calculate_interaction_zscores.R 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # Calculate WT statistics from df_bg
  190. wt_stats <- df_bg %>%
  191. group_by(across(all_of(bg_group_vars))) %>%
  192. summarise(
  193. WT_L = mean(mean_L, na.rm = TRUE),
  194. WT_sd_L = mean(sd_L, na.rm = TRUE),
  195. WT_K = mean(mean_K, na.rm = TRUE),
  196. WT_sd_K = mean(sd_K, na.rm = TRUE),
  197. WT_r = mean(mean_r, na.rm = TRUE),
  198. WT_sd_r = mean(sd_r, na.rm = TRUE),
  199. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  200. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  201. .groups = "drop"
  202. )
  203. # Join WT statistics to df
  204. df <- df %>%
  205. left_join(wt_stats, by = bg_group_vars)
  206. # Compute mean values at zero concentration
  207. mean_zeroes <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. df <- df %>%
  218. left_join(mean_zeroes, by = c(group_vars))
  219. # Calculate Raw Shifts and Z Shifts
  220. df <- df %>%
  221. mutate(
  222. Raw_Shift_L = mean_L_zero - WT_L,
  223. Raw_Shift_K = mean_K_zero - WT_K,
  224. Raw_Shift_r = mean_r_zero - WT_r,
  225. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  226. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  227. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  228. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  229. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  230. )
  231. calculations <- df %>%
  232. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  233. mutate(
  234. NG_sum = sum(NG, na.rm = TRUE),
  235. DB_sum = sum(DB, na.rm = TRUE),
  236. SM_sum = sum(SM, na.rm = TRUE),
  237. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  238. # Expected values
  239. Exp_L = WT_L + Raw_Shift_L,
  240. Exp_K = WT_K + Raw_Shift_K,
  241. Exp_r = WT_r + Raw_Shift_r,
  242. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  243. # Deltas
  244. Delta_L = mean_L - Exp_L,
  245. Delta_K = mean_K - Exp_K,
  246. Delta_r = mean_r - Exp_r,
  247. Delta_AUC = mean_AUC - Exp_AUC,
  248. # Adjust deltas for NG and SM
  249. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  250. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  251. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  252. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  253. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  254. # Calculate Z-scores
  255. Zscore_L = Delta_L / WT_sd_L,
  256. Zscore_K = Delta_K / WT_sd_K,
  257. Zscore_r = Delta_r / WT_sd_r,
  258. Zscore_AUC = Delta_AUC / WT_sd_AUC
  259. ) %>%
  260. ungroup() %>% # Ungroup before group_modify
  261. group_by(across(all_of(group_vars))) %>%
  262. group_modify(~ {
  263. # Perform linear models only if there are enough unique conc_num_factor levels
  264. if (length(unique(.x$conc_num_factor)) > 1) {
  265. # Filter and calculate each lm() separately with individual checks for NAs
  266. lm_L <- if (!all(is.na(.x$Delta_L))) tryCatch(lm(Delta_L ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  267. lm_K <- if (!all(is.na(.x$Delta_K))) tryCatch(lm(Delta_K ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  268. lm_r <- if (!all(is.na(.x$Delta_r))) tryCatch(lm(Delta_r ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  269. lm_AUC <- if (!all(is.na(.x$Delta_AUC))) tryCatch(lm(Delta_AUC ~ conc_num_factor, data = .x), error = function(e) NULL) else NULL
  270. # Mutate results for each lm if it was successfully calculated, suppress warnings for perfect fits
  271. .x %>%
  272. mutate(
  273. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  274. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  275. R_Squared_L = if (!is.null(lm_L)) suppressWarnings(summary(lm_L)$r.squared) else NA,
  276. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  277. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  278. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  279. R_Squared_K = if (!is.null(lm_K)) suppressWarnings(summary(lm_K)$r.squared) else NA,
  280. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  281. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  282. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  283. R_Squared_r = if (!is.null(lm_r)) suppressWarnings(summary(lm_r)$r.squared) else NA,
  284. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  285. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  286. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  287. R_Squared_AUC = if (!is.null(lm_AUC)) suppressWarnings(summary(lm_AUC)$r.squared) else NA,
  288. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  289. )
  290. } else {
