calculate_interaction_zscores.R 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("unix")
  10. })
  11. options(warn = 2)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. invisible(rlimit_as(soft_limit, hard_limit))
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. out_dir <- normalizePath(args[1], mustWork = FALSE)
  37. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  38. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  39. # The remaining arguments should be in groups of 3
  40. exp_args <- args[-(1:3)]
  41. if (length(exp_args) %% 3 != 0) {
  42. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  43. }
  44. experiments <- list()
  45. for (i in seq(1, length(exp_args), by = 3)) {
  46. exp_name <- exp_args[i + 1]
  47. experiments[[exp_name]] <- list(
  48. path = normalizePath(exp_args[i], mustWork = FALSE),
  49. sd = as.numeric(exp_args[i + 2])
  50. )
  51. }
  52. list(
  53. out_dir = out_dir,
  54. sgd_gene_list = sgd_gene_list,
  55. easy_results_file = easy_results_file,
  56. experiments = experiments
  57. )
  58. }
  59. args <- parse_arguments()
  60. # Should we keep output in exp dirs or combine in the study output dir?
  61. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  62. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  63. # Define themes and scales
  64. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  65. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  66. theme_foundation %+replace%
  67. theme(
  68. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  69. text = element_text(),
  70. panel.background = element_rect(colour = NA),
  71. plot.background = element_rect(colour = NA),
  72. panel.border = element_rect(colour = NA),
  73. axis.title = element_text(face = "bold", size = rel(1)),
  74. axis.title.y = element_text(angle = 90, vjust = 2, size = 18),
  75. axis.title.x = element_text(vjust = -0.2, size = 18),
  76. axis.line = element_line(colour = "black"),
  77. axis.text.x = element_text(size = 16),
  78. axis.text.y = element_text(size = 16),
  79. panel.grid.major = element_line(colour = "#f0f0f0"),
  80. panel.grid.minor = element_blank(),
  81. legend.key = element_rect(colour = NA),
  82. legend.position = legend_position,
  83. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  84. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  85. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  86. strip.text = element_text(face = "bold")
  87. )
  88. }
  89. scale_fill_publication <- function(...) {
  90. discrete_scale("fill", "Publication", manual_pal(values = c(
  91. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  92. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  93. )), ...)
  94. }
  95. scale_colour_publication <- function(...) {
  96. discrete_scale("colour", "Publication", manual_pal(values = c(
  97. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  98. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  99. )), ...)
  100. }
  101. # Load the initial dataframe from the easy_results_file
  102. load_and_process_data <- function(easy_results_file, sd = 3) {
  103. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  104. df <- df %>%
  105. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  106. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  107. # Rename columns
  108. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  109. mutate(
  110. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  111. delta_bg = last_bg - first_bg,
  112. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  113. NG = if_else(L == 0 & !is.na(L), 1, 0),
  114. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  115. SM = 0,
  116. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  117. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
  118. ) %>%
  119. mutate(
  120. conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
  121. )
  122. return(df)
  123. }
  124. # Update Gene names using the SGD gene list
  125. update_gene_names <- function(df, sgd_gene_list) {
  126. # Load SGD gene list
  127. genes <- read.delim(file = sgd_gene_list,
  128. quote = "", header = FALSE,
  129. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  130. # Create a named vector for mapping ORF to GeneName
  131. gene_map <- setNames(genes$V5, genes$V4)
  132. # Vectorized match to find the GeneName from gene_map
  133. mapped_genes <- gene_map[df$ORF]
  134. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  135. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  136. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  137. df <- df %>%
  138. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  139. return(df)
  140. }
  141. calculate_summary_stats <- function(df, variables, group_vars) {
  142. summary_stats <- df %>%
  143. group_by(across(all_of(group_vars))) %>%
  144. summarise(
  145. N = n(),
  146. across(all_of(variables), list(
  147. mean = ~mean(., na.rm = TRUE),
  148. median = ~median(., na.rm = TRUE),
  149. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  150. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  151. sd = ~sd(., na.rm = TRUE),
  152. se = ~sd(., na.rm = TRUE) / sqrt(N) - 1 # TODO needs comment for explanation
  153. ), .names = "{.fn}_{.col}"),
  154. .groups = "drop"
  155. )
  156. # Create a cleaned version of df that doesn't overlap with summary_stats
  157. cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
  158. df_cleaned <- df %>%
  159. select(all_of(cols_to_keep))
  160. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  161. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  162. }
  163. calculate_interaction_scores <- function(df, max_conc) {
  164. variables <- c("L", "K", "r", "AUC")
  165. group_vars <- c("OrfRep", "Gene", "num")
  166. # Calculate total concentration variables
  167. total_conc_num <- length(unique(df$conc_num))
  168. # Pull the background means and standard deviations from zero concentration
