calculate_interaction_zscores.R 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. # Turn all warnings into errors for development
  22. options(warn = 2)
  23. parse_arguments <- function() {
  24. args <- if (interactive()) {
  25. c(
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  30. "Experiment 1: Doxo versus HLD",
  31. 3,
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  33. "Experiment 2: HLD versus Doxo",
  34. 3
  35. )
  36. } else {
  37. commandArgs(trailingOnly = TRUE)
  38. }
  39. out_dir <- normalizePath(args[1], mustWork = FALSE)
  40. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  41. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  42. # The remaining arguments should be in groups of 3
  43. exp_args <- args[-(1:3)]
  44. if (length(exp_args) %% 3 != 0) {
  45. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  46. }
  47. # Extract the experiments into a list
  48. experiments <- list()
  49. for (i in seq(1, length(exp_args), by = 3)) {
  50. exp_name <- exp_args[i + 1]
  51. experiments[[exp_name]] <- list(
  52. path = normalizePath(exp_args[i], mustWork = FALSE),
  53. sd = as.numeric(exp_args[i + 2])
  54. )
  55. }
  56. # Extract the trailing number from each path
  57. trailing_numbers <- sapply(experiments, function(x) {
  58. path <- x$path
  59. nums <- gsub("[^0-9]", "", basename(path))
  60. as.integer(nums)
  61. })
  62. # Sort the experiments based on the trailing numbers
  63. sorted_experiments <- experiments[order(trailing_numbers)]
  64. list(
  65. out_dir = out_dir,
  66. sgd_gene_list = sgd_gene_list,
  67. easy_results_file = easy_results_file,
  68. experiments = sorted_experiments
  69. )
  70. }
  71. args <- parse_arguments()
  72. # Should we keep output in exp dirs or combine in the study output dir?
  73. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  74. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  75. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  76. # Ensure that legend_position has a valid value or default to "none"
  77. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  78. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  79. theme_foundation %+replace%
  80. theme(
  81. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  82. text = element_text(),
  83. panel.background = element_blank(),
  84. plot.background = element_blank(),
  85. panel.border = element_blank(),
  86. axis.title = element_text(face = "bold", size = rel(1.4)),
  87. axis.title.y = element_text(angle = 90, vjust = 2),
  88. axis.text = element_text(size = rel(1.2)),
  89. axis.line = element_line(colour = "black"),
  90. panel.grid.major = element_line(colour = "#f0f0f0"),
  91. panel.grid.minor = element_blank(),
  92. legend.key = element_rect(colour = NA),
  93. legend.position = legend_position,
  94. legend.direction =
  95. if (legend_position == "right") {
  96. "vertical"
  97. } else if (legend_position == "bottom") {
  98. "horizontal"
  99. } else {
  100. NULL # No legend direction if position is "none" or other values
  101. },
  102. legend.spacing = unit(0, "cm"),
  103. legend.title = element_text(face = "italic", size = rel(1.3)),
  104. legend.text = element_text(size = rel(1.2)),
  105. plot.margin = unit(c(10, 5, 5, 5), "mm")
  106. )
  107. }
  108. scale_fill_publication <- function(...) {
  109. discrete_scale("fill", "Publication", manual_pal(values = c(
  110. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  111. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  112. )), ...)
  113. }
  114. scale_colour_publication <- function(...) {
  115. discrete_scale("colour", "Publication", manual_pal(values = c(
  116. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  117. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  118. )), ...)
  119. }
  120. # Load the initial dataframe from the easy_results_file
  121. load_and_filter_data <- function(easy_results_file, sd = 3) {
  122. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  123. df <- df %>%
  124. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  125. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  126. # Rename columns
  127. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  128. mutate(
  129. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  130. delta_bg = last_bg - first_bg,
  131. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  132. NG = if_else(L == 0 & !is.na(L), 1, 0),
  133. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  134. SM = 0,
  135. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  136. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  137. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  138. conc_num_factor_factor = as.factor(conc_num)
  139. )
  140. return(df)
  141. }
  142. update_gene_names <- function(df, sgd_gene_list) {
  143. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  144. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  145. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  146. df <- df %>%
  147. mutate(
  148. mapped_genes = gene_map[ORF],
  149. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  150. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  151. )
  152. return(df)
  153. }
  154. calculate_summary_stats <- function(df, variables, group_vars) {
  155. summary_stats <- df %>%
  156. group_by(across(all_of(group_vars))) %>%
  157. summarise(
  158. N = n(),
  159. across(all_of(variables),
  160. list(
  161. mean = ~ mean(.x, na.rm = TRUE),
  162. median = ~ median(.x, na.rm = TRUE),
  163. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  164. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  165. sd = ~ sd(.x, na.rm = TRUE),
  166. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  167. ),
  168. .names = "{.fn}_{.col}"
  169. ),
  170. .groups = "drop"
  171. )
  172. # Create a cleaned version of df that doesn't overlap with summary_stats
  173. df_cleaned <- df %>%
  174. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  175. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  176. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  177. }
  178. calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshold = 2) {
  179. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  180. total_conc_num <- length(unique(df$conc_num))
  181. # Calculate WT statistics from df_bg
  182. wt_stats <- df_bg %>%
  183. group_by(across(all_of(group_vars)), conc_num, conc_num_factor_factor) %>%
  184. summarise(
  185. WT_L = mean(mean_L, na.rm = TRUE),
  186. WT_sd_L = mean(sd_L, na.rm = TRUE),
  187. WT_K = mean(mean_K, na.rm = TRUE),
  188. WT_sd_K = mean(sd_K, na.rm = TRUE),
  189. WT_r = mean(mean_r, na.rm = TRUE),
  190. WT_sd_r = mean(sd_r, na.rm = TRUE),
  191. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  192. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  193. .groups = "drop"
  194. )
  195. # Join WT stats back to df
  196. df <- df %>%
  197. left_join(wt_stats, by = c(group_vars, "conc_num", "conc_num_factor_factor"))
  198. # Compute mean values at zero concentration
  199. mean_L_zero_df <- df %>%
  200. filter(conc_num == 0) %>%
