calculate_interaction_zscores.R 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("dplyr")
  6. library("rlang")
  7. library("ggthemes")
  8. library("data.table")
  9. library("gridExtra")
  10. library("future")
  11. library("furrr")
  12. library("purrr")
  13. })
  14. # These parallelization libraries are very noisy
  15. suppressPackageStartupMessages({
  16. library("future")
  17. library("furrr")
  18. library("purrr")
  19. })
  20. options(warn = 2)
  21. # Constants for configuration
  22. plot_width <- 14
  23. plot_height <- 9
  24. base_size <- 14
  25. parse_arguments <- function() {
  26. args <- if (interactive()) {
  27. c(
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  32. "Experiment 1: Doxo versus HLD",
  33. 3,
  34. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  35. "Experiment 2: HLD versus Doxo",
  36. 3
  37. )
  38. } else {
  39. commandArgs(trailingOnly = TRUE)
  40. }
  41. out_dir <- normalizePath(args[1], mustWork = FALSE)
  42. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  43. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  44. # The remaining arguments should be in groups of 3
  45. exp_args <- args[-(1:3)]
  46. if (length(exp_args) %% 3 != 0) {
  47. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  48. }
  49. # Extract the experiments into a list
  50. experiments <- list()
  51. for (i in seq(1, length(exp_args), by = 3)) {
  52. exp_name <- exp_args[i + 1]
  53. experiments[[exp_name]] <- list(
  54. path = normalizePath(exp_args[i], mustWork = FALSE),
  55. sd = as.numeric(exp_args[i + 2])
  56. )
  57. }
  58. # Extract the trailing number from each path
  59. trailing_numbers <- sapply(experiments, function(x) {
  60. path <- x$path
  61. nums <- gsub("[^0-9]", "", basename(path))
  62. as.integer(nums)
  63. })
  64. # Sort the experiments based on the trailing numbers
  65. sorted_experiments <- experiments[order(trailing_numbers)]
  66. list(
  67. out_dir = out_dir,
  68. sgd_gene_list = sgd_gene_list,
  69. easy_results_file = easy_results_file,
  70. experiments = sorted_experiments
  71. )
  72. }
  73. args <- parse_arguments()
  74. # Should we keep output in exp dirs or combine in the study output dir?
  75. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  76. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  77. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. # axis.title.x = element_text(vjust = -0.2), # TODO this causes errors
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. # axis.ticks = element_line(),
  92. panel.grid.major = element_line(colour = "#f0f0f0"),
  93. panel.grid.minor = element_blank(),
  94. legend.key = element_rect(colour = NA),
  95. legend.position = legend_position,
  96. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  97. # legend.key.size = unit(0.5, "cm"),
  98. legend.spacing = unit(0, "cm"),
  99. legend.title = element_text(face = "italic", size = rel(1.3)),
  100. legend.text = element_text(size = rel(1.2)),
  101. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  102. # strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  103. # strip.text = element_text(face = "bold")
  104. )
  105. }
  106. scale_fill_publication <- function(...) {
  107. discrete_scale("fill", "Publication", manual_pal(values = c(
  108. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  109. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  110. )), ...)
  111. }
  112. scale_colour_publication <- function(...) {
  113. discrete_scale("colour", "Publication", manual_pal(values = c(
  114. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  115. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  116. )), ...)
  117. }
  118. # Load the initial dataframe from the easy_results_file
  119. load_and_filter_data <- function(easy_results_file, sd = 3) {
  120. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  121. df <- df %>%
  122. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  123. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  124. # Rename columns
  125. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  126. mutate(
  127. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  128. delta_bg = last_bg - first_bg,
  129. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  130. NG = if_else(L == 0 & !is.na(L), 1, 0),
  131. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  132. SM = 0,
  133. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  134. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  135. conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
  136. conc_num_factor_num = as.numeric(conc_num_factor)
  137. )
  138. return(df)
  139. }
  140. # Update Gene names using the SGD gene list
  141. update_gene_names <- function(df, sgd_gene_list) {
  142. # Load SGD gene list
  143. genes <- read.delim(file = sgd_gene_list,
  144. quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. # Create a named vector for mapping ORF to GeneName
  147. gene_map <- setNames(genes$V5, genes$V4)
  148. # Vectorized match to find the GeneName from gene_map
  149. mapped_genes <- gene_map[df$ORF]
  150. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  151. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  152. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  153. df <- df %>%
  154. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  155. return(df)
  156. }
  157. calculate_summary_stats <- function(df, variables, group_vars) {
  158. summary_stats <- df %>%
  159. group_by(across(all_of(group_vars))) %>%
  160. summarise(
  161. N = n(),
  162. across(all_of(variables),
  163. list(
  164. mean = ~mean(., na.rm = TRUE),
  165. median = ~median(., na.rm = TRUE),
  166. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  167. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  168. sd = ~sd(., na.rm = TRUE),
  169. se = ~sd(., na.rm = TRUE) / sqrt(N - 1) # Bessel's correction
  170. ),
  171. .names = "{.fn}_{.col}"
  172. ),
  173. .groups = "drop"
  174. )
  175. # Create a cleaned version of df that doesn't overlap with summary_stats
  176. cleaned_df <- df %>%
  177. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  178. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  179. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  180. }
  181. calculate_interaction_scores <- function(df, max_conc, bg_stats,
  182. group_vars = c("OrfRep", "Gene", "num")) {
  183. # Calculate total concentration variables
