variables) {
  594. configs <- list()
  595. limits_map <- list(
  596. L = c(-65, 65),
  597. K = c(-65, 65),
  598. r = c(-0.65, 0.65),
  599. AUC = c(-6500, 6500)
  600. )
  601. df_filtered <- process_data(df, variables, filter_na = TRUE, limits_map = limits_map)
  602. # Define annotation label functions
  603. generate_annotation_labels <- function(df, var, annotation_name) {
  604. switch(annotation_name,
  605. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  606. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  607. NG = paste("NG =", df$NG),
  608. DB = paste("DB =", df$DB),
  609. SM = paste("SM =", df$SM),
  610. NULL # Default case for unrecognized annotation names
  611. )
  612. }
  613. # Define annotation positions relative to the y-axis range
  614. calculate_annotation_positions <- function(y_range) {
  615. y_min <- min(y_range)
  616. y_max <- max(y_range)
  617. y_span <- y_max - y_min
  618. list(
  619. ZShift = y_max - 0.1 * y_span,
  620. lm_ZScore = y_max - 0.2 * y_span,
  621. NG = y_min + 0.2 * y_span,
  622. DB = y_min + 0.1 * y_span,
  623. SM = y_min + 0.05 * y_span
  624. )
  625. }
  626. # Create configurations for each variable
  627. for (variable in variables) {
  628. y_range <- limits_map[[variable]]
  629. annotation_positions <- calculate_annotation_positions(y_range)
  630. lm_line <- list(
  631. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  632. slope = df_filtered[[paste0("lm_slope_", variable)]]
  633. )
  634. # Determine x-axis midpoint
  635. num_levels <- length(levels(df_filtered$conc_num_factor))
  636. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  637. # Generate annotations
  638. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  639. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  640. y_pos <- annotation_positions[[annotation_name]]
  641. if (!is.null(label)) {
  642. list(x = x_pos, y = y_pos, label = label)
  643. } else {
  644. message(paste("Warning: No annotation found for", annotation_name))
  645. NULL
  646. }
  647. })
  648. # Remove NULL annotations
  649. annotations <- Filter(Negate(is.null), annotations)
  650. # Shared plot settings
  651. plot_settings <- list(
  652. df = df_filtered,
  653. x_var = "conc_num_factor",
  654. y_var = variable,
  655. ylim_vals = y_range,
  656. annotations = annotations,
  657. lm_line = lm_line,
  658. x_breaks = levels(df_filtered$conc_num_factor),
  659. x_labels = levels(df_filtered$conc_num_factor),
  660. x_label = unique(df_filtered$Drug[1]),
  661. coord_cartesian = y_range # Use the actual y-limits
  662. )
  663. # Scatter plot config
  664. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  665. plot_type = "scatter",
  666. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  667. error_bar = TRUE,
  668. position = "jitter"
  669. ))
  670. # Box plot config
  671. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  672. plot_type = "box",
  673. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  674. error_bar = FALSE
  675. ))
  676. }
  677. return(configs)
  678. }
  679. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE, overlap_color = FALSE) {
  680. sd_bands <- c(1, 2, 3)
  681. configs <- list()
  682. # SD-based plots for L and K
  683. for (variable in c("L", "K")) {
  684. if (is_lm) {
  685. rank_var <- paste0("Rank_lm_", variable)
  686. zscore_var <- paste0("Z_lm_", variable)
  687. y_label <- paste("Int Z score", variable)
  688. } else {
  689. rank_var <- paste0("Rank_", variable)
  690. zscore_var <- paste0("Avg_Zscore_", variable)
  691. y_label <- paste("Avg Z score", variable)
  692. }
  693. for (sd_band in sd_bands) {
  694. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  695. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  696. # Annotated plot configuration
  697. configs[[length(configs) + 1]] <- list(
  698. df = df_filtered,
  699. x_var = rank_var,
  700. y_var = zscore_var,
  701. plot_type = "scatter",
  702. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  703. sd_band = sd_band,
  704. fill_positive = "#542788",
  705. fill_negative = "orange",
  706. alpha_positive = 0.3,
  707. alpha_negative = 0.3,
  708. annotations = list(
  709. list(
  710. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  711. y = 10,
  712. label = paste("Deletion Enhancers =", num_enhancers),
  713. hjust = 0.5,
  714. vjust = 1
  715. ),
  716. list(
  717. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  718. y = -10,
  719. label = paste("Deletion Suppressors =", num_suppressors),
  720. hjust = 0.5,
  721. vjust = 0
  722. )
  723. ),
  724. shape = 3,
  725. size = 0.1,
  726. y_label = y_label,
  727. x_label = "Rank",
  728. legend_position = "none"
  729. )