  291. # If not enough conc_num_factor levels, set lm-related values to NA
  292. .x %>%
  293. mutate(
  294. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  295. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  296. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  297. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  298. )
  299. }
  300. }) %>%
  301. ungroup()
  302. # For interaction plot error bars
  303. delta_means_sds <- calculations %>%
  304. group_by(across(all_of(group_vars))) %>%
  305. summarise(
  306. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  307. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  308. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  309. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  310. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  311. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  312. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  313. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  314. .groups = "drop"
  315. )
  316. calculations <- calculations %>%
  317. left_join(delta_means_sds, by = group_vars)
  318. # Summary statistics for lm scores
  319. calculations <- calculations %>%
  320. mutate(
  321. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  322. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  323. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  324. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  325. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  326. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  327. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  328. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  329. ) %>%
  330. # Calculate Z-lm scores
  331. mutate(
  332. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  333. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  334. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  335. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  336. )
  337. # Build summary stats (interactions)
  338. interactions <- calculations %>%
  339. group_by(across(all_of(group_vars))) %>%
  340. summarise(
  341. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  342. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  343. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  344. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  345. # Interaction Z-scores
  346. Z_lm_L = first(Z_lm_L),
  347. Z_lm_K = first(Z_lm_K),
  348. Z_lm_r = first(Z_lm_r),
  349. Z_lm_AUC = first(Z_lm_AUC),
  350. # Raw Shifts
  351. Raw_Shift_L = first(Raw_Shift_L),
  352. Raw_Shift_K = first(Raw_Shift_K),
  353. Raw_Shift_r = first(Raw_Shift_r),
  354. Raw_Shift_AUC = first(Raw_Shift_AUC),
  355. # Z Shifts
  356. Z_Shift_L = first(Z_Shift_L),
  357. Z_Shift_K = first(Z_Shift_K),
  358. Z_Shift_r = first(Z_Shift_r),
  359. Z_Shift_AUC = first(Z_Shift_AUC),
  360. # R Squared values
  361. R_Squared_L = first(R_Squared_L),
  362. R_Squared_K = first(R_Squared_K),
  363. R_Squared_r = first(R_Squared_r),
  364. R_Squared_AUC = first(R_Squared_AUC),
  365. # NG, DB, SM values
  366. NG = first(NG),
  367. DB = first(DB),
  368. SM = first(SM),
  369. .groups = "drop"
  370. )
  371. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  372. interactions <- interactions %>%
  373. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  374. mutate(
  375. Overlap = case_when(
  376. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  377. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  378. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  379. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  380. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  381. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  382. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  383. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  384. TRUE ~ "No Effect"
  385. ),
  386. # For correlations
  387. lm_R_squared_L = if (!all(is.na(Z_lm_L)) && !all(is.na(Avg_Zscore_L))) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  388. lm_R_squared_K = if (!all(is.na(Z_lm_K)) && !all(is.na(Avg_Zscore_K))) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  389. lm_R_squared_r = if (!all(is.na(Z_lm_r)) && !all(is.na(Avg_Zscore_r))) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  390. lm_R_squared_AUC = if (!all(is.na(Z_lm_AUC)) && !all(is.na(Avg_Zscore_AUC))) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  391. )
  392. # Creating the final calculations and interactions dataframes with only required columns for csv output
  393. calculations_df <- calculations %>%
  394. select(
  395. all_of(group_vars),