  184. total_conc_num <- length(unique(df$conc_num))
  185. calculations <- df %>%
  186. group_by(across(all_of(group_vars))) %>%
  187. mutate(
  188. NG = sum(NG, na.rm = TRUE),
  189. DB = sum(DB, na.rm = TRUE),
  190. SM = sum(SM, na.rm = TRUE),
  191. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  192. # Calculate raw data
  193. Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
  194. Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
  195. Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
  196. Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
  197. Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
  198. Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
  199. Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
  200. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
  201. Exp_L = WT_L + Raw_Shift_L,
  202. Exp_K = WT_K + Raw_Shift_K,
  203. Exp_r = WT_r + Raw_Shift_r,
  204. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  205. Delta_L = mean_L - Exp_L,
  206. Delta_K = mean_K - Exp_K,
  207. Delta_r = mean_r - Exp_r,
  208. Delta_AUC = mean_AUC - Exp_AUC,
  209. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  210. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  211. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  212. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  213. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  214. # Calculate Z-scores
  215. Zscore_L = Delta_L / WT_sd_L,
  216. Zscore_K = Delta_K / WT_sd_K,
  217. Zscore_r = Delta_r / WT_sd_r,
  218. Zscore_AUC = Delta_AUC / WT_sd_AUC,
  219. # Fit linear models and store in list-columns
  220. gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
  221. gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
  222. gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
  223. gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
  224. # Extract coefficients using purrr::map_dbl
  225. lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
  226. lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
  227. lm_intercept_K = map_dbl(gene_lm_K, ~ coef(.x)[1]),
  228. lm_slope_K = map_dbl(gene_lm_K, ~ coef(.x)[2]),
  229. lm_intercept_r = map_dbl(gene_lm_r, ~ coef(.x)[1]),
  230. lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
  231. lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
  232. lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
  233. # Calculate lm_Score_* based on coefficients
  234. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  235. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  236. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  237. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
  238. # Calculate R-squared values
  239. R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
  240. R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
  241. R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
  242. R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
  243. ) %>%
  244. ungroup()
  245. # Calculate overall mean and SD for lm_Score_* variables
  246. lm_means_sds <- calculations %>%
  247. summarise(
  248. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  249. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  250. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  251. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  252. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  253. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  254. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  255. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  256. )
  257. calculations <- calculations %>%
  258. mutate(
  259. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  260. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  261. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  262. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  263. )
  264. # Summarize some of the stats
  265. interactions <- calculations %>%
  266. group_by(across(all_of(group_vars))) %>%
  267. mutate(
  268. # Calculate raw shifts
  269. Raw_Shift_L = first(Raw_Shift_L),
  270. Raw_Shift_K = first(Raw_Shift_K),
  271. Raw_Shift_r = first(Raw_Shift_r),
  272. Raw_Shift_AUC = first(Raw_Shift_AUC),
  273. # Calculate Z-shifts
  274. Z_Shift_L = first(Z_Shift_L),
  275. Z_Shift_K = first(Z_Shift_K),
  276. Z_Shift_r = first(Z_Shift_r),
  277. Z_Shift_AUC = first(Z_Shift_AUC),
  278. # Sum Z-scores
  279. Sum_Z_Score_L = sum(Zscore_L),
  280. Sum_Z_Score_K = sum(Zscore_K),
  281. Sum_Z_Score_r = sum(Zscore_r),
  282. Sum_Z_Score_AUC = sum(Zscore_AUC),
  283. # Calculate Average Z-scores
  284. Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
  285. Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
  286. Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
  287. Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
  288. ) %>%
  289. arrange(desc(Z_lm_L), desc(NG)) %>%
  290. ungroup()
  291. # Declare column order for output
  292. calculations <- calculations %>%
  293. select(
  294. "OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "N",
  295. "mean_L", "mean_K", "mean_r", "mean_AUC",
  296. "median_L", "median_K", "median_r", "median_AUC",
  297. "sd_L", "sd_K", "sd_r", "sd_AUC",
  298. "se_L", "se_K", "se_r", "se_AUC",
  299. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  300. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  301. "WT_L", "WT_K", "WT_r", "WT_AUC",
  302. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  303. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  304. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  305. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  306. "NG", "SM", "DB")
  307. interactions <- interactions %>%
  308. select(
  309. "OrfRep", "Gene", "conc_num", "conc_num_factor", "num", "NG", "DB", "SM",
  310. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  311. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  312. "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
  313. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  314. "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
  315. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  316. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")
  317. cleaned_df <- df %>%
  318. select(-any_of(
  319. setdiff(intersect(names(df), names(interactions)),
  320. c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