  169. bg_means <- list(
  170. L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
  171. K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
  172. r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
  173. AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
  174. )
  175. bg_sd <- list(
  176. L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
  177. K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
  178. r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
  179. AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
  180. )
  181. # Calculate per spot
  182. stats <- calculate_summary_stats(df,
  183. variables = variables,
  184. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  185. )$summary_stats
  186. stats <- df %>%
  187. group_by(across(all_of(group_vars))) %>%
  188. mutate(
  189. WT_L = mean_L,
  190. WT_K = mean_K,
  191. WT_r = mean_r,
  192. WT_AUC = mean_AUC,
  193. WT_sd_L = sd_L,
  194. WT_sd_K = sd_K,
  195. WT_sd_r = sd_r,
  196. WT_sd_AUC = sd_AUC
  197. )
  198. stats <- stats %>%
  199. mutate(
  200. Raw_Shift_L = first(mean_L) - bg_means$L,
  201. Raw_Shift_K = first(mean_K) - bg_means$K,
  202. Raw_Shift_r = first(mean_r) - bg_means$r,
  203. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  204. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  205. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  206. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  207. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  208. )
  209. stats <- stats %>%
  210. mutate(
  211. Exp_L = WT_L + Raw_Shift_L,
  212. Exp_K = WT_K + Raw_Shift_K,
  213. Exp_r = WT_r + Raw_Shift_r,
  214. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  215. Delta_L = mean_L - Exp_L,
  216. Delta_K = mean_K - Exp_K,
  217. Delta_r = mean_r - Exp_r,
  218. Delta_AUC = mean_AUC - Exp_AUC
  219. )
  220. stats <- stats %>%
  221. mutate(
  222. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  223. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  224. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  225. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  226. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  227. )
  228. stats <- stats %>%
  229. mutate(
  230. Zscore_L = Delta_L / WT_sd_L,
  231. Zscore_K = Delta_K / WT_sd_K,
  232. Zscore_r = Delta_r / WT_sd_r,
  233. Zscore_AUC = Delta_AUC / WT_sd_AUC
  234. )
  235. # Calculate linear models
  236. lm_L <- lm(Delta_L ~ conc_num, data = stats)
  237. lm_K <- lm(Delta_K ~ conc_num, data = stats)
  238. lm_r <- lm(Delta_r ~ conc_num, data = stats)
  239. lm_AUC <- lm(Delta_AUC ~ conc_num, data = stats)
  240. interactions <- stats %>%
  241. group_by(across(all_of(group_vars))) %>%
  242. summarise(
  243. OrfRep = first(OrfRep),
  244. Gene = first(Gene),
  245. num = first(num),
  246. conc_num = first(conc_num),
  247. conc_num_factor = first(conc_num_factor),
  248. Raw_Shift_L = first(Raw_Shift_L),
  249. Raw_Shift_K = first(Raw_Shift_K),
  250. Raw_Shift_r = first(Raw_Shift_r),
  251. Raw_Shift_AUC = first(Raw_Shift_AUC),
  252. Z_Shift_L = first(Z_Shift_L),
  253. Z_Shift_K = first(Z_Shift_K),
  254. Z_Shift_r = first(Z_Shift_r),
  255. Z_Shift_AUC = first(Z_Shift_AUC),
  256. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  257. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  258. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  259. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  260. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  261. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  262. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  263. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  264. R_Squared_L = summary(lm_L)$r.squared,
  265. R_Squared_K = summary(lm_K)$r.squared,
  266. R_Squared_r = summary(lm_r)$r.squared,
  267. R_Squared_AUC = summary(lm_AUC)$r.squared,
  268. lm_intercept_L = coef(lm_L)[1],
  269. lm_slope_L = coef(lm_L)[2],
  270. lm_intercept_K = coef(lm_K)[1],
  271. lm_slope_K = coef(lm_K)[2],
  272. lm_intercept_r = coef(lm_r)[1],
  273. lm_slope_r = coef(lm_r)[2],
  274. lm_intercept_AUC = coef(lm_AUC)[1],
  275. lm_slope_AUC = coef(lm_AUC)[2],
  276. NG = sum(NG, na.rm = TRUE),
  277. DB = sum(DB, na.rm = TRUE),
  278. SM = sum(SM, na.rm = TRUE),
  279. .groups = "keep"
  280. )
  281. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  282. interactions <- interactions %>%
  283. mutate(
  284. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  285. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  286. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  287. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  288. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  289. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  290. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  291. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  292. ) %>%
  293. arrange(desc(Z_lm_L), desc(NG))
  294. # Declare column order for output
  295. calculations <- stats %>%
  296. select(
  297. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  298. "mean_L", "mean_K", "mean_r", "mean_AUC",
  299. "median_L", "median_K", "median_r", "median_AUC",
  300. "sd_L", "sd_K", "sd_r", "sd_AUC",
  301. "se_L", "se_K", "se_r", "se_AUC",
  302. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  303. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  304. "WT_L", "WT_K", "WT_r", "WT_AUC",
  305. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  306. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  307. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  308. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  309. "NG", "SM", "DB")
  310. calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  311. calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  312. interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  313. interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  314. return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