  396. conc_num, conc_num_factor, conc_num_factor_factor, N,
  397. mean_L, median_L, sd_L, se_L,
  398. mean_K, median_K, sd_K, se_K,
  399. mean_r, median_r, sd_r, se_r,
  400. mean_AUC, median_AUC, sd_AUC, se_AUC,
  401. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  402. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  403. WT_L, WT_K, WT_r, WT_AUC,
  404. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  405. Exp_L, Exp_K, Exp_r, Exp_AUC,
  406. Delta_L, Delta_K, Delta_r, Delta_AUC,
  407. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  408. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  409. )
  410. interactions_df <- interactions %>%
  411. select(
  412. all_of(group_vars),
  413. NG, DB, SM,
  414. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  415. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  416. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  417. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  418. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  419. Overlap
  420. )
  421. # Join calculations and interactions to avoid dimension mismatch
  422. calculations_no_overlap <- calculations %>%
  423. select(-any_of(c("DB", "NG", "SM",
  424. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  425. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  426. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC")))
  427. full_data <- calculations_no_overlap %>%
  428. left_join(interactions_df, by = group_vars)
  429. # Return final dataframes
  430. return(list(
  431. calculations = calculations_df,
  432. interactions = interactions_df,
  433. full_data = full_data
  434. ))
  435. }
  436. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  437. message("Generating ", filename, ".pdf and ", filename, ".html")
  438. # Check if we're dealing with multiple plot groups
  439. plot_groups <- if ("plots" %in% names(plot_configs)) {
  440. list(plot_configs) # Single group
  441. } else {
  442. plot_configs # Multiple groups
  443. }
  444. # Open the PDF device once for all plots
  445. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  446. # Loop through each plot group
  447. for (group in plot_groups) {
  448. static_plots <- list()
  449. plotly_plots <- list()
  450. # Retrieve grid layout if it exists, otherwise skip
  451. grid_layout <- group$grid_layout
  452. plots <- group$plots
  453. for (i in seq_along(plots)) {
  454. config <- plots[[i]]
  455. df <- config$df
  456. # Filter points outside of y-limits if specified
  457. if (!is.null(config$ylim_vals)) {
  458. out_of_bounds_df <- df %>%
  459. filter(
  460. is.na(.data[[config$y_var]]) |
  461. .data[[config$y_var]] < config$ylim_vals[1] |
  462. .data[[config$y_var]] > config$ylim_vals[2]
  463. )
  464. # Print rows being filtered out
  465. if (nrow(out_of_bounds_df) > 0) {
  466. message("Filtered: ", config$title, " using y-limits: [", config$ylim_vals[1], ", ", config$ylim_vals[2], "]")
  467. message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
  468. print(out_of_bounds_df)
  469. }
  470. df <- df %>%
  471. filter(
  472. !is.na(.data[[config$y_var]]) &
  473. .data[[config$y_var]] >= config$ylim_vals[1] &
  474. .data[[config$y_var]] <= config$ylim_vals[2]
  475. )
  476. }
  477. # Filter NAs if specified
  478. if (!is.null(config$na_rm) && config$na_rm) {
  479. df <- df %>%
  480. filter(!is.na(.data[[config$x_var]])) %>%
  481. filter(!is.na(.data[[config$y_var]]))
  482. }
  483. # Set up aes mapping based on plot type
  484. aes_mapping <- if (config$plot_type == "bar") {
  485. if (!is.null(config$color_var)) {
  486. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  487. } else {
  488. aes(x = .data[[config$x_var]])
  489. }
  490. } else if (config$plot_type == "density") {
  491. if (!is.null(config$color_var)) {
  492. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  493. } else {
  494. aes(x = .data[[config$x_var]])
  495. }
  496. } else {
  497. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  498. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  499. } else if (!is.null(config$y_var)) {
  500. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  501. } else {
  502. aes(x = .data[[config$x_var]])
  503. }
  504. }
  505. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  506. # Add appropriate plot layer or helper function based on plot type
  507. plot <- switch(config$plot_type,
  508. "scatter" = generate_scatter_plot(plot, config),
  509. "box" = generate_boxplot(plot, config),
  510. "density" = plot + geom_density(),
  511. "bar" = plot + geom_bar(),
  512. plot # default (unused)
  513. )
  514. # Add labels and title