  730. # Non-Annotated Plot Configuration
  731. configs[[length(configs) + 1]] <- list(
  732. df = df_filtered,
  733. x_var = rank_var,
  734. y_var = zscore_var,
  735. plot_type = "scatter",
  736. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  737. sd_band = sd_band,
  738. fill_positive = "#542788",
  739. fill_negative = "orange",
  740. alpha_positive = 0.3,
  741. alpha_negative = 0.3,
  742. annotations = NULL,
  743. shape = 3,
  744. size = 0.1,
  745. y_label = y_label,
  746. x_label = "Rank",
  747. legend_position = "none"
  748. )
  749. }
  750. }
  751. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  752. for (variable in variables) {
  753. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  754. title <- paste(plot_type, variable)
  755. # Define specific variables based on plot type
  756. if (plot_type == "Avg Zscore vs lm") {
  757. x_var <- paste0("Avg_Zscore_", variable)
  758. y_var <- paste0("Z_lm_", variable)
  759. rectangles <- list(
  760. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  761. fill = NA, color = "grey20", alpha = 0.1
  762. )
  763. )
  764. } else if (plot_type == "Rank Avg Zscore vs lm") {
  765. x_var <- paste0("Rank_", variable)
  766. y_var <- paste0("Rank_lm_", variable)
  767. rectangles <- NULL
  768. }
  769. # Fit linear model
  770. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_filtered)
  771. lm_summary <- summary(lm_model)
  772. # Extract intercept and slope from the model coefficients
  773. intercept <- coef(lm_model)[1]
  774. slope <- coef(lm_model)[2]
  775. configs[[length(configs) + 1]] <- list(
  776. df = df_filtered,
  777. x_var = x_var,
  778. y_var = y_var,
  779. plot_type = "scatter",
  780. title = title,
  781. annotations = list(
  782. list(
  783. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  784. y = 10,
  785. label = paste("Deletion Enhancers =", num_enhancers),
  786. hjust = 0.5,
  787. vjust = 1
  788. ),
  789. list(
  790. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  791. y = -10,
  792. label = paste("Deletion Suppressors =", num_suppressors),
  793. hjust = 0.5,
  794. vjust = 0
  795. )
  796. ),
  797. shape = 3,
  798. size = 0.1,
  799. smooth = TRUE,
  800. smooth_color = "black",
  801. lm_line = list(intercept = intercept, slope = slope),
  802. legend_position = "right",
  803. color_var = if (overlap_color) "Overlap" else NULL,
  804. x_label = x_var,
  805. y_label = y_var,
  806. rectangles = rectangles
  807. )
  808. }
  809. }
  810. return(configs)
  811. }
  812. generate_correlation_plot_configs <- function(df) {
  813. # Define relationships for plotting
  814. relationships <- list(
  815. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  816. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  817. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  818. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  819. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  820. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  821. )
  822. configs <- list()
  823. for (rel in relationships) {
  824. # Fit linear model
  825. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  826. lm_summary <- summary(lm_model)
  827. # Construct plot configuration
  828. config <- list(
  829. df = df,
  830. x_var = rel$x,
  831. y_var = rel$y,
  832. plot_type = "scatter",
  833. title = rel$label,
  834. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  835. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  836. annotations = list(
  837. list(
  838. x = Inf,
  839. y = Inf,
  840. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  841. hjust = 1.1,
  842. vjust = 2,
  843. size = 4,
  844. color = "black"
  845. )
  846. ),
  847. smooth = TRUE,
  848. smooth_color = "tomato3",
  849. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  850. legend_position = "right",
  851. shape = 3,
  852. size = 0.5,
  853. color_var = "Overlap",
  854. rectangles = list(
  855. list(
  856. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  857. fill = NA, color = "grey20", alpha = 0.1
  858. )
  859. ),
  860. cyan_points = TRUE
  861. )
  862. configs[[length(configs) + 1]] <- config
  863. }
  864. return(configs)
  865. }
  866. process_data <- function(df, variables, filter_nf = FALSE, filter_na = FALSE, adjust = FALSE,
  867. rank = FALSE, limits_map = NULL) {
  868. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  869. z_lm_cols <- paste0("Z_lm_", variables)
  870. rank_avg_zscore_cols <- paste0("Rank_", variables)
  871. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  872. if (filter_nf) {
  873. message("Filtering non-finite values")
  874. df <- df %>%
  875. filter(if_all(all_of(variables), ~ is.finite(.)))