  315. calculations_joined = calculations_joined))
  316. }
  317. generate_and_save_plots <- function(out_dir, file_name, plot_configs, grid_layout = NULL) {
  318. message("Generating ", file_name, ".pdf and ", file_name, ".html")
  319. # Prepare lists to collect plots
  320. static_plots <- list()
  321. plotly_plots <- list()
  322. for (i in seq_along(plot_configs)) {
  323. config <- plot_configs[[i]]
  324. df <- config$df
  325. aes_mapping <- if (is.null(config$color_var)) {
  326. if (is.null(config$y_var)) {
  327. aes(x = .data[[config$x_var]])
  328. } else {
  329. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  330. }
  331. } else {
  332. if (is.null(config$y_var)) {
  333. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  334. } else {
  335. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  336. }
  337. }
  338. # Start building the plot with aes_mapping
  339. plot_base <- ggplot(df, aes_mapping)
  340. # Use appropriate helper function based on plot type
  341. plot <- switch(config$plot_type,
  342. "scatter" = generate_scatter_plot(plot_base, config),
  343. "box" = generate_box_plot(plot_base, config),
  344. "density" = plot_base + geom_density(),
  345. "bar" = plot_base + geom_bar(),
  346. plot_base # default case if no type matches
  347. )
  348. # Apply additional settings
  349. if (!is.null(config$legend_position)) {
  350. plot <- plot + theme(legend.position = config$legend_position)
  351. }
  352. # Add title and labels
  353. if (!is.null(config$title)) {
  354. plot <- plot + ggtitle(config$title)
  355. }
  356. if (!is.null(config$x_label)) {
  357. plot <- plot + xlab(config$x_label)
  358. }
  359. if (!is.null(config$y_label)) {
  360. plot <- plot + ylab(config$y_label)
  361. }
  362. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  363. if (is.null(config$color_var)) {
  364. plot <- plot + scale_color_discrete(guide = "none")
  365. }
  366. # Add interactive tooltips for plotly
  367. tooltip_vars <- c()
  368. if (config$plot_type == "scatter") {
  369. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  370. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  371. } else if (!is.null(config$gene_point) && config$gene_point) {
  372. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  373. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  374. tooltip_vars <- c(config$x_var, config$y_var)
  375. }
  376. }
  377. # Convert to plotly object
  378. if (length(tooltip_vars) > 0) {
  379. plotly_plot <- ggplotly(plot, tooltip = tooltip_vars)
  380. } else {
  381. plotly_plot <- ggplotly(plot, tooltip = "none")
  382. }
  383. # Adjust legend position if specified
  384. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  385. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  386. }
  387. # Add plots to lists
  388. static_plots[[i]] <- plot
  389. plotly_plots[[i]] <- plotly_plot
  390. }
  391. # Save static PDF plots
  392. pdf(file.path(out_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  393. lapply(static_plots, print)
  394. dev.off()
  395. # Combine and save interactive HTML plots
  396. combined_plot <- subplot(
  397. plotly_plots,
  398. nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
  399. grid_layout$nrow
  400. } else {
  401. # Calculate nrow based on the length of plotly_plots (default 1 row if only one plot)
  402. ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
  403. },
  404. margin = 0.05
  405. )
  406. saveWidget(combined_plot, file = file.path(out_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  407. }
  408. generate_scatter_plot <- function(plot, config) {
  409. # Determine Shape, Size, and Position for geom_point
  410. shape <- if (!is.null(config$shape)) config$shape else 3
  411. size <- if (!is.null(config$size)) config$size else 0.1
  412. position <- if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity"
  413. # Add geom_point with determined parameters
  414. plot <- plot + geom_point(
  415. shape = shape,
  416. size = size,
  417. position = position
  418. )
  419. if (!is.null(config$cyan_points)) {
  420. plot <- plot + geom_point(
  421. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  422. color = "cyan",
  423. shape = 3,
  424. size = 0.5
  425. )
  426. }
  427. # Add Smooth Line if specified
  428. if (!is.null(config$add_smooth) && config$add_smooth) {
  429. if (!is.null(config$lm_line)) {
  430. plot <- plot +
  431. geom_abline(
  432. intercept = config$lm_line$intercept,
  433. slope = config$lm_line$slope,
  434. color = "blue"
  435. )
  436. } else {
  437. plot <- plot +
  438. geom_smooth(
  439. method = "lm",
  440. se = FALSE,
  441. color = "blue"
  442. )
  443. }
  444. }
  445. # Add SD Bands if specified
  446. if (!is.null(config$sd_band_values)) {
  447. for (sd_band in config$sd_band_values) {
  448. plot <- plot +
  449. annotate(
  450. "rect",
  451. xmin = -Inf, xmax = Inf,
  452. ymin = sd_band, ymax = Inf,
  453. fill = "#542788",
  454. alpha = 0.3
  455. ) +
  456. annotate(
  457. "rect",
  458. xmin = -Inf, xmax = Inf,
  459. ymin = -sd_band, ymax = -Inf,
  460. fill = "orange",
  461. alpha = 0.3
  462. ) +
  463. geom_hline(
  464. yintercept = c(-sd_band, sd_band),
  465. color = "gray"
  466. )
  467. }
  468. }
  469. # Add Rectangles if specified
  470. if (!is.null(config$rectangles)) {
  471. for (rect in config$rectangles) {
  472. plot <- plot + annotate(
  473. "rect",
  474. xmin = rect$xmin,
  475. xmax = rect$xmax,
  476. ymin = rect$ymin,
  477. ymax = rect$ymax,
  478. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  479. color = ifelse(is.null(rect$color), "black", rect$color),
  480. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  481. )
  482. }
  483. }
  484. # Add Error Bars if specified
  485. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  486. y_mean_col <- paste0("mean_", config$y_var)