  321. interactions_joined <- left_join(cleaned_df, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  322. return(list(
  323. calculations = calculations,
  324. interactions = interactions,
  325. interactions_joined = interactions_joined))
  326. }
  327. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  328. message("Generating ", filename, ".pdf and ", filename, ".html")
  329. # Iterate through the plot_configs (which contain both plots and grid_layout)
  330. for (config_group in plot_configs) {
  331. plot_list <- config_group$plots
  332. grid_nrow <- config_group$grid_layout$nrow
  333. grid_ncol <- config_group$grid_layout$ncol
  334. # Prepare lists to collect static and interactive plots
  335. static_plots <- list()
  336. plotly_plots <- list()
  337. # Generate each individual plot based on the configuration
  338. for (i in seq_along(plot_list)) {
  339. config <- plot_list[[i]]
  340. df <- config$df
  341. # Create the base plot
  342. aes_mapping <- if (config$plot_type == "bar") {
  343. if (!is.null(config$color_var)) {
  344. aes(x = .data[[config$x_var]], fill = as.factor(.data[[config$color_var]]), color = as.factor(.data[[config$color_var]]))
  345. } else {
  346. aes(x = .data[[config$x_var]])
  347. }
  348. } else if (config$plot_type == "density") {
  349. if (!is.null(config$color_var)) {
  350. aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
  351. } else {
  352. aes(x = .data[[config$x_var]])
  353. }
  354. } else {
  355. if (!is.null(config$color_var)) {
  356. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
  357. } else {
  358. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  359. }
  360. }
  361. plot <- ggplot(df, aes_mapping)
  362. # Apply theme_publication with legend_position from config
  363. legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
  364. plot <- plot + theme_publication(legend_position = legend_position)
  365. # Use appropriate helper function based on plot type
  366. plot <- switch(config$plot_type,
  367. "scatter" = generate_scatter_plot(plot, config),
  368. "box" = generate_box_plot(plot, config),
  369. "density" = plot + geom_density(),
  370. "bar" = plot + geom_bar(),
  371. plot # default case if no type matches
  372. )
  373. # Add title and labels
  374. if (!is.null(config$title)) {
  375. plot <- plot + ggtitle(config$title)
  376. }
  377. if (!is.null(config$x_label)) {
  378. plot <- plot + xlab(config$x_label)
  379. }
  380. if (!is.null(config$y_label)) {
  381. plot <- plot + ylab(config$y_label)
  382. }
  383. # Add cartesian coordinates if specified
  384. if (!is.null(config$coord_cartesian)) {
  385. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  386. }
  387. # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
  388. if (is.null(config$color_var)) {
  389. plot <- plot + scale_color_discrete(guide = "none")
  390. }
  391. # Add interactive tooltips for plotly
  392. tooltip_vars <- c()
  393. if (config$plot_type == "scatter") {
  394. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  395. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
  396. } else if (!is.null(config$gene_point) && config$gene_point) {
  397. tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
  398. } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
  399. tooltip_vars <- c(config$x_var, config$y_var)
  400. }
  401. }
  402. # Convert to plotly object and suppress warnings here
  403. plotly_plot <- suppressWarnings({
  404. if (length(tooltip_vars) > 0) {
  405. ggplotly(plot, tooltip = tooltip_vars)
  406. } else {
  407. ggplotly(plot, tooltip = "none")
  408. }
  409. })
  410. # Adjust legend position if specified
  411. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  412. plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
  413. }
  414. # Add plots to lists
  415. static_plots[[i]] <- plot
  416. plotly_plots[[i]] <- plotly_plot
  417. }
  418. # Save static PDF plot(s) for the current grid
  419. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  420. grid.arrange(grobs = static_plots, ncol = grid_ncol, nrow = grid_nrow)
  421. dev.off()
  422. # Combine and save interactive HTML plot(s)
  423. combined_plot <- subplot(
  424. plotly_plots,
  425. nrows = grid_nrow,
  426. ncols = grid_ncol,
  427. margin = 0.05
  428. )
  429. # Save combined HTML plot(s)
  430. saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
  431. }
  432. }
  433. generate_scatter_plot <- function(plot, config) {
  434. # Define the points
  435. shape <- if (!is.null(config$shape)) config$shape else 3
  436. size <- if (!is.null(config$size)) config$size else 1.5
  437. position <-
  438. if (!is.null(config$position) && config$position == "jitter") {
  439. position_jitter(width = 0.1, height = 0)
  440. } else {
  441. "identity"
  442. }
  443. plot <- plot + geom_point(
  444. shape = shape,
  445. size = size,
  446. position = position
  447. )
  448. if (!is.null(config$cyan_points) && config$cyan_points) {
  449. plot <- plot + geom_point(
  450. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  451. color = "cyan",
  452. shape = 3,
  453. size = 0.5
  454. )
  455. }
  456. # Add Smooth Line if specified
  457. if (!is.null(config$smooth) && config$smooth) {
  458. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  459. if (!is.null(config$lm_line)) {
  460. plot <- plot +
  461. geom_abline(
  462. intercept = config$lm_line$intercept,
  463. slope = config$lm_line$slope,
  464. color = smooth_color
  465. )
  466. } else {
  467. plot <- plot +
  468. geom_smooth(
  469. method = "lm",
  470. se = FALSE,
  471. color = smooth_color
  472. )
  473. }
  474. }
  475. # Add SD Bands if specified
  476. if (!is.null(config$sd_band)) {
  477. plot <- plot +
  478. annotate(
  479. "rect",
  480. xmin = -Inf, xmax = Inf,
  481. ymin = config$sd_band, ymax = Inf,
  482. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  483. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  484. ) +
  485. annotate(
  486. "rect",
  487. xmin = -Inf, xmax = Inf,
  488. ymin = -config$sd_band, ymax = -Inf,
  489. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  490. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  491. ) +
  492. geom_hline(
  493. yintercept = c(-config$sd_band, config$sd_band),
  494. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  495. )
  496. }
  497. # Add Rectangles if specified
  498. if (!is.null(config$rectangles)) {
  499. for (rect in config$rectangles) {
  500. plot <- plot + annotate(
  501. "rect",