  515. if (!is.null(config$title)) {
  516. plot <- plot + ggtitle(config$title)
  517. if (!is.null(config$title_size)) {
  518. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  519. }
  520. }
  521. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  522. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  523. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  524. # Add annotations if specified
  525. if (!is.null(config$annotations)) {
  526. for (annotation in config$annotations) {
  527. plot <- plot +
  528. annotate(
  529. "text",
  530. x = ifelse(is.null(annotation$x), 0, annotation$x),
  531. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  532. label = annotation$label,
  533. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  534. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  535. size = ifelse(is.null(annotation$size), 3, annotation$size),
  536. color = ifelse(is.null(annotation$color), "black", annotation$color)
  537. )
  538. }
  539. }
  540. # Add error bars if specified
  541. if (!is.null(config$error_bar) && config$error_bar) {
  542. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  543. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  544. config$error_bar_params$y_mean_col
  545. } else {
  546. paste0("mean_", config$y_var)
  547. }
  548. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  549. config$error_bar_params$y_sd_col
  550. } else {
  551. paste0("sd_", config$y_var)
  552. }
  553. # Use rlang to handle custom error bar calculations
  554. if (!is.null(config$error_bar_params$custom_error_bar)) {
  555. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  556. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  557. plot <- plot + geom_errorbar(
  558. aes(
  559. x = .data[[config$x_var]],
  560. ymin = !!custom_ymin_expr,
  561. ymax = !!custom_ymax_expr
  562. ),
  563. color = config$error_bar_params$color,
  564. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  565. )
  566. } else {
  567. # If no custom error bar formula, use the default or dynamic ones
  568. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  569. plot <- plot + geom_errorbar(
  570. aes(
  571. x = .data[[config$x_var]],
  572. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  573. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  574. color = .data[[config$color_var]]
  575. ),
  576. linewidth = 0.1
  577. )
  578. } else {
  579. plot <- plot + geom_errorbar(
  580. aes(
  581. x = .data[[config$x_var]],
  582. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  583. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  584. ),
  585. color = config$error_bar_params$color,
  586. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  587. )
  588. }
  589. }
  590. # Add the center point if the option is provided
  591. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  592. if (!is.null(config$color_var) && is.null(config$error_bar_params$color)) {
  593. plot <- plot + geom_point(
  594. aes(
  595. x = .data[[config$x_var]],
  596. y = .data[[y_mean_col]],
  597. color = .data[[config$color_var]]
  598. ),
  599. shape = 16
  600. )
  601. } else {
  602. plot <- plot + geom_point(
  603. aes(
  604. x = .data[[config$x_var]],
  605. y = .data[[y_mean_col]]
  606. ),
  607. color = config$error_bar_params$color,
  608. shape = 16
  609. )
  610. }
  611. }
  612. }
  613. # Convert ggplot to plotly for interactive version
  614. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  615. # Store both static and interactive versions
  616. static_plots[[i]] <- plot
  617. plotly_plots[[i]] <- plotly_plot
  618. }
  619. # Print the plots in the current group to the PDF
  620. if (!is.null(grid_layout)) {
  621. # Set grid_ncol to 1 if not specified
  622. if (is.null(grid_layout$ncol)) {
  623. grid_layout$ncol <- 1
  624. }
  625. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  626. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  627. num_plots <- length(static_plots)
  628. nrow <- ceiling(num_plots / grid_layout$ncol)
  629. # message("No nrow provided, automatically using nrow = ", nrow)
  630. grid_layout$nrow <- nrow
  631. }
  632. total_spots <- grid_layout$nrow * grid_layout$ncol
  633. num_plots <- length(static_plots)
  634. # if (num_plots < total_spots) {
  635. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  636. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  637. # }
  638. grid.arrange(
  639. grobs = static_plots,
  640. ncol = grid_layout$ncol,
  641. nrow = grid_layout$nrow
  642. )
  643. } else {
  644. # Print individual plots on separate pages if no grid layout