  487. y_sd_col <- paste0("sd_", config$y_var)
  488. plot <- plot +
  489. geom_errorbar(
  490. aes(
  491. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  492. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  493. ),
  494. alpha = 0.3
  495. )
  496. }
  497. # Customize X-axis if specified
  498. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  499. plot <- plot +
  500. scale_x_discrete(
  501. name = config$x_label,
  502. breaks = config$x_breaks,
  503. labels = config$x_labels
  504. )
  505. }
  506. # Apply coord_cartesian if specified
  507. if (!is.null(config$coord_cartesian)) {
  508. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  509. }
  510. # Set Y-axis limits if specified
  511. if (!is.null(config$ylim_vals)) {
  512. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  513. }
  514. # Add Annotations if specified
  515. if (!is.null(config$annotations)) {
  516. for (annotation in config$annotations) {
  517. plot <- plot +
  518. annotate(
  519. "text",
  520. x = annotation$x,
  521. y = annotation$y,
  522. label = annotation$label,
  523. na.rm = TRUE
  524. )
  525. }
  526. }
  527. # Add Title if specified
  528. if (!is.null(config$title)) {
  529. plot <- plot + ggtitle(config$title)
  530. }
  531. # Adjust Legend Position if specified
  532. if (!is.null(config$legend_position)) {
  533. plot <- plot + theme(legend.position = config$legend_position)
  534. }
  535. return(plot)
  536. }
  537. generate_box_plot <- function(plot, config) {
  538. plot <- plot + geom_boxplot()
  539. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  540. plot <- plot + scale_x_discrete(
  541. name = config$x_label,
  542. breaks = config$x_breaks,
  543. labels = config$x_labels
  544. )
  545. }
  546. if (!is.null(config$coord_cartesian)) {
  547. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  548. }
  549. return(plot)
  550. }
  551. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  552. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  553. plots <- list()
  554. for (var in variables) {
  555. for (stage in stages) {
  556. df_plot <- if (stage == "before") df_before else df_after
  557. # Adjust settings based on plot_type
  558. if (plot_type == "scatter") {
  559. error_bar <- TRUE
  560. position <- "jitter"
  561. } else if (plot_type == "box") {
  562. error_bar <- FALSE
  563. position <- NULL
  564. }
  565. config <- list(
  566. df = df_plot,
  567. x_var = "scan",
  568. y_var = var,
  569. plot_type = plot_type,
  570. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  571. error_bar = error_bar,
  572. color_var = "conc_num_factor",
  573. position = position
  574. )
  575. plots <- append(plots, list(config))
  576. }
  577. }
  578. return(plots)
  579. }
  580. generate_interaction_plot_configs <- function(df, variables) {
  581. configs <- list()
  582. limits_map <- list(
  583. L = c(-65, 65),
  584. K = c(-65, 65),
  585. r = c(-0.65, 0.65),
  586. AUC = c(-6500, 6500)
  587. )
  588. df_filtered <- filter_data(df, variables, missing = TRUE, limits_map = limits_map)
  589. # Define annotation label functions
  590. generate_annotation_labels <- function(df, var, annotation_name) {
  591. switch(annotation_name,
  592. ZShift = paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  593. lm_ZScore = paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  594. NG = paste("NG =", df$NG),
  595. DB = paste("DB =", df$DB),
  596. SM = paste("SM =", df$SM),
  597. NULL # Default case for unrecognized annotation names
  598. )
  599. }
  600. # Define annotation positions relative to the y-axis range
  601. calculate_annotation_positions <- function(y_range) {
  602. y_min <- min(y_range)
  603. y_max <- max(y_range)
  604. y_span <- y_max - y_min
  605. list(
  606. ZShift = y_max - 0.1 * y_span,
  607. lm_ZScore = y_max - 0.2 * y_span,
  608. NG = y_min + 0.2 * y_span,
  609. DB = y_min + 0.1 * y_span,
  610. SM = y_min + 0.05 * y_span
  611. )
  612. }
  613. # Create configurations for each variable
  614. for (variable in variables) {
  615. y_range <- limits_map[[variable]]
  616. annotation_positions <- calculate_annotation_positions(y_range)
  617. lm_line <- list(
  618. intercept = df_filtered[[paste0("lm_intercept_", variable)]],
  619. slope = df_filtered[[paste0("lm_slope_", variable)]]
  620. )
  621. # Determine x-axis midpoint
  622. num_levels <- length(levels(df_filtered$conc_num_factor))
  623. x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis
  624. # Generate annotations
  625. annotations <- lapply(names(annotation_positions), function(annotation_name) {
  626. label <- generate_annotation_labels(df_filtered, variable, annotation_name)
  627. y_pos <- annotation_positions[[annotation_name]]
  628. if (!is.null(label)) {
  629. list(x = x_pos, y = y_pos, label = label)
  630. } else {
  631. message(paste("Warning: No annotation found for", annotation_name))
  632. NULL
  633. }
  634. })
  635. # Remove NULL annotations
  636. annotations <- Filter(Negate(is.null), annotations)
  637. # Shared plot settings
  638. plot_settings <- list(
  639. df = df_filtered,
  640. x_var = "conc_num_factor",
  641. y_var = variable,
  642. ylim_vals = y_range,
  643. annotations = annotations,
  644. lm_line = lm_line,
  645. x_breaks = levels(df_filtered$conc_num_factor),
  646. x_labels = levels(df_filtered$conc_num_factor),
  647. x_label = unique(df_filtered$Drug[1]),
  648. coord_cartesian = y_range # Use the actual y-limits
  649. )
  650. # Scatter plot config
  651. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  652. plot_type = "scatter",
  653. title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  654. error_bar = TRUE,
  655. position = "jitter"
  656. ))
  657. # Box plot config
  658. configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
  659. plot_type = "box",
  660. title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
  661. error_bar = FALSE
  662. ))
  663. }
  664. return(configs)