  502. xmin = rect$xmin,
  503. xmax = rect$xmax,
  504. ymin = rect$ymin,
  505. ymax = rect$ymax,
  506. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  507. color = ifelse(is.null(rect$color), "black", rect$color),
  508. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  509. )
  510. }
  511. }
  512. # Add error bars if specified
  513. if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
  514. y_mean_col <- paste0("mean_", config$y_var)
  515. y_sd_col <- paste0("sd_", config$y_var)
  516. plot <- plot +
  517. geom_errorbar(
  518. aes(
  519. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  520. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  521. ),
  522. alpha = 0.3,
  523. linewidth = 0.5
  524. )
  525. }
  526. # Customize X-axis if specified
  527. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  528. plot <- plot +
  529. scale_x_discrete(
  530. name = config$x_label,
  531. breaks = config$x_breaks,
  532. labels = config$x_labels
  533. )
  534. }
  535. # Set Y-axis limits if specified
  536. if (!is.null(config$ylim_vals)) {
  537. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  538. }
  539. # Add annotations if specified
  540. if (!is.null(config$annotations)) {
  541. for (annotation in config$annotations) {
  542. plot <- plot +
  543. annotate(
  544. "text",
  545. x = annotation$x,
  546. y = annotation$y,
  547. label = annotation$label,
  548. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  549. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  550. size = ifelse(is.null(annotation$size), 6, annotation$size),
  551. color = ifelse(is.null(annotation$color), "black", annotation$color)
  552. )
  553. }
  554. }
  555. return(plot)
  556. }
  557. generate_box_plot <- function(plot, config) {
  558. plot <- plot + geom_boxplot()
  559. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  560. plot <- plot + scale_x_discrete(
  561. name = config$x_label,
  562. breaks = config$x_breaks,
  563. labels = config$x_labels
  564. )
  565. }
  566. return(plot)
  567. }
  568. generate_plate_analysis_plot_configs <- function(variables, stages = c("before", "after"),
  569. df_before = NULL, df_after = NULL, plot_type = "scatter") {
  570. plots <- list()
  571. for (var in variables) {
  572. for (stage in stages) {
  573. df_plot <- if (stage == "before") df_before else df_after
  574. # Check for non-finite values in the y-variable
  575. df_plot_filtered <- df_plot %>%
  576. filter(is.finite(!!sym(var)))
  577. # Count removed rows
  578. removed_rows <- nrow(df_plot) - nrow(df_plot_filtered)
  579. if (removed_rows > 0) {
  580. message(sprintf("Removed %d non-finite values for variable %s during stage %s", removed_rows, var, stage))
  581. }
  582. # Adjust settings based on plot_type
  583. if (plot_type == "scatter") {
  584. error_bar <- TRUE
  585. position <- "jitter"
  586. } else if (plot_type == "box") {
  587. error_bar <- FALSE
  588. position <- NULL
  589. }
  590. config <- list(
  591. df = df_plot,
  592. x_var = "scan",
  593. y_var = var,
  594. plot_type = plot_type,
  595. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  596. error_bar = error_bar,
  597. color_var = "conc_num",
  598. position = position,
  599. size = 0.2
  600. )
  601. plots <- append(plots, list(config))
  602. }
  603. }
  604. return(plots)
  605. }
  606. generate_interaction_plot_configs <- function(df, limits_map = NULL, stats_df = NULL) {
  607. if (is.null(limits_map)) {
  608. limits_map <- list(
  609. L = c(0, 130),
  610. K = c(-20, 160),
  611. r = c(0, 1),
  612. AUC = c(0, 12500)
  613. )
  614. }
  615. # Ensure proper grouping by OrfRep, Gene, and num
  616. df_filtered <- df %>%
  617. filter(
  618. !is.na(L) & L >= limits_map$L[1] & L <= limits_map$L[2],
  619. !is.na(K) & K >= limits_map$K[1] & K <= limits_map$K[2],
  620. !is.na(r) & r >= limits_map$r[1] & r <= limits_map$r[2],
  621. !is.na(AUC) & AUC >= limits_map$AUC[1] & AUC <= limits_map$AUC[2]
  622. ) %>%
  623. group_by(OrfRep, Gene, num) # Group by OrfRep, Gene, and num
  624. scatter_configs <- list()
  625. box_configs <- list()
  626. # Generate scatter and box plots for each variable (L, K, r, AUC)
  627. for (var in names(limits_map)) {
  628. scatter_configs[[length(scatter_configs) + 1]] <- list(
  629. df = df_filtered,
  630. x_var = "conc_num", # X-axis variable
  631. y_var = var, # Y-axis variable (Delta_L, Delta_K, Delta_r, Delta_AUC)
  632. plot_type = "scatter",
  633. title = sprintf("Scatter RF for %s with SD", var),
  634. coord_cartesian = limits_map[[var]], # Set limits for Y-axis
  635. annotations = list(
  636. list(x = -0.25, y = 10, label = "NG"),
  637. list(x = -0.25, y = 5, label = "DB"),
  638. list(x = -0.25, y = 0, label = "SM")
  639. ),
  640. grid_layout = list(ncol = 4, nrow = 3)
  641. )
  642. box_configs[[length(box_configs) + 1]] <- list(
  643. df = df_filtered,
  644. x_var = "conc_num", # X-axis variable
  645. y_var = var, # Y-axis variable (Delta_L, Delta_K, Delta_r, Delta_AUC)
  646. plot_type = "box",
  647. title = sprintf("Boxplot RF for %s with SD", var),
  648. coord_cartesian = limits_map[[var]],
  649. grid_layout = list(ncol = 4, nrow = 3)
  650. )
  651. }
  652. # Combine scatter and box plots into grids
  653. configs <- list(
  654. list(
  655. grid_layout = list(nrow = 2, ncol = 2), # Scatter plots in a 2x2 grid (for the 8 plots)
  656. plots = scatter_configs[1:4]
  657. ),
  658. list(
  659. grid_layout = list(nrow = 2, ncol = 2), # Box plots in a 2x2 grid (for the 8 plots)
  660. plots = box_configs
  661. ),
  662. list(
  663. grid_layout = list(nrow = 3, ncol = 4), # Delta_ plots in a 3x4 grid
  664. plots = scatter_configs
  665. ),
  666. list(
  667. grid_layout = list(nrow = 3, ncol = 4), # Delta_ box plots in a 3x4 grid
  668. plots = box_configs
  669. )
  670. )
  671. return(configs)
  672. }
  673. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  674. sd_bands <- c(1, 2, 3)
  675. avg_zscore_cols <- paste0("Avg_Zscore_", variables)
  676. z_lm_cols <- paste0("Z_lm_", variables)
  677. rank_avg_zscore_cols <- paste0("Rank_", variables)
  678. rank_z_lm_cols <- paste0("Rank_lm_", variables)
  679. configs <- list()
  680. if (adjust) {
  681. message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns for ranks")
  682. df <- df %>%
  683. mutate(
  684. across(all_of(avg_zscore_cols), ~ifelse(is.na(.), 0.001, .)),
  685. across(all_of(z_lm_cols), ~ifelse(is.na(.), 0.001, .))