  645. for (plot in static_plots) {
  646. print(plot)
  647. }
  648. }
  649. }
  650. # Close the PDF device after all plots are done
  651. dev.off()
  652. # Save HTML file with interactive plots if needed
  653. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  654. message("Saving combined HTML file: ", out_html_file)
  655. htmltools::save_html(
  656. htmltools::tagList(plotly_plots),
  657. file = out_html_file
  658. )
  659. }
  660. generate_scatter_plot <- function(plot, config) {
  661. # Define the points
  662. shape <- if (!is.null(config$shape)) config$shape else 3
  663. size <- if (!is.null(config$size)) config$size else 1.5
  664. position <-
  665. if (!is.null(config$position) && config$position == "jitter") {
  666. position_jitter(width = 0.4, height = 0.1)
  667. } else {
  668. "identity"
  669. }
  670. plot <- plot + geom_point(
  671. shape = shape,
  672. size = size,
  673. position = position
  674. )
  675. if (!is.null(config$cyan_points) && config$cyan_points) {
  676. plot <- plot + geom_point(
  677. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  678. color = "cyan",
  679. shape = 3,
  680. size = 0.5
  681. )
  682. }
  683. if (!is.null(config$gray_points) && config$gray_points) {
  684. plot <- plot + geom_point(shape = 3, color = "gray70", size = 1)
  685. }
  686. # Add linear regression line if specified
  687. if (!is.null(config$lm_line)) {
  688. plot <- plot +
  689. annotate(
  690. "segment",
  691. x = config$lm_line$x_min,
  692. xend = config$lm_line$x_max,
  693. y = config$lm_line$intercept + config$lm_line$slope * config$lm_line$x_min, # Calculate y for x_min
  694. yend = config$lm_line$intercept + config$lm_line$slope * config$lm_line$x_max, # Calculate y for x_max
  695. color = ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue"),
  696. linewidth = ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  697. )
  698. }
  699. # Add SD Bands if specified
  700. if (!is.null(config$sd_band)) {
  701. plot <- plot +
  702. annotate(
  703. "rect",
  704. xmin = -Inf, xmax = Inf,
  705. ymin = config$sd_band, ymax = Inf,
  706. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  707. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  708. ) +
  709. annotate(
  710. "rect",
  711. xmin = -Inf, xmax = Inf,
  712. ymin = -config$sd_band, ymax = -Inf,
  713. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  714. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  715. ) +
  716. geom_hline(
  717. yintercept = c(-config$sd_band, config$sd_band),
  718. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  719. )
  720. }
  721. # Add Rectangles if specified
  722. if (!is.null(config$rectangles)) {
  723. for (rect in config$rectangles) {
  724. plot <- plot + annotate(
  725. "rect",
  726. xmin = rect$xmin,
  727. xmax = rect$xmax,
  728. ymin = rect$ymin,
  729. ymax = rect$ymax,
  730. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  731. color = ifelse(is.null(rect$color), "black", rect$color),
  732. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  733. )
  734. }
  735. }
  736. # Customize X-axis if specified
  737. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  738. # Check if x_var is factor or character (for discrete x-axis)
  739. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  740. plot <- plot +
  741. scale_x_discrete(
  742. name = config$x_label,
  743. breaks = config$x_breaks,
  744. labels = config$x_labels
  745. )
  746. } else {
  747. plot <- plot +
  748. scale_x_continuous(
  749. name = config$x_label,
  750. breaks = config$x_breaks,
  751. labels = config$x_labels
  752. )
  753. }
  754. }
  755. # Set Y-axis limits if specified
  756. if (!is.null(config$ylim_vals)) {
  757. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  758. }
  759. return(plot)
  760. }
  761. generate_boxplot <- function(plot, config) {
  762. # Convert x_var to a factor within aes mapping
  763. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  764. # Customize X-axis if specified
  765. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  766. # Check if x_var is factor or character (for discrete x-axis)
  767. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  768. plot <- plot +
  769. scale_x_discrete(
  770. name = config$x_label,
  771. breaks = config$x_breaks,
  772. labels = config$x_labels
  773. )
  774. } else {
  775. plot <- plot +
  776. scale_x_continuous(
  777. name = config$x_label,
  778. breaks = config$x_breaks,
  779. labels = config$x_labels
  780. )
  781. }
  782. }
  783. return(plot)
  784. }