  665. }
  666. generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE) {
  667. sd_bands <- c(1, 2, 3)
  668. configs <- list()
  669. # SD-based plots for L and K
  670. for (variable in c("L", "K")) {
  671. for (sd_band in sd_bands) {
  672. # Determine columns based on whether it's lm or not
  673. if (is_lm) {
  674. rank_var <- paste0("Rank_lm_", variable)
  675. zscore_var <- paste0("Z_lm_", variable)
  676. y_label <- paste("Int Z score", variable)
  677. } else {
  678. rank_var <- paste0("Rank_", variable)
  679. zscore_var <- paste0("Avg_Zscore_", variable)
  680. y_label <- paste("Avg Z score", variable)
  681. }
  682. num_enhancers <- sum(df_filtered[[zscore_var]] >= sd_band, na.rm = TRUE)
  683. num_suppressors <- sum(df_filtered[[zscore_var]] <= -sd_band, na.rm = TRUE)
  684. # Annotated plot configuration
  685. configs[[length(configs) + 1]] <- list(
  686. df = df_filtered,
  687. x_var = rank_var,
  688. y_var = zscore_var,
  689. plot_type = "scatter",
  690. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  691. sd_band = sd_band,
  692. annotations = list(
  693. list(
  694. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  695. y = 10,
  696. label = paste("Deletion Enhancers =", num_enhancers)
  697. ),
  698. list(
  699. x = median(df_filtered[[rank_var]], na.rm = TRUE),
  700. y = -10,
  701. label = paste("Deletion Suppressors =", num_suppressors)
  702. )
  703. ),
  704. sd_band_values = sd_band,
  705. shape = 3,
  706. size = 0.1,
  707. y_label = y_label,
  708. x_label = "Rank",
  709. legend_position = "none"
  710. )
  711. # Non-Annotated Plot Configuration
  712. configs[[length(configs) + 1]] <- list(
  713. df = df_filtered,
  714. x_var = rank_var,
  715. y_var = zscore_var,
  716. plot_type = "scatter",
  717. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  718. sd_band = sd_band,
  719. annotations = NULL,
  720. sd_band_values = sd_band,
  721. shape = 3,
  722. size = 0.1,
  723. y_label = y_label,
  724. x_label = "Rank",
  725. legend_position = "none"
  726. )
  727. }
  728. }
  729. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  730. for (variable in variables) {
  731. for (plot_type in c("Avg_Zscore_vs_lm", "Rank_Avg_Zscore_vs_lm")) {
  732. # Define specific variables based on plot type
  733. if (plot_type == "Avg_Zscore_vs_lm") {
  734. x_var <- paste0("Avg_Zscore_", variable)
  735. y_var <- paste0("Z_lm_", variable)
  736. title_suffix <- paste("Avg Zscore vs lm", variable)
  737. rectangles <- list(
  738. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  739. fill = NA, color = "grey20", alpha = 0.1
  740. )
  741. )
  742. } else {
  743. x_var <- paste0("Rank_", variable)
  744. y_var <- paste0("Rank_lm_", variable)
  745. title_suffix <- paste("Rank Avg Zscore vs lm", variable)
  746. rectangles <- NULL
  747. }
  748. # Fit linear model
  749. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_filtered)
  750. lm_summary <- summary(lm_model)
  751. # Extract intercept and slope from the model coefficients
  752. intercept <- coef(lm_model)[1]
  753. slope <- coef(lm_model)[2]
  754. configs[[length(configs) + 1]] <- list(
  755. df = df_filtered,
  756. x_var = x_var,
  757. y_var = y_var,
  758. plot_type = "scatter",
  759. title = title_suffix,
  760. annotations = list(
  761. list(
  762. x = 0,
  763. y = 0,
  764. label = paste("R-squared =", round(lm_summary$r.squared, 2))
  765. )
  766. ),
  767. sd_band_values = NULL, # Not applicable
  768. shape = 3,
  769. size = 0.1,
  770. add_smooth = TRUE,
  771. lm_line = list(intercept = intercept, slope = slope),
  772. legend_position = "right",
  773. color_var = "Overlap",
  774. x_label = x_var,
  775. y_label = y_var,
  776. rectangles = rectangles
  777. )
  778. }
  779. }
  780. return(configs)
  781. }
  782. generate_correlation_plot_configs <- function(df) {
  783. # Define relationships for plotting
  784. relationships <- list(
  785. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  786. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  787. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  788. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  789. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  790. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  791. )
  792. configs <- list()
  793. for (rel in relationships) {
  794. # Fit linear model
  795. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  796. lm_summary <- summary(lm_model)
  797. # Construct plot configuration
  798. config <- list(
  799. df = df,
  800. x_var = rel$x,
  801. y_var = rel$y,
  802. plot_type = "scatter",
  803. title = rel$label,
  804. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  805. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  806. annotations = list(
  807. list(x = 0, y = 0, label = paste("R-squared =", round(lm_summary$r.squared, 3)))
  808. ),
  809. add_smooth = TRUE, # Add regression line
  810. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  811. legend_position = "right",
  812. shape = 3,
  813. size = 0.5,
  814. color_var = "Overlap",
  815. rectangles = list(
  816. list(
  817. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  818. fill = NA, color = "grey20", alpha = 0.1
  819. )
  820. ),
  821. cyan_points = TRUE
  822. )
  823. configs[[length(configs) + 1]] <- config
  824. }
  825. return(configs)
  826. }
  827. filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FALSE,
  828. rank = FALSE, limits_map = NULL, verbose = TRUE) {
  829. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  830. z_lm_cols <- paste0("Z_lm_", variables)
  831. # Step 1: Adjust NAs to 0.001 for linear model (if adjust = TRUE)
  832. if (adjust) {
  833. if (verbose) message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns")
  834. df <- df %>%
  835. mutate(
  836. across(all_of(avg_zscore_cols), ~ ifelse(is.na(.), 0.001, .)),
  837. across(all_of(z_lm_cols), ~ ifelse(is.na(.), 0.001, .))