  876. }
  877. if (filter_na) {
  878. message("Filtering NA values")
  879. df <- df %>%
  880. filter(if_all(all_of(variables), ~ !is.na(.)))
  881. }
  882. if (!is.null(limits_map)) {
  883. message("Filtering data outside y-limits (for plotting)")
  884. for (variable in names(limits_map)) {
  885. if (variable %in% variables) {
  886. ylim_vals <- limits_map[[variable]]
  887. df <- df %>%
  888. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  889. }
  890. }
  891. }
  892. if (adjust) {
  893. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  894. df <- df %>%
  895. mutate(
  896. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  897. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  898. )
  899. }
  900. # Calculate and add rank columns
  901. # TODO probably should be moved to separate function
  902. if (rank) {
  903. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  904. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  905. df <- df %>%
  906. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  907. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  908. df <- df %>%
  909. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  910. }
  911. return(df)
  912. }
  913. main <- function() {
  914. lapply(names(args$experiments), function(exp_name) {
  915. exp <- args$experiments[[exp_name]]
  916. exp_path <- exp$path
  917. exp_sd <- exp$sd
  918. out_dir <- file.path(exp_path, "zscores")
  919. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  920. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  921. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  922. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  923. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  924. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  925. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  926. message("Loading and filtering data for experiment: ", exp_name)
  927. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  928. update_gene_names(args$sgd_gene_list) %>%
  929. as_tibble()
  930. # Filter rows above delta background tolerance
  931. df_above_tolerance <- df %>% filter(DB == 1)
  932. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  933. df_no_zeros <- df_na %>% filter(L > 0)
  934. # Save some constants
  935. max_conc <- max(df$conc_num)
  936. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  937. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  938. message("Calculating summary statistics before quality control")
  939. ss <- calculate_summary_stats(
  940. df = df,
  941. variables = summary_vars,
  942. group_vars = c("conc_num", "conc_num_factor"))
  943. df_stats <- ss$df_with_stats
  944. message("Filtering non-finite data")
  945. df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
  946. message("Calculating summary statistics after quality control")
  947. ss <- calculate_summary_stats(
  948. df = df_na,
  949. variables = summary_vars,
  950. group_vars = c("conc_num", "conc_num_factor"))
  951. df_na_ss <- ss$summary_stats
  952. df_na_stats <- ss$df_with_stats
  953. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  954. df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
  955. message("Calculating summary statistics after quality control excluding zero values")
  956. ss <- calculate_summary_stats(
  957. df = df_no_zeros,
  958. variables = summary_vars,
  959. group_vars = c("conc_num", "conc_num_factor"))
  960. df_no_zeros_stats <- ss$df_with_stats
  961. df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
  962. message("Filtering by 2SD of K")
  963. df_na_within_2sd_k <- df_na_stats %>%
  964. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  965. df_na_outside_2sd_k <- df_na_stats %>%
  966. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  967. message("Calculating summary statistics for L within 2SD of K")
  968. # TODO We're omitting the original z_max calculation, not sure if needed?