  686. )
  687. }
  688. message("Calculating ranks for Avg_Zscore and Z_lm columns")
  689. rank_col_mapping <- setNames(rank_avg_zscore_cols, avg_zscore_cols)
  690. df_ranked <- df %>%
  691. mutate(across(all_of(avg_zscore_cols), ~rank(., na.last = "keep"), .names = "{rank_col_mapping[.col]}"))
  692. rank_lm_col_mapping <- setNames(rank_z_lm_cols, z_lm_cols)
  693. df_ranked <- df_ranked %>%
  694. mutate(across(all_of(z_lm_cols), ~rank(., na.last = "keep"), .names = "{rank_lm_col_mapping[.col]}"))
  695. # SD-based plots for L and K
  696. for (variable in c("L", "K")) {
  697. if (is_lm) {
  698. rank_var <- paste0("Rank_lm_", variable)
  699. zscore_var <- paste0("Z_lm_", variable)
  700. y_label <- paste("Int Z score", variable)
  701. } else {
  702. rank_var <- paste0("Rank_", variable)
  703. zscore_var <- paste0("Avg_Zscore_", variable)
  704. y_label <- paste("Avg Z score", variable)
  705. }
  706. for (sd_band in sd_bands) {
  707. num_enhancers <- sum(df_ranked[[zscore_var]] >= sd_band, na.rm = TRUE)
  708. num_suppressors <- sum(df_ranked[[zscore_var]] <= -sd_band, na.rm = TRUE)
  709. # Annotated plot configuration
  710. configs[[length(configs) + 1]] <- list(
  711. df = df_ranked,
  712. x_var = rank_var,
  713. y_var = zscore_var,
  714. plot_type = "scatter",
  715. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  716. sd_band = sd_band,
  717. fill_positive = "#542788",
  718. fill_negative = "orange",
  719. alpha_positive = 0.3,
  720. alpha_negative = 0.3,
  721. annotations = list(
  722. list(
  723. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  724. y = 10,
  725. label = paste("Deletion Enhancers =", num_enhancers),
  726. hjust = 0.5,
  727. vjust = 1
  728. ),
  729. list(
  730. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  731. y = -10,
  732. label = paste("Deletion Suppressors =", num_suppressors),
  733. hjust = 0.5,
  734. vjust = 0
  735. )
  736. ),
  737. shape = 3,
  738. size = 0.1,
  739. y_label = y_label,
  740. x_label = "Rank",
  741. legend_position = "none",
  742. grid_layout = list(ncol = 3, nrow = 2)
  743. )
  744. # Non-Annotated Plot Configuration
  745. configs[[length(configs) + 1]] <- list(
  746. df = df_ranked,
  747. x_var = rank_var,
  748. y_var = zscore_var,
  749. plot_type = "scatter",
  750. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD No Annotations"),
  751. sd_band = sd_band,
  752. fill_positive = "#542788",
  753. fill_negative = "orange",
  754. alpha_positive = 0.3,
  755. alpha_negative = 0.3,
  756. annotations = NULL,
  757. shape = 3,
  758. size = 0.1,
  759. y_label = y_label,
  760. x_label = "Rank",
  761. legend_position = "none",
  762. grid_layout = list(ncol = 3, nrow = 2)
  763. )
  764. }
  765. }
  766. # Avg ZScore and Rank Avg ZScore Plots for r, L, K, and AUC
  767. for (variable in variables) {
  768. for (plot_type in c("Avg Zscore vs lm", "Rank Avg Zscore vs lm")) {
  769. title <- paste(plot_type, variable)
  770. # Define specific variables based on plot type
  771. if (plot_type == "Avg Zscore vs lm") {
  772. x_var <- paste0("Avg_Zscore_", variable)
  773. y_var <- paste0("Z_lm_", variable)
  774. rectangles <- list(
  775. list(xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  776. fill = NA, color = "grey20", alpha = 0.1
  777. )
  778. )
  779. } else if (plot_type == "Rank Avg Zscore vs lm") {
  780. x_var <- paste0("Rank_", variable)
  781. y_var <- paste0("Rank_lm_", variable)
  782. rectangles <- NULL
  783. }
  784. # Fit the linear model
  785. lm_model <- lm(as.formula(paste(y_var, "~", x_var)), data = df_ranked)
  786. # Extract intercept and slope from the model coefficients
  787. intercept <- coef(lm_model)[1]
  788. slope <- coef(lm_model)[2]
  789. configs[[length(configs) + 1]] <- list(
  790. df = df_ranked,
  791. x_var = x_var,
  792. y_var = y_var,
  793. plot_type = "scatter",
  794. title = title,
  795. annotations = list(
  796. list(
  797. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  798. y = 10,
  799. label = paste("Deletion Enhancers =", num_enhancers),
  800. hjust = 0.5,
  801. vjust = 1
  802. ),
  803. list(
  804. x = median(df_ranked[[rank_var]], na.rm = TRUE),
  805. y = -10,
  806. label = paste("Deletion Suppressors =", num_suppressors),
  807. hjust = 0.5,
  808. vjust = 0
  809. )
  810. ),
  811. shape = 3,
  812. size = 0.25,
  813. smooth = TRUE,
  814. smooth_color = "black",
  815. lm_line = list(intercept = intercept, slope = slope),
  816. legend_position = "right",
  817. color_var = if (overlap_color) "Overlap" else NULL,
  818. x_label = x_var,
  819. y_label = y_var,
  820. rectangles = rectangles
  821. )
  822. }
  823. }
  824. return(configs)
  825. }
  826. generate_correlation_plot_configs <- function(df) {
  827. # Define relationships for plotting
  828. relationships <- list(
  829. list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