  838. )
  839. }
  840. # Filter non-finite values
  841. if (nf) {
  842. df <- df %>%
  843. filter(if_all(all_of(variables), ~ is.finite(.)))
  844. }
  845. # Filter missing values
  846. if (missing) {
  847. df <- df %>%
  848. filter(if_all(all_of(variables), ~ !is.na(.)))
  849. }
  850. # Apply limits from 'limits_map' if provided
  851. if (!is.null(limits_map)) {
  852. for (variable in names(limits_map)) {
  853. if (variable %in% variables) {
  854. ylim_vals <- limits_map[[variable]]
  855. df <- df %>%
  856. filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
  857. }
  858. }
  859. }
  860. # Calculate and add rank columns
  861. if (rank) {
  862. if (verbose) message("Calculating ranks for variable(s): ", paste(variables, collapse = ", "))
  863. for (variable in variables) {
  864. avg_zscore_col <- paste0("Avg_Zscore_", variable)
  865. rank_col <- paste0("Rank_", variable)
  866. df[[rank_col]] <- rank(df[[avg_zscore_col]], na.last = "keep")
  867. z_lm_col <- paste0("Z_lm_", variable)
  868. rank_lm_col <- paste0("Rank_lm_", variable)
  869. df[[rank_lm_col]] <- rank(df[[z_lm_col]], na.last = "keep")
  870. }
  871. }
  872. return(df)
  873. }
  874. main <- function() {
  875. lapply(names(args$experiments), function(exp_name) {
  876. exp <- args$experiments[[exp_name]]
  877. exp_path <- exp$path
  878. exp_sd <- exp$sd
  879. out_dir <- file.path(exp_path, "zscores")
  880. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  881. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  882. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  883. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  884. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  885. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  886. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  887. message("Loading and filtering data for experiment: ", exp_name)
  888. df <- load_and_process_data(args$easy_results_file, sd = exp_sd) %>%
  889. update_gene_names(args$sgd_gene_list) %>%
  890. as_tibble()
  891. # Filter rows above delta background tolerance
  892. df_above_tolerance <- df %>% filter(DB == 1)
  893. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  894. df_no_zeros <- df_na %>% filter(L > 0)
  895. # Save some constants
  896. max_conc <- max(df$conc_num)
  897. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  898. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  899. message("Calculating summary statistics before quality control")
  900. ss <- calculate_summary_stats(
  901. df = df,
  902. variables = summary_vars,
  903. group_vars = c("conc_num", "conc_num_factor"))
  904. df_stats <- ss$df_with_stats
  905. message("Filtering non-finite data")
  906. df_filtered_stats <- filter_data(df_stats, c("L"), nf = TRUE)
  907. message("Calculating summary statistics after quality control")
  908. ss <- calculate_summary_stats(
  909. df = df_na,
  910. variables = summary_vars,
  911. group_vars = c("conc_num", "conc_num_factor"))
  912. df_na_ss <- ss$summary_stats
  913. df_na_stats <- ss$df_with_stats
  914. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  915. df_na_filtered_stats <- filter_data(df_na_stats, c("L"), nf = TRUE)
  916. message("Calculating summary statistics after quality control excluding zero values")
  917. ss <- calculate_summary_stats(
  918. df = df_no_zeros,
  919. variables = summary_vars,
  920. group_vars = c("conc_num", "conc_num_factor"))
  921. df_no_zeros_stats <- ss$df_with_stats
  922. df_no_zeros_filtered_stats <- filter_data(df_no_zeros_stats, c("L"), nf = TRUE)
  923. message("Filtering by 2SD of K")
  924. df_na_within_2sd_k <- df_na_stats %>%
  925. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  926. df_na_outside_2sd_k <- df_na_stats %>%
  927. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  928. message("Calculating summary statistics for L within 2SD of K")
  929. # TODO We're omitting the original z_max calculation, not sure if needed?