  785. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  786. plot_type = "scatter", stages = c("before", "after")) {
  787. plot_configs <- list()
  788. for (var in variables) {
  789. for (stage in stages) {
  790. df_plot <- if (stage == "before") df_before else df_after
  791. # Check for non-finite values in the y-variable
  792. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  793. # Adjust settings based on plot_type
  794. plot_config <- list(
  795. df = df_plot_filtered,
  796. x_var = "scan",
  797. y_var = var,
  798. plot_type = plot_type,
  799. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  800. color_var = "conc_num_factor_factor",
  801. size = 0.2,
  802. error_bar = (plot_type == "scatter"),
  803. legend_position = "bottom"
  804. )
  805. # Add config to plots list
  806. plot_configs <- append(plot_configs, list(plot_config))
  807. }
  808. }
  809. return(list(plots = plot_configs))
  810. }
  811. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  812. # Define the y-limits for the plots
  813. limits_map <- list(
  814. L = c(0, 130),
  815. K = c(-20, 160),
  816. r = c(0, 1),
  817. AUC = c(0, 12500)
  818. )
  819. stats_plot_configs <- list()
  820. stats_boxplot_configs <- list()
  821. delta_plot_configs <- list()
  822. # Overall statistics plots
  823. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  824. for (plot_type in c("scatter", "box")) {
  825. for (var in names(limits_map)) {
  826. y_limits <- limits_map[[var]]
  827. y_span <- y_limits[2] - y_limits[1]
  828. # Common plot configuration
  829. plot_config <- list(
  830. df = df_summary,
  831. plot_type = plot_type,
  832. x_var = "conc_num_factor_factor",
  833. y_var = var,
  834. shape = 16,
  835. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  836. coord_cartesian = y_limits,
  837. x_breaks = unique(df_summary$conc_num_factor_factor),
  838. x_labels = as.character(unique(df_summary$conc_num))
  839. )
  840. # Add specific configurations for scatter and box plots
  841. if (plot_type == "scatter") {
  842. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  843. plot_config$error_bar <- TRUE
  844. plot_config$error_bar_params <- list(
  845. color = "red",
  846. mean_point = TRUE,
  847. y_mean_col = paste0("mean_mean_", var),
  848. y_sd_col = paste0("mean_sd_", var)
  849. )
  850. plot_config$position <- "jitter"
  851. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  852. annotations <- list(
  853. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  854. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  855. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  856. )
  857. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  858. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  859. annotations <- append(annotations, list(
  860. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  861. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  862. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  863. ))
  864. }
  865. plot_config$annotations <- annotations
  866. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  867. } else if (plot_type == "box") {
  868. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  869. plot_config$position <- "dodge"
  870. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  871. }
  872. }
  873. }
  874. # Delta interaction plots
  875. delta_limits_map <- list(
  876. L = c(-60, 60),
  877. K = c(-60, 60),
  878. r = c(-0.6, 0.6),
  879. AUC = c(-6000, 6000)
  880. )
  881. # Select the data grouping by data type
  882. if (type == "reference") {
  883. group_vars <- c("OrfRep", "Gene", "num")
  884. } else if (type == "deletion") {
  885. group_vars <- c("OrfRep", "Gene")
  886. }
  887. grouped_data <- df_interactions %>%
  888. group_by(across(all_of(group_vars))) %>%
  889. group_split()
  890. for (group_data in grouped_data) {
  891. # Build the plot title
  892. OrfRep <- first(group_data$OrfRep)
  893. Gene <- first(group_data$Gene)
  894. if (type == "reference") {
  895. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  896. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  897. } else if (type == "deletion") {
  898. OrfRepTitle <- OrfRep
  899. }
  900. for (var in names(delta_limits_map)) {
  901. y_limits <- delta_limits_map[[var]]
  902. y_span <- y_limits[2] - y_limits[1]
  903. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  904. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  905. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  906. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  907. NG_value <- first(group_data$NG, default = 0)
  908. DB_value <- first(group_data$DB, default = 0)