  201. group_by(across(all_of(group_vars))) %>%
  202. summarise(
  203. mean_L_zero = mean(mean_L, na.rm = TRUE),
  204. mean_K_zero = mean(mean_K, na.rm = TRUE),
  205. mean_r_zero = mean(mean_r, na.rm = TRUE),
  206. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  207. .groups = "drop"
  208. )
  209. # Join mean_L_zero_df to df
  210. df <- df %>%
  211. left_join(mean_L_zero_df, by = group_vars)
  212. # Calculate Raw Shifts and Z Shifts
  213. df <- df %>%
  214. mutate(
  215. Raw_Shift_L = mean_L_zero - WT_L,
  216. Raw_Shift_K = mean_K_zero - WT_K,
  217. Raw_Shift_r = mean_r_zero - WT_r,
  218. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  219. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  220. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  221. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  222. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  223. )
  224. calculations <- df %>%
  225. group_by(across(all_of(group_vars))) %>%
  226. mutate(
  227. NG_sum = sum(NG, na.rm = TRUE),
  228. DB_sum = sum(DB, na.rm = TRUE),
  229. SM_sum = sum(SM, na.rm = TRUE),
  230. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  231. # Expected values
  232. Exp_L = WT_L + Raw_Shift_L,
  233. Exp_K = WT_K + Raw_Shift_K,
  234. Exp_r = WT_r + Raw_Shift_r,
  235. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  236. # Deltas
  237. Delta_L = mean_L - Exp_L,
  238. Delta_K = mean_K - Exp_K,
  239. Delta_r = mean_r - Exp_r,
  240. Delta_AUC = mean_AUC - Exp_AUC,
  241. # Adjust deltas for NG and SM
  242. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  243. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  244. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  245. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  246. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  247. # Calculate Z-scores
  248. Zscore_L = Delta_L / WT_sd_L,
  249. Zscore_K = Delta_K / WT_sd_K,
  250. Zscore_r = Delta_r / WT_sd_r,
  251. Zscore_AUC = Delta_AUC / WT_sd_AUC
  252. ) %>%
  253. group_modify(~ {
  254. # Perform linear models only if there are enough unique conc_num_factor levels
  255. if (length(unique(.x$conc_num_factor)) > 1) {
  256. # Filter and calculate each lm() separately with individual checks for NAs
  257. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  258. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  259. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  260. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  261. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  262. .x %>%
  263. mutate(
  264. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  265. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  266. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  267. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  268. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  269. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  270. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  271. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  272. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  273. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  274. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  275. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  276. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  277. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  278. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  279. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  280. )
  281. } else {
  282. # If not enough conc_num_factor levels, set lm-related values to NA
  283. .x %>%
  284. mutate(
  285. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  286. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  287. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  288. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  289. )
  290. }
  291. }) %>%
  292. ungroup()
  293. # For interaction plot error bars
  294. delta_means_sds <- calculations %>%
  295. group_by(across(all_of(group_vars))) %>%
  296. summarise(
  297. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  298. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  299. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  300. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  301. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  302. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  303. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  304. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  305. .groups = "drop"
  306. )
  307. calculations <- calculations %>%
  308. left_join(delta_means_sds, by = group_vars)
  309. # Summary statistics for lm scores
  310. lm_means_sds <- calculations %>%
  311. summarise(
  312. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  313. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  314. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  315. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  316. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  317. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  318. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  319. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE),
  320. .groups = "drop"
  321. )
  322. # Add lm score means and standard deviations to calculations
  323. calculations <- calculations %>%
  324. mutate(
  325. lm_mean_L = lm_means_sds$lm_mean_L,
  326. lm_sd_L = lm_means_sds$lm_sd_L,
  327. lm_mean_K = lm_means_sds$lm_mean_K,
  328. lm_sd_K = lm_means_sds$lm_sd_K,
  329. lm_mean_r = lm_means_sds$lm_mean_r,
  330. lm_sd_r = lm_means_sds$lm_sd_r,
  331. lm_mean_AUC = lm_means_sds$lm_mean_AUC,
  332. lm_sd_AUC = lm_means_sds$lm_sd_AUC
  333. )
  334. # Calculate Z-lm scores
  335. calculations <- calculations %>%
  336. mutate(
  337. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  338. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  339. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  340. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  341. )
  342. # Build summary stats (interactions)
  343. interactions <- calculations %>%
  344. group_by(across(all_of(group_vars))) %>%
  345. summarise(
  346. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  347. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  348. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  349. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  350. # Interaction Z-scores
  351. Z_lm_L = first(Z_lm_L),
  352. Z_lm_K = first(Z_lm_K),
  353. Z_lm_r = first(Z_lm_r),
  354. Z_lm_AUC = first(Z_lm_AUC),
  355. # Raw Shifts
  356. Raw_Shift_L = first(Raw_Shift_L),
  357. Raw_Shift_K = first(Raw_Shift_K),
  358. Raw_Shift_r = first(Raw_Shift_r),
  359. Raw_Shift_AUC = first(Raw_Shift_AUC),
  360. # Z Shifts
  361. Z_Shift_L = first(Z_Shift_L),
  362. Z_Shift_K = first(Z_Shift_K),
  363. Z_Shift_r = first(Z_Shift_r),
  364. Z_Shift_AUC = first(Z_Shift_AUC),
  365. # R Squared values
  366. R_Squared_L = first(R_Squared_L),
  367. R_Squared_K = first(R_Squared_K),
  368. R_Squared_r = first(R_Squared_r),