  830. list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
  831. list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
  832. list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
  833. list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
  834. list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
  835. )
  836. configs <- list()
  837. for (rel in relationships) {
  838. # Fit linear model
  839. lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
  840. lm_summary <- summary(lm_model)
  841. # Construct plot configuration
  842. config <- list(
  843. df = df,
  844. x_var = rel$x,
  845. y_var = rel$y,
  846. plot_type = "scatter",
  847. title = rel$label,
  848. x_label = paste("z-score", gsub("Z_lm_", "", rel$x)),
  849. y_label = paste("z-score", gsub("Z_lm_", "", rel$y)),
  850. annotations = list(
  851. list(
  852. x = Inf,
  853. y = Inf,
  854. label = paste("R-squared =", round(lm_summary$r.squared, 3)),
  855. hjust = 1.1,
  856. vjust = 2,
  857. size = 4,
  858. color = "black"
  859. )
  860. ),
  861. smooth = TRUE,
  862. smooth_color = "tomato3",
  863. lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
  864. legend_position = "right",
  865. shape = 3,
  866. size = 0.5,
  867. color_var = "Overlap",
  868. rectangles = list(
  869. list(
  870. xmin = -2, xmax = 2, ymin = -2, ymax = 2,
  871. fill = NA, color = "grey20", alpha = 0.1
  872. )
  873. ),
  874. cyan_points = TRUE,
  875. grid_layout = list(ncol = 2, nrow = 2)
  876. )
  877. configs[[length(configs) + 1]] <- config
  878. }
  879. return(configs)
  880. }
  881. main <- function() {
  882. lapply(names(args$experiments), function(exp_name) {
  883. exp <- args$experiments[[exp_name]]
  884. exp_path <- exp$path
  885. exp_sd <- exp$sd
  886. out_dir <- file.path(exp_path, "zscores")
  887. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  888. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  889. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  890. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  891. interaction_vars <- c("L", "K", "r", "AUC") # fields to calculate interaction z-scores
  892. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  893. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  894. message("Loading and filtering data for experiment: ", exp_name)
  895. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  896. update_gene_names(args$sgd_gene_list) %>%
  897. as_tibble()
  898. # Filter rows above delta background tolerance
  899. df_above_tolerance <- df %>% filter(DB == 1)
  900. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .))) # formerly X
  901. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  902. # Save some constants
  903. max_conc <- max(df$conc_num_factor_num)
  904. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  905. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  906. message("Calculating summary statistics before quality control")
  907. df_stats <- calculate_summary_stats(
  908. df = df,
  909. variables = summary_vars,
  910. group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
  911. message("Calculating summary statistics after quality control")
  912. ss <- calculate_summary_stats(
  913. df = df_na,
  914. variables = summary_vars,
  915. group_vars = c("conc_num", "conc_num_factor"))
  916. df_na_ss <- ss$summary_stats
  917. df_na_stats <- ss$df_with_stats
  918. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  919. # For plotting (ggplot warns on NAs)
  920. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(summary_vars), is.finite))
  921. df_na_stats <- df_na_stats %>%
  922. mutate(
  923. WT_L = mean_L,
  924. WT_K = mean_K,
  925. WT_r = mean_r,
  926. WT_AUC = mean_AUC,
  927. WT_sd_L = sd_L,
  928. WT_sd_K = sd_K,
  929. WT_sd_r = sd_r,
  930. WT_sd_AUC = sd_AUC
  931. )
  932. # Pull the background means and standard deviations from zero concentration for interactions
  933. bg_stats <- df_na_stats %>%
  934. filter(conc_num == 0) %>%
  935. summarise(
  936. mean_L = first(mean_L),
  937. mean_K = first(mean_K),
  938. mean_r = first(mean_r),
  939. mean_AUC = first(mean_AUC),
  940. sd_L = first(sd_L),
  941. sd_K = first(sd_K),
  942. sd_r = first(sd_r),
  943. sd_AUC = first(sd_AUC)
  944. )
  945. message("Calculating summary statistics after quality control excluding zero values")
  946. df_no_zeros_stats <- calculate_summary_stats(
  947. df = df_no_zeros,
  948. variables = summary_vars,
  949. group_vars = c("conc_num", "conc_num_factor")
  950. )$df_with_stats
  951. message("Filtering by 2SD of K")
  952. df_na_within_2sd_k <- df_na_stats %>%
  953. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  954. df_na_outside_2sd_k <- df_na_stats %>%
  955. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  956. message("Calculating summary statistics for L within 2SD of K")
  957. # TODO We're omitting the original z_max calculation, not sure if needed?