  969. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  970. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  971. write.csv(ss$summary_stats,
  972. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  973. row.names = FALSE)
  974. message("Calculating summary statistics for L outside 2SD of K")
  975. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  976. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  977. write.csv(ss$summary_stats,
  978. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  979. row.names = FALSE)
  980. # Each plots list corresponds to a file
  981. l_vs_k_plot_configs <- list(
  982. list(
  983. df = df,
  984. x_var = "L",
  985. y_var = "K",
  986. plot_type = "scatter",
  987. delta_bg_point = TRUE,
  988. title = "Raw L vs K before quality control",
  989. color_var = "conc_num_factor",
  990. error_bar = FALSE,
  991. legend_position = "right"
  992. )
  993. )
  994. frequency_delta_bg_plot_configs <- list(
  995. list(
  996. df = df_filtered_stats,
  997. x_var = "delta_bg",
  998. y_var = NULL,
  999. plot_type = "density",
  1000. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1001. color_var = "conc_num_factor",
  1002. x_label = "Delta Background",
  1003. y_label = "Density",
  1004. error_bar = FALSE,
  1005. legend_position = "right"),
  1006. list(
  1007. df = df_filtered_stats,
  1008. x_var = "delta_bg",
  1009. y_var = NULL,
  1010. plot_type = "bar",
  1011. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  1012. color_var = "conc_num_factor",
  1013. x_label = "Delta Background",
  1014. y_label = "Count",
  1015. error_bar = FALSE,
  1016. legend_position = "right")
  1017. )
  1018. above_threshold_plot_configs <- list(
  1019. list(
  1020. df = df_above_tolerance,
  1021. x_var = "L",
  1022. y_var = "K",
  1023. plot_type = "scatter",
  1024. delta_bg_point = TRUE,
  1025. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1026. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  1027. color_var = "conc_num_factor",
  1028. position = "jitter",
  1029. annotations = list(
  1030. list(
  1031. x = l_half_median,
  1032. y = k_half_median,
  1033. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1034. )
  1035. ),
  1036. error_bar = FALSE,
  1037. legend_position = "right"
  1038. )
  1039. )
  1040. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1041. variables = summary_vars,
  1042. df_before = df_filtered_stats,
  1043. df_after = df_na_filtered_stats,
  1044. )
  1045. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1046. variables = summary_vars,
  1047. df_before = df_filtered_stats,
  1048. df_after = df_na_filtered_stats,
  1049. plot_type = "box"
  1050. )
  1051. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1052. variables = summary_vars,
  1053. stages = c("after"), # Only after QC
  1054. df_after = df_no_zeros_filtered_stats,
  1055. )
  1056. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1057. variables = summary_vars,
  1058. stages = c("after"), # Only after QC
  1059. df_after = df_no_zeros_filtered_stats,
  1060. plot_type = "box"
  1061. )
  1062. l_outside_2sd_k_plot_configs <- list(
  1063. list(
  1064. df = df_na_l_outside_2sd_k_stats,
  1065. x_var = "L",
  1066. y_var = "K",
  1067. plot_type = "scatter",
  1068. delta_bg_point = TRUE,
  1069. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1070. color_var = "conc_num_factor",
  1071. position = "jitter",
  1072. legend_position = "right"
  1073. )
  1074. )
  1075. delta_bg_outside_2sd_k_plot_configs <- list(
  1076. list(
  1077. df = df_na_l_outside_2sd_k_stats,
  1078. x_var = "delta_bg",
  1079. y_var = "K",
  1080. plot_type = "scatter",
  1081. gene_point = TRUE,
  1082. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1083. color_var = "conc_num_factor",
  1084. position = "jitter",
  1085. legend_position = "right"
  1086. )
  1087. )
  1088. message("Generating quality control plots")
  1089. # TODO trying out some parallelization
  1090. # future::plan(future::multicore, workers = parallel::detectCores())
  1091. future::plan(future::multisession, workers = 3)
  1092. plot_configs <- list(
  1093. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1094. plot_configs = l_vs_k_plot_configs),
  1095. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1096. plot_configs = frequency_delta_bg_plot_configs),
  1097. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1098. plot_configs = above_threshold_plot_configs),
  1099. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1100. plot_configs = plate_analysis_plot_configs),