  930. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  931. # df_na_l_within_2sd_k_stats <- ss$df_with_stats
  932. write.csv(ss$summary_stats,
  933. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  934. row.names = FALSE)
  935. message("Calculating summary statistics for L outside 2SD of K")
  936. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  937. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  938. write.csv(ss$summary_stats,
  939. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  940. row.names = FALSE)
  941. # Each plots list corresponds to a file
  942. l_vs_k_plots <- list(
  943. list(
  944. df = df,
  945. x_var = "L",
  946. y_var = "K",
  947. plot_type = "scatter",
  948. delta_bg_point = TRUE,
  949. title = "Raw L vs K before quality control",
  950. color_var = "conc_num_factor",
  951. error_bar = FALSE,
  952. legend_position = "right"
  953. )
  954. )
  955. frequency_delta_bg_plots <- list(
  956. list(
  957. df = df_filtered_stats,
  958. x_var = "delta_bg",
  959. y_var = NULL,
  960. plot_type = "density",
  961. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  962. color_var = "conc_num_factor",
  963. x_label = "Delta Background",
  964. y_label = "Density",
  965. error_bar = FALSE,
  966. legend_position = "right"),
  967. list(
  968. df = df_filtered_stats,
  969. x_var = "delta_bg",
  970. y_var = NULL,
  971. plot_type = "bar",
  972. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  973. color_var = "conc_num_factor",
  974. x_label = "Delta Background",
  975. y_label = "Count",
  976. error_bar = FALSE,
  977. legend_position = "right")
  978. )
  979. above_threshold_plots <- list(
  980. list(
  981. df = df_above_tolerance,
  982. x_var = "L",
  983. y_var = "K",
  984. plot_type = "scatter",
  985. delta_bg_point = TRUE,
  986. title = paste("Raw L vs K for strains above Delta Background threshold of",
  987. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  988. color_var = "conc_num_factor",
  989. position = "jitter",
  990. annotations = list(
  991. list(
  992. x = l_half_median,
  993. y = k_half_median,
  994. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  995. )
  996. ),
  997. error_bar = FALSE,
  998. legend_position = "right"
  999. )
  1000. )
  1001. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1002. variables = summary_vars,
  1003. df_before = df_filtered_stats,
  1004. df_after = df_na_filtered_stats,
  1005. )
  1006. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1007. variables = summary_vars,
  1008. df_before = df_filtered_stats,
  1009. df_after = df_na_filtered_stats,
  1010. plot_type = "box"
  1011. )
  1012. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1013. variables = summary_vars,
  1014. stages = c("after"), # Only after QC
  1015. df_after = df_no_zeros_filtered_stats,
  1016. )
  1017. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1018. variables = summary_vars,
  1019. stages = c("after"), # Only after QC
  1020. df_after = df_no_zeros_filtered_stats,
  1021. plot_type = "box"
  1022. )
  1023. l_outside_2sd_k_plots <- list(
  1024. list(
  1025. df = df_na_l_outside_2sd_k_stats,
  1026. x_var = "L",
  1027. y_var = "K",
  1028. plot_type = "scatter",
  1029. delta_bg_point = TRUE,
  1030. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1031. color_var = "conc_num_factor",
  1032. position = "jitter",
  1033. legend_position = "right"
  1034. )
  1035. )
  1036. delta_bg_outside_2sd_k_plots <- list(
  1037. list(
  1038. df = df_na_l_outside_2sd_k_stats,
  1039. x_var = "delta_bg",
  1040. y_var = "K",
  1041. plot_type = "scatter",
  1042. gene_point = TRUE,
  1043. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1044. color_var = "conc_num_factor",
  1045. position = "jitter",
  1046. legend_position = "right"
  1047. )
  1048. )
  1049. message("Generating quality control plots")
  1050. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  1051. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  1052. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  1053. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plot_configs)
  1054. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplot_configs)
  1055. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plot_configs)
  1056. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplot_configs)
  1057. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  1058. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  1059. # Process background strains
  1060. bg_strains <- c("YDL227C")
  1061. lapply(bg_strains, function(strain) {
  1062. message("Processing background strain: ", strain)
  1063. # Handle missing data by setting zero values to NA
  1064. # and then removing any rows with NA in L col
  1065. df_bg <- df_na %>%
  1066. filter(OrfRep == strain) %>%
  1067. mutate(
  1068. L = if_else(L == 0, NA, L),
  1069. K = if_else(K == 0, NA, K),
  1070. r = if_else(r == 0, NA, r),
  1071. AUC = if_else(AUC == 0, NA, AUC)
  1072. ) %>%
  1073. filter(!is.na(L))
  1074. # Recalculate summary statistics for the background strain
  1075. message("Calculating summary statistics for background strain")
  1076. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1077. summary_stats_bg <- ss_bg$summary_stats
  1078. # df_bg_stats <- ss_bg$df_with_stats
  1079. write.csv(summary_stats_bg,
  1080. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  1081. row.names = FALSE)
  1082. # Filter reference and deletion strains
  1083. # Formerly X2_RF (reference strains)
  1084. df_reference <- df_na_stats %>%
  1085. filter(OrfRep == strain) %>%
  1086. mutate(SM = 0)
  1087. # Formerly X2 (deletion strains)
  1088. df_deletion <- df_na_stats %>%
  1089. filter(OrfRep != strain) %>%
  1090. mutate(SM = 0)
  1091. # Set the missing values to the highest theoretical value at each drug conc for L
  1092. # Leave other values as 0 for the max/min
  1093. reference_strain <- df_reference %>%
  1094. group_by(conc_num, conc_num_factor) %>%
  1095. mutate(
  1096. max_l_theoretical = max(max_L, na.rm = TRUE),
  1097. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1098. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1099. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1100. ungroup()
  1101. # Ditto for deletion strains
  1102. deletion_strains <- df_deletion %>%
  1103. group_by(conc_num, conc_num_factor) %>%
  1104. mutate(
  1105. max_l_theoretical = max(max_L, na.rm = TRUE),
  1106. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1107. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1108. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1109. ungroup()
  1110. message("Calculating reference strain interaction scores")
  1111. reference_results <- calculate_interaction_scores(reference_strain, max_conc)
  1112. zscores_calculations_reference <- reference_results$calculations
  1113. zscores_interactions_reference <- reference_results$interactions
  1114. zscores_calculations_reference_joined <- reference_results$calculations_joined
  1115. zscores_interactions_reference_joined <- reference_results$interactions_joined
  1116. message("Calculating deletion strain(s) interactions scores")
  1117. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc)
  1118. zscores_calculations <- deletion_results$calculations
  1119. zscores_interactions <- deletion_results$interactions
  1120. zscores_calculations_joined <- deletion_results$calculations_joined
  1121. zscores_interactions_joined <- deletion_results$interactions_joined
  1122. # Writing Z-Scores to file
  1123. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  1124. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  1125. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  1126. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  1127. # Create interaction plots
  1128. message("Generating reference interaction plots")
  1129. reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
  1130. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1131. message("Generating deletion interaction plots")
  1132. deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
  1133. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  1134. # Define conditions for enhancers and suppressors
  1135. # TODO Add to study config file?