  369. R_Squared_AUC = first(R_Squared_AUC),
  370. # NG, DB, SM values
  371. NG = first(NG),
  372. DB = first(DB),
  373. SM = first(SM),
  374. .groups = "drop"
  375. )
  376. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  377. interactions <- interactions %>%
  378. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  379. mutate(
  380. Overlap = case_when(
  381. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  382. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  383. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  384. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  385. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  386. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  387. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  388. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  389. TRUE ~ "No Effect"
  390. ),
  391. # For correlations
  392. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  393. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  394. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  395. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  396. )
  397. # Creating the final calculations and interactions dataframes with only required columns for csv output
  398. calculations_df <- calculations %>%
  399. select(
  400. all_of(group_vars),
  401. conc_num, conc_num_factor, conc_num_factor_factor, N,
  402. mean_L, median_L, sd_L, se_L,
  403. mean_K, median_K, sd_K, se_K,
  404. mean_r, median_r, sd_r, se_r,
  405. mean_AUC, median_AUC, sd_AUC, se_AUC,
  406. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  407. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  408. WT_L, WT_K, WT_r, WT_AUC,
  409. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  410. Exp_L, Exp_K, Exp_r, Exp_AUC,
  411. Delta_L, Delta_K, Delta_r, Delta_AUC,
  412. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  413. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  414. )
  415. interactions_df <- interactions %>%
  416. select(
  417. all_of(group_vars),
  418. NG, DB, SM,
  419. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  420. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  421. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  422. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  423. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  424. Overlap
  425. )
  426. # Join calculations and interactions to avoid dimension mismatch
  427. calculations_no_overlap <- calculations %>%
  428. select(-any_of(c("DB", "NG", "SM",
  429. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  430. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  431. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  432. full_data <- calculations_no_overlap %>%
  433. left_join(interactions_df, by = group_vars)
  434. # Return final dataframes
  435. return(list(
  436. calculations = calculations_df,
  437. interactions = interactions_df,
  438. full_data = full_data
  439. ))
  440. }
  441. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  442. message("Generating ", filename, ".pdf and ", filename, ".html")
  443. # Check if we're dealing with multiple plot groups
  444. plot_groups <- if ("plots" %in% names(plot_configs)) {
  445. list(plot_configs) # Single group
  446. } else {
  447. plot_configs # Multiple groups
  448. }
  449. # Open the PDF device once for all plots
  450. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  451. # Loop through each plot group
  452. for (group in plot_groups) {
  453. static_plots <- list()
  454. plotly_plots <- list()
  455. # Retrieve grid layout if it exists, otherwise skip
  456. grid_layout <- group$grid_layout
  457. plots <- group$plots
  458. # Only handle grid layout if it exists
  459. if (!is.null(grid_layout)) {
  460. # Set grid_ncol to 1 if not specified
  461. if (is.null(grid_layout$ncol)) {
  462. grid_layout$ncol <- 1
  463. }
  464. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  465. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  466. num_plots <- length(plots)
  467. nrow <- ceiling(num_plots / grid_layout$ncol)
  468. message("No nrow provided, automatically using nrow = ", nrow)
  469. grid_layout$nrow <- nrow
  470. }
  471. # Fill missing spots with nullGrob() if necessary
  472. total_spots <- grid_layout$nrow * grid_layout$ncol
  473. num_plots <- length(plots)
  474. if (num_plots < total_spots) {
  475. message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  476. plots <- c(plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  477. }
  478. }
  479. for (i in seq_along(plots)) {
  480. config <- plots[[i]]
  481. df <- config$df
  482. # Filter points outside of y-limits if specified
  483. if (!is.null(config$ylim_vals)) {
  484. out_of_bounds_df <- df %>%
  485. filter(
  486. is.na(.data[[config$y_var]]) |
  487. .data[[config$y_var]] < config$ylim_vals[1] |
  488. .data[[config$y_var]] > config$ylim_vals[2]
  489. )
  490. # Print rows being filtered out
  491. if (nrow(out_of_bounds_df) > 0) {
  492. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  493. # print(out_of_bounds_df)
  494. }
  495. # Filter the valid data for plotting
  496. df <- df %>%
  497. filter(
  498. !is.na(.data[[config$y_var]]) &
  499. .data[[config$y_var]] >= config$ylim_vals[1] &
  500. .data[[config$y_var]] <= config$ylim_vals[2]
  501. )
  502. }
  503. # Set up aes mapping based on plot type
  504. aes_mapping <- if (config$plot_type == "bar") {
  505. if (!is.null(config$color_var)) {
  506. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  507. } else {
  508. aes(x = .data[[config$x_var]])
  509. }
  510. } else if (config$plot_type == "density") {
  511. if (!is.null(config$color_var)) {
  512. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  513. } else {
  514. aes(x = .data[[config$x_var]])
  515. }
  516. } else {
  517. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  518. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  519. } else if (!is.null(config$y_var)) {
  520. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  521. } else {
  522. aes(x = .data[[config$x_var]])
  523. }
  524. }
  525. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  526. # Add appropriate plot layer or helper function based on plot type
  527. plot <- switch(config$plot_type,
  528. "scatter" = generate_scatter_plot(plot, config),
  529. "box" = generate_boxplot(plot, config),
  530. "density" = plot + geom_density(),
  531. "bar" = plot + geom_bar(),
  532. plot # default (unused)
  533. )
  534. # Add labels and title
  535. if (!is.null(config$title)) {
  536. plot <- plot + ggtitle(config$title)
  537. if (!is.null(config$title_size)) {
  538. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  539. }
  540. }
  541. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  542. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  543. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  544. # Add annotations if specified
  545. if (!is.null(config$annotations)) {
  546. for (annotation in config$annotations) {
  547. plot <- plot +