  1101. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1102. plot_configs = plate_analysis_boxplot_configs),
  1103. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1104. plot_configs = plate_analysis_no_zeros_plot_configs),
  1105. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1106. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1107. list(out_dir = out_dir_qc, name = "L_vs_K_for_strains_2SD_outside_mean_K",
  1108. plot_configs = l_outside_2sd_k_plot_configs),
  1109. list(out_dir = out_dir_qc, name = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1110. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1111. )
  1112. # Generating quality control plots in parallel
  1113. # furrr::future_map(plot_configs, function(config) {
  1114. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1115. # }, .options = furrr_options(seed = TRUE))
  1116. # Process background strains
  1117. bg_strains <- c("YDL227C")
  1118. lapply(bg_strains, function(strain) {
  1119. message("Processing background strain: ", strain)
  1120. # Handle missing data by setting zero values to NA
  1121. # and then removing any rows with NA in L col
  1122. df_bg <- df_na %>%
  1123. filter(OrfRep == strain) %>%
  1124. mutate(
  1125. L = if_else(L == 0, NA, L),
  1126. K = if_else(K == 0, NA, K),
  1127. r = if_else(r == 0, NA, r),
  1128. AUC = if_else(AUC == 0, NA, AUC)
  1129. ) %>%
  1130. filter(!is.na(L))
  1131. # Recalculate summary statistics for the background strain
  1132. message("Calculating summary statistics for background strain")
  1133. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1134. summary_stats_bg <- ss_bg$summary_stats
  1135. # df_bg_stats <- ss_bg$df_with_stats
  1136. write.csv(summary_stats_bg,
  1137. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1138. row.names = FALSE)
  1139. # Filter reference and deletion strains
  1140. # Formerly X2_RF (reference strains)
  1141. df_reference <- df_na_stats %>%
  1142. filter(OrfRep == strain) %>%
  1143. mutate(SM = 0)
  1144. # Formerly X2 (deletion strains)
  1145. df_deletion <- df_na_stats %>%
  1146. filter(OrfRep != strain) %>%
  1147. mutate(SM = 0)
  1148. # Set the missing values to the highest theoretical value at each drug conc for L
  1149. # Leave other values as 0 for the max/min
  1150. reference_strain <- df_reference %>%
  1151. group_by(conc_num, conc_num_factor) %>%
  1152. mutate(
  1153. max_l_theoretical = max(max_L, na.rm = TRUE),
  1154. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1155. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1156. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1157. ungroup()
  1158. # Ditto for deletion strains
  1159. deletion_strains <- df_deletion %>%
  1160. group_by(conc_num, conc_num_factor) %>%
  1161. mutate(
  1162. max_l_theoretical = max(max_L, na.rm = TRUE),
  1163. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1164. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1165. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1166. ungroup()
  1167. message("Calculating reference strain interaction scores")
  1168. reference_results <- calculate_interaction_scores(reference_strain, max_conc)
  1169. zscores_calculations_reference <- reference_results$calculations
  1170. zscores_interactions_reference <- reference_results$interactions
  1171. # zscores_calculations_reference_joined <- reference_results$calculations_joined
  1172. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1173. message("Calculating deletion strain(s) interactions scores")
  1174. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc)
  1175. zscores_calculations <- deletion_results$calculations
  1176. zscores_interactions <- deletion_results$interactions
  1177. # zscores_calculations_joined <- deletion_results$calculations_joined
  1178. zscores_interactions_joined <- deletion_results$interactions_joined
  1179. # Writing Z-Scores to file
  1180. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1181. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1182. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1183. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1184. # Create interaction plots
  1185. message("Generating reference interaction plots")
  1186. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1187. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1188. message("Generating deletion interaction plots")
  1189. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1190. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1191. # Define conditions for enhancers and suppressors
  1192. # TODO Add to study config file?