  1136. threshold <- 2
  1137. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  1138. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  1139. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  1140. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  1141. # Subset data
  1142. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  1143. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  1144. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  1145. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  1146. # Save enhancers and suppressors
  1147. message("Writing enhancer/suppressor csv files")
  1148. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  1149. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  1150. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1151. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1152. # Combine conditions for enhancers and suppressors
  1153. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1154. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1155. # Save combined enhancers and suppressors
  1156. write.csv(enhancers_and_suppressors_L,
  1157. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1158. write.csv(enhancers_and_suppressors_K,
  1159. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1160. # Handle linear model based enhancers and suppressors
  1161. lm_threshold <- 2
  1162. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1163. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1164. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1165. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1166. # Save linear model based enhancers and suppressors
  1167. message("Writing linear model enhancer/suppressor csv files")
  1168. write.csv(enhancers_lm_L,
  1169. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1170. write.csv(suppressors_lm_L,
  1171. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1172. write.csv(enhancers_lm_K,
  1173. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1174. write.csv(suppressors_lm_K,
  1175. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1176. message("Generating rank plots")
  1177. zscores_interactions_joined_filtered <- filter_data(
  1178. df = zscores_interactions_joined,
  1179. variables = interaction_vars,
  1180. missing = TRUE,
  1181. adjust = TRUE,
  1182. rank = TRUE)
  1183. rank_plot_configs <- generate_rank_plot_configs(
  1184. df = zscores_interactions_joined_filtered,
  1185. variables = interaction_vars,
  1186. is_lm = FALSE
  1187. )
  1188. generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots",
  1189. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1190. message("Generating ranked linear model plots")
  1191. rank_lm_plot_configs <- generate_rank_plot_configs(
  1192. df = zscores_interactions_joined_filtered,
  1193. variables = interaction_vars,
  1194. is_lm = TRUE
  1195. )
  1196. generate_and_save_plots(out_dir = out_dir, file_name = "RankPlots_lm",
  1197. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1198. message("Filtering and reranking plots")
  1199. # Filter out rows where both Z_lm_L and Avg_Zscore_L are NA
  1200. zscores_interactions_filtered <- zscores_interactions_joined %>%
  1201. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1202. # Formerly X_NArm
  1203. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1204. mutate(
  1205. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1206. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1207. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1208. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
  1209. Overlap = case_when(
  1210. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1211. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1212. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1213. Z_lm_L <= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Avg Zscore only",
  1214. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1215. Z_lm_L >= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Avg Zscore only",
  1216. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1217. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1218. TRUE ~ "No Effect"
  1219. )
  1220. )
  1221. # Re-rank
  1222. zscores_interactions_filtered <- filter_data(
  1223. df = zscores_interactions_filtered,
  1224. variables = interaction_vars,
  1225. missing = TRUE, # TODO what I'm currently having issues with
  1226. rank = TRUE
  1227. )
  1228. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1229. df = zscores_interactions_filtered,
  1230. variables = interaction_vars,
  1231. is_lm = FALSE
  1232. )
  1233. message("Generating filtered ranked plots")
  1234. generate_and_save_plots(
  1235. out_dir = out_dir,
  1236. file_name = "RankPlots_na_rm",
  1237. plot_configs = rank_plot_filtered_configs,
  1238. grid_layout = list(ncol = 3, nrow = 2))
  1239. message("Generating filtered ranked linear model plots")
  1240. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1241. df = zscores_interactions_filtered,
  1242. variables = interaction_vars,
  1243. is_lm = TRUE
  1244. )
  1245. generate_and_save_plots(
  1246. out_dir = out_dir,
  1247. file_name = "RankPlots_lm_na_rm",
  1248. plot_configs = rank_plot_lm_filtered_configs,
  1249. grid_layout = list(ncol = 3, nrow = 2))
  1250. message("Generating correlation plots")
  1251. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
  1252. generate_and_save_plots(
  1253. out_dir = out_dir,
  1254. file_name = "Avg_Zscore_vs_lm_NA_rm",
  1255. plot_configs = correlation_plot_configs,
  1256. grid_layout = list(ncol = 2, nrow = 2))
  1257. })
  1258. })
  1259. }
  1260. main()