  548. annotate(
  549. "text",
  550. x = ifelse(is.null(annotation$x), 0, annotation$x),
  551. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  552. label = annotation$label,
  553. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  554. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  555. size = ifelse(is.null(annotation$size), 3, annotation$size),
  556. color = ifelse(is.null(annotation$color), "black", annotation$color)
  557. )
  558. }
  559. }
  560. # Add error bars if specified
  561. if (!is.null(config$error_bar) && config$error_bar) {
  562. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  563. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  564. config$error_bar_params$y_mean_col
  565. } else {
  566. paste0("mean_", config$y_var)
  567. }
  568. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  569. config$error_bar_params$y_sd_col
  570. } else {
  571. paste0("sd_", config$y_var)
  572. }
  573. # Use rlang to handle custom error bar calculations
  574. if (!is.null(config$error_bar_params$custom_error_bar)) {
  575. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  576. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  577. plot <- plot + geom_errorbar(
  578. aes(
  579. x = .data[[config$x_var]],
  580. ymin = !!custom_ymin_expr,
  581. ymax = !!custom_ymax_expr
  582. ),
  583. color = config$error_bar_params$color,
  584. linewidth = 0.1
  585. )
  586. } else {
  587. # If no custom error bar formula, use the default or dynamic ones
  588. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  589. plot <- plot + geom_errorbar(
  590. aes(
  591. x = .data[[config$x_var]],
  592. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  593. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  594. color = .data[[config$color_var]]
  595. ),
  596. linewidth = 0.1
  597. )
  598. } else {
  599. plot <- plot + geom_errorbar(
  600. aes(
  601. x = .data[[config$x_var]],
  602. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  603. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  604. ),
  605. color = config$error_bar_params$color,
  606. linewidth = 0.1
  607. )
  608. }
  609. }
  610. # Add the center point if the option is provided
  611. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  612. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  613. plot <- plot + geom_point(
  614. aes(
  615. x = .data[[config$x_var]],
  616. y = .data[[y_mean_col]],
  617. color = .data[[config$color_var]]
  618. ),
  619. shape = 16
  620. )
  621. } else {
  622. plot <- plot + geom_point(
  623. aes(
  624. x = .data[[config$x_var]],
  625. y = .data[[y_mean_col]]
  626. ),
  627. color = config$error_bar_params$color,
  628. shape = 16
  629. )
  630. }
  631. }
  632. }
  633. # Convert ggplot to plotly for interactive version
  634. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  635. # Store both static and interactive versions
  636. static_plots[[i]] <- plot
  637. plotly_plots[[i]] <- plotly_plot
  638. }
  639. # Print the plots in the current group to the PDF
  640. if (is.null(grid_layout)) {
  641. # Print each plot individually on separate pages if no grid layout is specified
  642. for (plot in static_plots) {
  643. print(plot)
  644. }
  645. } else {
  646. # Arrange plots in grid layout on a single page
  647. grid.arrange(
  648. grobs = static_plots,
  649. ncol = grid_layout$ncol,
  650. nrow = grid_layout$nrow
  651. )
  652. }
  653. }
  654. # Close the PDF device after all plots are done
  655. dev.off()
  656. # Save HTML file with interactive plots if needed
  657. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  658. message("Saving combined HTML file: ", out_html_file)
  659. htmltools::save_html(
  660. htmltools::tagList(plotly_plots),
  661. file = out_html_file
  662. )
  663. }
  664. generate_scatter_plot <- function(plot, config) {
  665. # Define the points
  666. shape <- if (!is.null(config$shape)) config$shape else 3
  667. size <- if (!is.null(config$size)) config$size else 1.5
  668. position <-
  669. if (!is.null(config$position) && config$position == "jitter") {
  670. position_jitter(width = 0.4, height = 0.1)
  671. } else {
  672. "identity"
  673. }
  674. plot <- plot + geom_point(
  675. shape = shape,
  676. size = size,
  677. position = position
  678. )
  679. if (!is.null(config$cyan_points) && config$cyan_points) {
  680. plot <- plot + geom_point(
  681. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  682. color = "cyan",
  683. shape = 3,
  684. size = 0.5
  685. )
  686. }
  687. if (!is.null(config$gray_points) && config$gray_points) {
  688. plot <- plot + geom_point(shape = 3, color = "gray70", size = 1)
  689. }
  690. # Add Smooth Line if specified
  691. if (!is.null(config$smooth) && config$smooth) {
  692. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  693. if (!is.null(config$lm_line)) {
  694. plot <- plot +
  695. geom_abline(
  696. intercept = config$lm_line$intercept,
  697. slope = config$lm_line$slope,
  698. color = smooth_color
  699. )
  700. }
  701. }
  702. # Add SD Bands if specified
  703. if (!is.null(config$sd_band)) {
  704. plot <- plot +
  705. annotate(
  706. "rect",
  707. xmin = -Inf, xmax = Inf,
  708. ymin = config$sd_band, ymax = Inf,
  709. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  710. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  711. ) +
  712. annotate(
  713. "rect",
  714. xmin = -Inf, xmax = Inf,
  715. ymin = -config$sd_band, ymax = -Inf,
  716. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  717. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  718. ) +
  719. geom_hline(
  720. yintercept = c(-config$sd_band, config$sd_band),
  721. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  722. )
  723. }
  724. # Add Rectangles if specified
  725. if (!is.null(config$rectangles)) {
  726. for (rect in config$rectangles) {
  727. plot <- plot + annotate(
  728. "rect",
  729. xmin = rect$xmin,
  730. xmax = rect$xmax,
  731. ymin = rect$ymin,
  732. ymax = rect$ymax,
  733. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  734. color = ifelse(is.null(rect$color), "black", rect$color),
  735. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  736. )
  737. }
  738. }
  739. # Customize X-axis if specified
  740. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  741. # Check if x_var is factor or character (for discrete x-axis)
  742. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  743. plot <- plot +
  744. scale_x_discrete(
  745. name = config$x_label,
  746. breaks = config$x_breaks,
  747. labels = config$x_labels
  748. )
  749. } else {
  750. plot <- plot +
  751. scale_x_continuous(
  752. name = config$x_label,
  753. breaks = config$x_breaks,
  754. labels = config$x_labels
  755. )
  756. }
  757. }
  758. # Set Y-axis limits if specified
  759. if (!is.null(config$ylim_vals)) {
  760. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  761. }
  762. return(plot)
  763. }
  764. generate_boxplot <- function(plot, config) {
  765. # Convert x_var to a factor within aes mapping