  1193. threshold <- 2
  1194. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1195. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1196. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1197. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1198. # Subset data
  1199. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1200. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1201. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1202. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1203. # Save enhancers and suppressors
  1204. message("Writing enhancer/suppressor csv files")
  1205. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1206. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1207. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1208. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1209. # Combine conditions for enhancers and suppressors
  1210. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1211. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1212. # Save combined enhancers and suppressors
  1213. write.csv(enhancers_and_suppressors_L,
  1214. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1215. write.csv(enhancers_and_suppressors_K,
  1216. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1217. # Handle linear model based enhancers and suppressors
  1218. lm_threshold <- 2
  1219. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1220. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1221. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1222. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1223. # Save linear model based enhancers and suppressors
  1224. message("Writing linear model enhancer/suppressor csv files")
  1225. write.csv(enhancers_lm_L,
  1226. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1227. write.csv(suppressors_lm_L,
  1228. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1229. write.csv(enhancers_lm_K,
  1230. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1231. write.csv(suppressors_lm_K,
  1232. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1233. message("Generating rank plots")
  1234. # Formerly InteractionScores_AdjustMissing
  1235. zscores_interactions_joined_ranked <- process_data(
  1236. df = zscores_interactions_joined,
  1237. variables = interaction_vars,
  1238. adjust = TRUE,
  1239. rank = TRUE)
  1240. rank_plot_configs <- generate_rank_plot_configs(
  1241. df = zscores_interactions_joined_ranked,
  1242. variables = interaction_vars,
  1243. is_lm = FALSE
  1244. )
  1245. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots",
  1246. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1247. message("Generating ranked linear model plots")
  1248. rank_lm_plot_configs <- generate_rank_plot_configs(
  1249. df = zscores_interactions_joined_ranked,
  1250. variables = interaction_vars,
  1251. is_lm = TRUE
  1252. )
  1253. generate_and_save_plots(out_dir = out_dir, filename = "RankPlots_lm",
  1254. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1255. message("Filtering and reranking plots")
  1256. # Formerly X_NArm
  1257. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1258. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1259. mutate(
  1260. Overlap = case_when(
  1261. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1262. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1263. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1264. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1265. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1266. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1267. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1268. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1269. TRUE ~ "No Effect"
  1270. ),
  1271. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1272. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1273. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1274. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1275. )
  1276. # Re-rank
  1277. zscores_interactions_filtered_ranked <- process_data(
  1278. df = zscores_interactions_filtered,
  1279. variables = interaction_vars,
  1280. rank = TRUE
  1281. )
  1282. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1283. df = zscores_interactions_filtered_ranked,
  1284. variables = interaction_vars,
  1285. is_lm = FALSE,
  1286. overlap_color = TRUE
  1287. )
  1288. message("Generating filtered ranked plots")
  1289. generate_and_save_plots(
  1290. out_dir = out_dir,
  1291. filename = "RankPlots_na_rm",
  1292. plot_configs = rank_plot_filtered_configs,
  1293. grid_layout = list(ncol = 3, nrow = 2))
  1294. message("Generating filtered ranked linear model plots")
  1295. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1296. df = zscores_interactions_filtered_ranked,
  1297. variables = interaction_vars,
  1298. is_lm = TRUE,
  1299. overlap_color = TRUE
  1300. )
  1301. generate_and_save_plots(
  1302. out_dir = out_dir,
  1303. filename = "RankPlots_lm_na_rm",
  1304. plot_configs = rank_plot_lm_filtered_configs,
  1305. grid_layout = list(ncol = 3, nrow = 2))
  1306. message("Generating correlation plots")
  1307. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1308. generate_and_save_plots(
  1309. out_dir = out_dir,
  1310. filename = "Avg_Zscore_vs_lm_NA_rm",
  1311. plot_configs = correlation_plot_configs,
  1312. grid_layout = list(ncol = 2, nrow = 2))
  1313. })
  1314. })
  1315. }
  1316. main()