  958. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
  959. write.csv(ss,
  960. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  961. row.names = FALSE)
  962. message("Calculating summary statistics for L outside 2SD of K")
  963. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  964. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  965. write.csv(ss$summary_stats,
  966. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  967. row.names = FALSE)
  968. # Each plots list corresponds to a file
  969. l_vs_k_plot_configs <- list(
  970. list(
  971. df = df,
  972. x_var = "L",
  973. y_var = "K",
  974. plot_type = "scatter",
  975. delta_bg_point = TRUE,
  976. title = "Raw L vs K before quality control",
  977. color_var = "conc_num",
  978. error_bar = FALSE,
  979. legend_position = "right"
  980. )
  981. )
  982. frequency_delta_bg_plot_configs <- list(
  983. list(
  984. df = df_stats,
  985. x_var = "delta_bg",
  986. y_var = NULL,
  987. plot_type = "density",
  988. title = "Density plot for Delta Background by [Drug] (All Data)",
  989. color_var = "conc_num",
  990. x_label = "Delta Background",
  991. y_label = "Density",
  992. error_bar = FALSE,
  993. legend_position = "right"),
  994. list(
  995. df = df_stats,
  996. x_var = "delta_bg",
  997. y_var = NULL,
  998. plot_type = "bar",
  999. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1000. color_var = "conc_num",
  1001. x_label = "Delta Background",
  1002. y_label = "Count",
  1003. error_bar = FALSE,
  1004. legend_position = "right")
  1005. )
  1006. above_threshold_plot_configs <- list(
  1007. list(
  1008. df = df_above_tolerance,
  1009. x_var = "L",
  1010. y_var = "K",
  1011. plot_type = "scatter",
  1012. delta_bg_point = TRUE,
  1013. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1014. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1015. color_var = "conc_num",
  1016. position = "jitter",
  1017. annotations = list(
  1018. list(
  1019. x = l_half_median,
  1020. y = k_half_median,
  1021. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1022. )
  1023. ),
  1024. error_bar = FALSE,
  1025. legend_position = "right"
  1026. )
  1027. )
  1028. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1029. variables = summary_vars,
  1030. df_before = df_stats,
  1031. df_after = df_na_stats_filtered
  1032. )
  1033. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1034. variables = summary_vars,
  1035. df_before = df_stats,
  1036. df_after = df_na_stats_filtered,
  1037. plot_type = "box"
  1038. )
  1039. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1040. variables = summary_vars,
  1041. stages = c("after"), # Only after QC
  1042. df_after = df_no_zeros_stats
  1043. )
  1044. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1045. variables = summary_vars,
  1046. stages = c("after"), # Only after QC
  1047. df_after = df_no_zeros_stats,
  1048. plot_type = "box"
  1049. )
  1050. l_outside_2sd_k_plot_configs <- list(
  1051. list(
  1052. df = df_na_l_outside_2sd_k_stats,
  1053. x_var = "L",
  1054. y_var = "K",
  1055. plot_type = "scatter",
  1056. delta_bg_point = TRUE,
  1057. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1058. color_var = "conc_num",
  1059. position = "jitter",
  1060. legend_position = "right"
  1061. )
  1062. )
  1063. delta_bg_outside_2sd_k_plot_configs <- list(
  1064. list(
  1065. df = df_na_l_outside_2sd_k_stats,
  1066. x_var = "delta_bg",
  1067. y_var = "K",
  1068. plot_type = "scatter",
  1069. gene_point = TRUE,
  1070. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1071. color_var = "conc_num",
  1072. position = "jitter",
  1073. legend_position = "right"
  1074. )
  1075. )
  1076. message("Generating quality control plots in parallel")
  1077. # future::plan(future::multicore, workers = parallel::detectCores())
  1078. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1079. plot_configs <- list(
  1080. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1081. plot_configs = l_vs_k_plot_configs),
  1082. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1083. plot_configs = frequency_delta_bg_plot_configs),
  1084. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1085. plot_configs = above_threshold_plot_configs),
  1086. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1087. plot_configs = plate_analysis_plot_configs),
  1088. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1089. plot_configs = plate_analysis_boxplot_configs),
  1090. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1091. plot_configs = plate_analysis_no_zeros_plot_configs),
  1092. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1093. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1094. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1095. plot_configs = l_outside_2sd_k_plot_configs),
  1096. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1097. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1098. )
  1099. # Generating quality control plots in parallel
  1100. # furrr::future_map(plot_configs, function(config) {
  1101. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1102. # }, .options = furrr_options(seed = TRUE))
  1103. # Process background strains
  1104. bg_strains <- c("YDL227C")
  1105. lapply(bg_strains, function(strain) {
  1106. message("Processing background strain: ", strain)
  1107. # Handle missing data by setting zero values to NA
  1108. # and then removing any rows with NA in L col
  1109. df_bg <- df_na %>%
  1110. filter(OrfRep == strain) %>%
  1111. mutate(
  1112. L = if_else(L == 0, NA, L),
  1113. K = if_else(K == 0, NA, K),
  1114. r = if_else(r == 0, NA, r),
  1115. AUC = if_else(AUC == 0, NA, AUC)
  1116. ) %>%
  1117. filter(!is.na(L))
  1118. # Recalculate summary statistics for the background strain
  1119. message("Calculating summary statistics for background strain")
  1120. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
  1121. summary_stats_bg <- ss_bg$summary_stats
  1122. write.csv(summary_stats_bg,
  1123. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1124. row.names = FALSE)
  1125. # Set the missing values to the highest theoretical value at each drug conc for L
  1126. # Leave other values as 0 for the max/min
  1127. df_reference <- df_na_stats %>% # formerly X2_RF
  1128. filter(OrfRep == strain) %>%
  1129. filter(!is.na(L)) %>%
  1130. group_by(conc_num, conc_num_factor) %>%
  1131. mutate(
  1132. max_l_theoretical = max(max_L, na.rm = TRUE),
  1133. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1134. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1135. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1136. ungroup()
  1137. # Ditto for deletion strains
  1138. df_deletion <- df_na_stats %>% # formerly X2
  1139. filter(OrfRep != strain) %>%
  1140. filter(!is.na(L)) %>%
  1141. mutate(SM = 0) %>%
  1142. group_by(conc_num, conc_num_factor) %>%
  1143. mutate(
  1144. max_l_theoretical = max(max_L, na.rm = TRUE),
  1145. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1146. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1147. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1148. ungroup()