  766. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  767. # Customize X-axis if specified
  768. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  769. # Check if x_var is factor or character (for discrete x-axis)
  770. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  771. plot <- plot +
  772. scale_x_discrete(
  773. name = config$x_label,
  774. breaks = config$x_breaks,
  775. labels = config$x_labels
  776. )
  777. } else {
  778. plot <- plot +
  779. scale_x_continuous(
  780. name = config$x_label,
  781. breaks = config$x_breaks,
  782. labels = config$x_labels
  783. )
  784. }
  785. }
  786. return(plot)
  787. }
  788. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  789. plot_type = "scatter", stages = c("before", "after")) {
  790. plot_configs <- list()
  791. for (var in variables) {
  792. for (stage in stages) {
  793. df_plot <- if (stage == "before") df_before else df_after
  794. # Check for non-finite values in the y-variable
  795. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  796. # Adjust settings based on plot_type
  797. plot_config <- list(
  798. df = df_plot_filtered,
  799. x_var = "scan",
  800. y_var = var,
  801. plot_type = plot_type,
  802. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  803. color_var = "conc_num_factor_factor",
  804. size = 0.2,
  805. error_bar = (plot_type == "scatter"),
  806. legend_position = "bottom"
  807. )
  808. # Add config to plots list
  809. plot_configs <- append(plot_configs, list(plot_config))
  810. }
  811. }
  812. return(list(plots = plot_configs))
  813. }
  814. generate_interaction_plot_configs <- function(df_summary, df_interaction, type) {
  815. # Define the y-limits for the plots
  816. limits_map <- list(
  817. L = c(0, 130),
  818. K = c(-20, 160),
  819. r = c(0, 1),
  820. AUC = c(0, 12500)
  821. )
  822. stats_plot_configs <- list()
  823. stats_boxplot_configs <- list()
  824. delta_plot_configs <- list()
  825. # Overall statistics plots
  826. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  827. for (plot_type in c("scatter", "box")) {
  828. for (var in names(limits_map)) {
  829. y_limits <- limits_map[[var]]
  830. y_span <- y_limits[2] - y_limits[1]
  831. # Common plot configuration
  832. plot_config <- list(
  833. df = df_summary,
  834. plot_type = plot_type,
  835. x_var = "conc_num_factor_factor",
  836. y_var = var,
  837. shape = 16,
  838. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  839. coord_cartesian = y_limits,
  840. x_breaks = unique(df_summary$conc_num_factor_factor),
  841. x_labels = as.character(unique(df_summary$conc_num))
  842. )
  843. # Add specific configurations for scatter and box plots
  844. if (plot_type == "scatter") {
  845. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  846. plot_config$error_bar <- TRUE
  847. plot_config$error_bar_params <- list(
  848. color = "red",
  849. mean_point = TRUE,
  850. y_mean_col = paste0("mean_mean_", var),
  851. y_sd_col = paste0("mean_sd_", var)
  852. )
  853. plot_config$position <- "jitter"
  854. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  855. annotations <- list(
  856. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  857. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  858. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  859. )
  860. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  861. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  862. annotations <- append(annotations, list(
  863. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  864. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  865. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  866. ))
  867. }
  868. plot_config$annotations <- annotations
  869. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  870. } else if (plot_type == "box") {
  871. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  872. plot_config$position <- "dodge"
  873. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  874. }
  875. }
  876. }
  877. # Delta interaction plots
  878. if (type == "reference") {
  879. group_vars <- c("OrfRep", "Gene", "num")
  880. } else if (type == "deletion") {
  881. group_vars <- c("OrfRep", "Gene")
  882. }
  883. delta_limits_map <- list(
  884. L = c(-60, 60),
  885. K = c(-60, 60),
  886. r = c(-0.6, 0.6),
  887. AUC = c(-6000, 6000)
  888. )
  889. grouped_data <- df_interaction %>%
  890. group_by(across(all_of(group_vars))) %>%
  891. group_split()
  892. for (group_data in grouped_data) {
  893. OrfRep <- first(group_data$OrfRep)
  894. Gene <- first(group_data$Gene)
  895. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  896. if (type == "reference") {
  897. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  898. } else if (type == "deletion") {
  899. OrfRepTitle <- OrfRep
  900. }
  901. for (var in names(delta_limits_map)) {
  902. y_limits <- delta_limits_map[[var]]
  903. y_span <- y_limits[2] - y_limits[1]
  904. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  905. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  906. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  907. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  908. NG_value <- first(group_data$NG, default = 0)
  909. DB_value <- first(group_data$DB, default = 0)
  910. SM_value <- first(group_data$SM, default = 0)
  911. lm_intercept_col <- paste0("lm_intercept_", var)
  912. lm_slope_col <- paste0("lm_slope_", var)
  913. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  914. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  915. plot_config <- list(
  916. df = group_data,
  917. plot_type = "scatter",
  918. x_var = "conc_num_factor_factor",
  919. y_var = paste0("Delta_", var),
  920. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  921. shape = 16,
  922. title = paste(OrfRepTitle, Gene, sep = " "),
  923. title_size = rel(1.3),
  924. coord_cartesian = y_limits,
  925. annotations = list(
  926. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  927. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  928. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  929. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  930. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  931. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  932. ),
  933. error_bar = TRUE,
  934. error_bar_params = list(
  935. custom_error_bar = list(
  936. ymin = paste0("0 - 2 * WT_sd_", var),
  937. ymax = paste0("0 + 2 * WT_sd_", var)
  938. ),
  939. color = "gray"
  940. ),
  941. x_breaks = unique(group_data$conc_num_factor_factor),
  942. x_labels = as.character(unique(group_data$conc_num)),
  943. ylim_vals = y_limits,
  944. y_filter = FALSE,
  945. smooth = TRUE,
  946. lm_line = list(
  947. intercept = lm_intercept_value,
  948. slope = lm_slope_value,
  949. color = "blue"
  950. )
  951. )
  952. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  953. }
  954. }
  955. # Group delta plots in chunks of 12
  956. chunk_size <- 12
  957. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  958. return(c(
  959. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  960. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  961. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  962. ))
  963. }
  964. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  965. sd_bands <- c(1, 2, 3)
  966. plot_configs <- list()
  967. variables <- c("L", "K")
  968. # Adjust (if necessary) and rank columns
  969. for (variable in variables) {
  970. if (adjust) {
  971. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  972. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  973. }
  974. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  975. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  976. }
  977. # Helper function to create a plot configuration
  978. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  979. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  980. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  981. # Default plot config
  982. plot_config <- list(
  983. df = df,
  984. x_var = rank_var,
  985. y_var = zscore_var,
  986. x_label = "Rank",
  987. plot_type = "scatter",
  988. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  989. sd_band = sd_band,
  990. fill_positive = "#542788",
  991. fill_negative = "orange",
  992. alpha_positive = 0.3,
  993. alpha_negative = 0.3,
  994. shape = 3,
  995. size = 0.1,
  996. y_label = y_label,
  997. x_label = "Rank",
  998. legend_position = "none"
  999. )
  1000. if (with_annotations) {
  1001. # Add specific annotations for plots with annotations
  1002. plot_config$annotations <- list(
  1003. list(
  1004. x = nrow(df) / 2,
  1005. y = 10,
  1006. label = paste("Deletion Enhancers =", num_enhancers)
  1007. ),
  1008. list(
  1009. x = nrow(df) / 2,
  1010. y = -10,
  1011. label = paste("Deletion Suppressors =", num_suppressors)
  1012. )
  1013. )
  1014. }
  1015. return(plot_config)
  1016. }
  1017. # Generate plots for each variable
  1018. for (variable in variables) {
  1019. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1020. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1021. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1022. # Loop through SD bands
  1023. for (sd_band in sd_bands) {
  1024. # Create plot with annotations
  1025. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  1026. # Create plot without annotations
  1027. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  1028. }
  1029. }
  1030. return(list(grid_layout = list(ncol = 3), plots = plot_configs))
  1031. }
  1032. generate_correlation_plot_configs <- function(df) {
  1033. # Define relationships for different-variable correlations
  1034. relationships <- list(
  1035. list(x = "L", y = "K"),
  1036. list(x = "L", y = "r"),
  1037. list(x = "L", y = "AUC"),
  1038. list(x = "K", y = "r"),
  1039. list(x = "K", y = "AUC"),
  1040. list(x = "r", y = "AUC")
  1041. )
  1042. plot_configs <- list()
  1043. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1044. highlight_cyan_options <- c(FALSE, TRUE)
  1045. for (highlight_cyan in highlight_cyan_options) {
  1046. for (rel in relationships) {
  1047. # Extract relevant variable names for Z_lm values
  1048. x_var <- paste0("Z_lm_", rel$x)
  1049. y_var <- paste0("Z_lm_", rel$y)
  1050. # Access the correlation statistics from the correlation_stats list
  1051. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1052. stats <- correlation_stats[[relationship_name]]
  1053. intercept <- stats$intercept
  1054. slope <- stats$slope
  1055. r_squared <- stats$r_squared
  1056. # Generate the label for the plot
  1057. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1058. # Construct plot config
  1059. plot_config <- list(
  1060. df = df,
  1061. x_var = x_var,
  1062. y_var = y_var,
  1063. plot_type = "scatter",
  1064. title = plot_label,
  1065. annotations = list(
  1066. list(
  1067. x = mean(df[[x_var]], na.rm = TRUE),
  1068. y = mean(df[[y_var]], na.rm = TRUE),
  1069. label = paste("R-squared =", round(r_squared, 3))
  1070. )
  1071. ),
  1072. smooth = TRUE,
  1073. smooth_color = "tomato3",
  1074. lm_line = list(
  1075. intercept = intercept,
  1076. slope = slope
  1077. ),
  1078. shape = 3,
  1079. size = 0.5,
  1080. color_var = "Overlap",
  1081. cyan_points = highlight_cyan, # include cyan points or not based on the loop
  1082. gray_points = TRUE
  1083. )
  1084. plot_configs <- append(plot_configs, list(plot_config))
  1085. }
  1086. }
  1087. return(list(plots = plot_configs))
  1088. }
  1089. main <- function() {
  1090. lapply(names(args$experiments), function(exp_name) {
  1091. exp <- args$experiments[[exp_name]]
  1092. exp_path <- exp$path
  1093. exp_sd <- exp$sd
  1094. out_dir <- file.path(exp_path, "zscores")
  1095. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1096. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1097. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1098. # Each list of plots corresponds to a separate file
  1099. message("Loading and filtering data for experiment: ", exp_name)
  1100. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1101. update_gene_names(args$sgd_gene_list) %>%
  1102. as_tibble()
  1103. l_vs_k_plot_configs <- list(
  1104. plots = list(
  1105. list(
  1106. df = df,
  1107. x_var = "L",
  1108. y_var = "K",
  1109. plot_type = "scatter",
  1110. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1111. title = "Raw L vs K before quality control",
  1112. color_var = "conc_num_factor_factor",
  1113. error_bar = FALSE,
  1114. legend_position = "right"
  1115. )
  1116. )
  1117. )
  1118. message("Calculating summary statistics before quality control")
  1119. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1120. df = df,
  1121. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1122. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1123. frequency_delta_bg_plot_configs <- list(
  1124. plots = list(
  1125. list(
  1126. df = df_stats,
  1127. x_var = "delta_bg",
  1128. y_var = NULL,
  1129. plot_type = "density",
  1130. title = "Density plot for Delta Background by [Drug] (All Data)",
  1131. color_var = "conc_num_factor_factor",
  1132. x_label = "Delta Background",
  1133. y_label = "Density",
  1134. error_bar = FALSE,
  1135. legend_position = "right"
  1136. ),
  1137. list(
  1138. df = df_stats,
  1139. x_var = "delta_bg",
  1140. y_var = NULL,
  1141. plot_type = "bar",
  1142. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1143. color_var = "conc_num_factor_factor",
  1144. x_label = "Delta Background",
  1145. y_label = "Count",
  1146. error_bar = FALSE,
  1147. legend_position = "right"
  1148. )
  1149. )
  1150. )
  1151. message("Filtering rows above delta background tolerance for plotting")
  1152. df_above_tolerance <- df %>% filter(DB == 1)
  1153. above_threshold_plot_configs <- list(
  1154. plots = list(
  1155. list(
  1156. df = df_above_tolerance,
  1157. x_var = "L",
  1158. y_var = "K",
  1159. plot_type = "scatter",
  1160. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1161. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1162. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1163. color_var = "conc_num_factor_factor",
  1164. position = "jitter",