  1149. message("Calculating reference strain interaction scores")
  1150. df_reference_stats <- calculate_summary_stats(
  1151. df = df_reference,
  1152. variables = interaction_vars,
  1153. group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
  1154. )$df_with_stats
  1155. reference_results <- calculate_interaction_scores(df_reference_stats, max_conc, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1156. zscore_calculations_reference <- reference_results$calculations
  1157. zscore_interactions_reference <- reference_results$interactions
  1158. zscore_interactions_reference_joined <- reference_results$interactions_joined
  1159. message("Calculating deletion strain(s) interactions scores")
  1160. df_deletion_stats <- calculate_summary_stats(
  1161. df = df_deletion,
  1162. variables = interaction_vars,
  1163. group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
  1164. )$df_with_stats
  1165. deletion_results <- calculate_interaction_scores(df_deletion_stats, max_conc, bg_stats, group_vars = c("OrfRep"))
  1166. zscore_calculations <- deletion_results$calculations
  1167. zscore_interactions <- deletion_results$interactions
  1168. zscore_interactions_joined <- deletion_results$interactions_joined
  1169. # Writing Z-Scores to file
  1170. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1171. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1172. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1173. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1174. # Create interaction plots
  1175. message("Generating reference interaction plots")
  1176. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
  1177. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1178. message("Generating deletion interaction plots")
  1179. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
  1180. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1181. # Define conditions for enhancers and suppressors
  1182. # TODO Add to study config?
  1183. threshold <- 2
  1184. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1185. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1186. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1187. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1188. # Subset data
  1189. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1190. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1191. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1192. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1193. # Save enhancers and suppressors
  1194. message("Writing enhancer/suppressor csv files")
  1195. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1196. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1197. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1198. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1199. # Combine conditions for enhancers and suppressors
  1200. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1201. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1202. # Save combined enhancers and suppressors
  1203. write.csv(enhancers_and_suppressors_L,
  1204. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1205. write.csv(enhancers_and_suppressors_K,
  1206. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1207. # Handle linear model based enhancers and suppressors
  1208. lm_threshold <- 2 # TODO add to study config?
  1209. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1210. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1211. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1212. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1213. # Save linear model based enhancers and suppressors
  1214. message("Writing linear model enhancer/suppressor csv files")
  1215. write.csv(enhancers_lm_L,
  1216. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1217. write.csv(suppressors_lm_L,
  1218. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1219. write.csv(enhancers_lm_K,
  1220. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1221. write.csv(suppressors_lm_K,
  1222. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1223. message("Generating rank plots")
  1224. rank_plot_configs <- generate_rank_plot_configs(
  1225. df = zscore_interactions_joined,
  1226. variables = interaction_vars,
  1227. is_lm = FALSE,
  1228. adjust = TRUE
  1229. )
  1230. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1231. plot_configs = rank_plot_configs)
  1232. message("Generating ranked linear model plots")
  1233. rank_lm_plot_configs <- generate_rank_plot_configs(
  1234. df = zscore_interactions_joined,
  1235. variables = interaction_vars,
  1236. is_lm = TRUE,
  1237. adjust = TRUE
  1238. )
  1239. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1240. plot_configs = rank_lm_plot_configs)
  1241. message("Filtering and reranking plots")
  1242. interaction_threshold <- 2 # TODO add to study config?
  1243. # Formerly X_NArm
  1244. zscore_interactions_filtered <- zscore_interactions_joined %>%
  1245. filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
  1246. mutate(
  1247. Overlap = case_when(
  1248. Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
  1249. Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
  1250. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
  1251. Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
  1252. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
  1253. Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
  1254. Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1255. Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1256. TRUE ~ "No Effect"
  1257. ),
  1258. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  1259. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  1260. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  1261. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  1262. )
  1263. message("Generating filtered ranked plots")
  1264. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1265. df = zscore_interactions_filtered,
  1266. variables = interaction_vars,
  1267. is_lm = FALSE,
  1268. adjust = FALSE,
  1269. overlap_color = TRUE
  1270. )
  1271. generate_and_save_plots(
  1272. out_dir = out_dir,
  1273. filename = "RankPlots_na_rm",
  1274. plot_configs = rank_plot_filtered_configs)
  1275. message("Generating filtered ranked linear model plots")
  1276. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1277. df = zscore_interactions_filtered,
  1278. variables = interaction_vars,
  1279. is_lm = TRUE,
  1280. adjust = FALSE,
  1281. overlap_color = TRUE
  1282. )
  1283. generate_and_save_plots(
  1284. out_dir = out_dir,
  1285. filename = "rank_plots_lm_na_rm",
  1286. plot_configs = rank_plot_lm_filtered_configs)
  1287. message("Generating correlation curve parameter pair plots")
  1288. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1289. generate_and_save_plots(
  1290. out_dir = out_dir,
  1291. filename = "correlation_cpps",
  1292. plot_configs = correlation_plot_configs,
  1293. )
  1294. })
  1295. })
  1296. }
  1297. main()