  1165. annotations = list(
  1166. list(
  1167. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1168. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1169. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1170. )
  1171. ),
  1172. error_bar = FALSE,
  1173. legend_position = "right"
  1174. )
  1175. )
  1176. )
  1177. message("Setting rows above delta background tolerance to NA")
  1178. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1179. message("Calculating summary statistics across all strains")
  1180. ss <- calculate_summary_stats(
  1181. df = df_na,
  1182. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1183. group_vars = c("conc_num", "conc_num_factor_factor"))
  1184. df_na_ss <- ss$summary_stats
  1185. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1186. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1187. # This can help bypass missing values ggplot warnings during testing
  1188. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1189. message("Calculating summary statistics excluding zero values")
  1190. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1191. df_no_zeros_stats <- calculate_summary_stats(
  1192. df = df_no_zeros,
  1193. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1194. group_vars = c("conc_num", "conc_num_factor_factor")
  1195. )$df_with_stats
  1196. message("Filtering by 2SD of K")
  1197. df_na_within_2sd_k <- df_na_stats %>%
  1198. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1199. df_na_outside_2sd_k <- df_na_stats %>%
  1200. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1201. message("Calculating summary statistics for L within 2SD of K")
  1202. # TODO We're omitting the original z_max calculation, not sure if needed?
  1203. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1204. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1205. write.csv(ss,
  1206. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1207. row.names = FALSE)
  1208. message("Calculating summary statistics for L outside 2SD of K")
  1209. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1210. group_vars = c("conc_num", "conc_num_factor_factor"))
  1211. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1212. write.csv(ss$summary_stats,
  1213. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1214. row.names = FALSE)
  1215. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1216. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1217. df_before = df_stats,
  1218. df_after = df_na_stats_filtered
  1219. )
  1220. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1221. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1222. df_before = df_stats,
  1223. df_after = df_na_stats_filtered,
  1224. plot_type = "box"
  1225. )
  1226. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1227. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1228. stages = c("after"), # Only after QC
  1229. df_after = df_no_zeros_stats
  1230. )
  1231. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1232. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1233. stages = c("after"), # Only after QC
  1234. df_after = df_no_zeros_stats,
  1235. plot_type = "box"
  1236. )
  1237. l_outside_2sd_k_plot_configs <- list(
  1238. plots = list(
  1239. list(
  1240. df = df_na_l_outside_2sd_k_stats,
  1241. x_var = "L",
  1242. y_var = "K",
  1243. plot_type = "scatter",
  1244. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1245. color_var = "conc_num_factor_factor",
  1246. position = "jitter",
  1247. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1248. annotations = list(
  1249. list(
  1250. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1251. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1252. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1253. )
  1254. ),
  1255. error_bar = FALSE,
  1256. legend_position = "right"
  1257. )
  1258. )
  1259. )
  1260. delta_bg_outside_2sd_k_plot_configs <- list(
  1261. plots = list(
  1262. list(
  1263. df = df_na_l_outside_2sd_k_stats,
  1264. x_var = "delta_bg",
  1265. x_label = "Delta Background",
  1266. y_var = "K",
  1267. plot_type = "scatter",
  1268. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1269. color_var = "conc_num_factor_factor",
  1270. position = "jitter",
  1271. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1272. annotations = list(
  1273. list(
  1274. x = 0.05,
  1275. y = 0.95,
  1276. hjust = 0,
  1277. vjust = 1,
  1278. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1279. size = 5
  1280. )
  1281. ),
  1282. error_bar = FALSE,
  1283. legend_position = "right"
  1284. )
  1285. )
  1286. )
  1287. message("Generating quality control plots in parallel")
  1288. # future::plan(future::multicore, workers = parallel::detectCores())
  1289. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1290. plot_configs <- list(
  1291. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1292. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1293. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1294. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1295. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1296. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1297. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1298. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1299. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1300. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1301. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1302. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1303. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1304. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1305. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1306. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1307. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1308. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1309. )
  1310. # Parallelize background and quality control plot generation
  1311. # furrr::future_map(plot_configs, function(config) {
  1312. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1313. # page_width = config$page_width, page_height = config$page_height)
  1314. # }, .options = furrr_options(seed = TRUE))
  1315. # Loop over background strains
  1316. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1317. # have to rename or group the output files by dir or something so they don't get clobbered
  1318. bg_strains <- c("YDL227C")
  1319. lapply(bg_strains, function(strain) {
  1320. message("Processing background strain: ", strain)
  1321. # Handle missing data by setting zero values to NA
  1322. # and then removing any rows with NA in L col
  1323. df_bg <- df_na %>%
  1324. filter(OrfRep == strain) %>%
  1325. mutate(
  1326. L = if_else(L == 0, NA, L),
  1327. K = if_else(K == 0, NA, K),
  1328. r = if_else(r == 0, NA, r),
  1329. AUC = if_else(AUC == 0, NA, AUC)
  1330. ) %>%
  1331. filter(!is.na(L))
  1332. message("Calculating background strain summary statistics")
  1333. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1334. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1335. summary_stats_bg <- ss_bg$summary_stats
  1336. df_bg_stats <- ss_bg$df_with_stats
  1337. write.csv(
  1338. summary_stats_bg,
  1339. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1340. row.names = FALSE)
  1341. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1342. df_reference <- df_na_stats %>% # formerly X2_RF
  1343. filter(OrfRep == strain) %>%
  1344. filter(!is.na(L)) %>%
  1345. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1346. mutate(
  1347. max_l_theoretical = max(max_L, na.rm = TRUE),
  1348. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1349. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1350. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1351. ungroup()
  1352. message("Calculating reference strain summary statistics")
  1353. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1354. df = df_reference,
  1355. variables = c("L", "K", "r", "AUC"),
  1356. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1357. )$df_with_stats
  1358. # Summarise statistics for error bars
  1359. df_reference_summary_stats <- df_reference_summary_stats %>%
  1360. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1361. mutate(
  1362. mean_mean_L = first(mean_L),
  1363. mean_sd_L = first(sd_L),
  1364. mean_mean_K = first(mean_K),
  1365. mean_sd_K = first(sd_K),
  1366. mean_mean_r = first(mean_r),
  1367. mean_sd_r = first(sd_r),
  1368. mean_mean_AUC = first(mean_AUC),
  1369. mean_sd_AUC = first(sd_AUC),
  1370. .groups = "drop"
  1371. )
  1372. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1373. df_reference_interaction_stats <- calculate_summary_stats(
  1374. df = df_reference,
  1375. variables = c("L", "K", "r", "AUC"),
  1376. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1377. )$df_with_stats
  1378. message("Calculating reference strain interaction scores")
  1379. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "num", "Drug"))
  1380. df_reference_calculations <- reference_results$calculations
  1381. df_reference_interactions <- reference_results$interactions
  1382. df_reference_interactions_joined <- reference_results$full_data
  1383. write.csv(df_reference_calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1384. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1385. message("Generating reference interaction plots")
  1386. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1387. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1388. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1389. df_deletion <- df_na_stats %>% # formerly X2
  1390. filter(OrfRep != strain) %>%
  1391. filter(!is.na(L)) %>%
  1392. group_by(OrfRep, Gene, conc_num) %>%
  1393. mutate(
  1394. max_l_theoretical = max(max_L, na.rm = TRUE),
  1395. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1396. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1397. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1398. ungroup()
  1399. message("Calculating deletion strain(s) interaction summary statistics")
  1400. df_deletion_stats <- calculate_summary_stats(
  1401. df = df_deletion,
  1402. variables = c("L", "K", "r", "AUC"),
  1403. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1404. )$df_with_stats
  1405. message("Calculating deletion strain(s) interactions scores")
  1406. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
  1407. df_calculations <- deletion_results$calculations
  1408. df_interactions <- deletion_results$interactions
  1409. df_interactions_joined <- deletion_results$full_data
  1410. write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1411. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1412. message("Generating deletion interaction plots")
  1413. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1414. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1415. message("Writing enhancer/suppressor csv files")
  1416. interaction_threshold <- 2 # TODO add to study config?
  1417. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1418. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1419. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1420. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1421. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1422. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1423. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1424. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1425. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1426. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1427. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1428. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1429. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1430. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1431. write.csv(enhancers_and_suppressors_L,
  1432. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1433. write.csv(enhancers_and_suppressors_K,
  1434. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1435. message("Writing linear model enhancer/suppressor csv files")
  1436. lm_interaction_threshold <- 2 # TODO add to study config?
  1437. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1438. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1439. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1440. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1441. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1442. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1443. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1444. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1445. message("Generating rank plots")
  1446. rank_plot_configs <- generate_rank_plot_configs(
  1447. df_interactions_joined,
  1448. is_lm = FALSE,
  1449. adjust = TRUE
  1450. )
  1451. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1452. page_width = 18, page_height = 12)
  1453. message("Generating ranked linear model plots")
  1454. rank_lm_plot_configs <- generate_rank_plot_configs(
  1455. df_interactions_joined,
  1456. is_lm = TRUE,
  1457. adjust = TRUE
  1458. )
  1459. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1460. page_width = 18, page_height = 12)
  1461. message("Generating filtered ranked plots")
  1462. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1463. df_interactions_joined,
  1464. is_lm = FALSE,
  1465. adjust = FALSE,
  1466. overlap_color = TRUE
  1467. )
  1468. generate_and_save_plots(out_dir, "RankPlots_na_rm", rank_plot_filtered_configs,
  1469. page_width = 18, page_height = 12)
  1470. message("Generating filtered ranked linear model plots")
  1471. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1472. df_interactions_joined,
  1473. is_lm = TRUE,
  1474. adjust = FALSE,
  1475. overlap_color = TRUE
  1476. )
  1477. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1478. page_width = 18, page_height = 12)
  1479. message("Generating correlation curve parameter pair plots")
  1480. correlation_plot_configs <- generate_correlation_plot_configs(
  1481. df_interactions_joined
  1482. )
  1483. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1484. page_width = 10, page_height = 7)
  1485. })
  1486. })
  1487. }
  1488. main()