  909. SM_value <- first(group_data$SM, default = 0)
  910. lm_intercept_col <- paste0("lm_intercept_", var)
  911. lm_slope_col <- paste0("lm_slope_", var)
  912. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  913. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  914. plot_config <- list(
  915. df = group_data,
  916. plot_type = "scatter",
  917. x_var = "conc_num_factor_factor",
  918. y_var = paste0("Delta_", var),
  919. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  920. shape = 16,
  921. title = paste(OrfRepTitle, Gene, sep = " "),
  922. title_size = rel(1.4),
  923. coord_cartesian = y_limits,
  924. annotations = list(
  925. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  926. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  927. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  928. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  929. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  930. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  931. ),
  932. error_bar = TRUE,
  933. error_bar_params = list(
  934. custom_error_bar = list(
  935. ymin = paste0("0 - 2 * WT_sd_", var),
  936. ymax = paste0("0 + 2 * WT_sd_", var)
  937. ),
  938. color = "gray70",
  939. linewidth = 0.5
  940. ),
  941. x_breaks = unique(group_data$conc_num_factor_factor),
  942. x_labels = as.character(unique(group_data$conc_num)),
  943. ylim_vals = y_limits,
  944. y_filter = FALSE,
  945. lm_line = list(
  946. intercept = lm_intercept_value,
  947. slope = lm_slope_value,
  948. color = "blue",
  949. linewidth = 0.8,
  950. x_min = min(as.numeric(group_data$conc_num_factor_factor)),
  951. x_max = max(as.numeric(group_data$conc_num_factor_factor))
  952. )
  953. )
  954. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  955. }
  956. }
  957. # Group delta plots in chunks of 12 per page
  958. chunk_size <- 12
  959. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  960. return(c(
  961. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  962. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  963. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  964. ))
  965. }
  966. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, na_rm = FALSE, overlap_color = FALSE) {
  967. sd_bands <- c(1, 2, 3)
  968. plot_configs <- list()
  969. variables <- c("L", "K")
  970. # Adjust (if necessary) and rank columns
  971. for (variable in variables) {
  972. if (adjust) {
  973. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  974. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  975. }
  976. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  977. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  978. }
  979. # Helper function to create a rank plot configuration
  980. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, na_rm, with_annotations = TRUE) {
  981. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  982. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  983. # Default plot config
  984. plot_config <- list(
  985. df = df,
  986. x_var = rank_var,
  987. y_var = zscore_var,
  988. x_label = "Rank",
  989. y_label = y_label,
  990. plot_type = "scatter",
  991. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  992. sd_band = sd_band,
  993. fill_positive = "#542788",
  994. fill_negative = "orange",
  995. alpha_positive = 0.3,
  996. alpha_negative = 0.3,
  997. shape = 3,
  998. size = 0.1,
  999. na_rm = na_rm,
  1000. legend_position = "none"
  1001. )
  1002. # Selectively add annotations
  1003. if (with_annotations) {
  1004. plot_config$annotations <- list(
  1005. list(
  1006. x = nrow(df) / 2,
  1007. y = 10,
  1008. label = paste("Deletion Enhancers =", num_enhancers)
  1009. ),
  1010. list(
  1011. x = nrow(df) / 2,
  1012. y = -10,
  1013. label = paste("Deletion Suppressors =", num_suppressors)
  1014. )
  1015. )
  1016. }
  1017. return(plot_config)
  1018. }
  1019. # Generate plots for each variable
  1020. for (variable in variables) {
  1021. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1022. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1023. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1024. # Loop through SD bands
  1025. for (sd_band in sd_bands) {
  1026. # Create plot with annotations
  1027. plot_configs[[length(plot_configs) + 1]] <-
  1028. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, na_rm, with_annotations = TRUE)
  1029. # Create plot without annotations
  1030. plot_configs[[length(plot_configs) + 1]] <-
  1031. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, na_rm, with_annotations = FALSE)
  1032. }
  1033. }
  1034. # Group delta plots in chunks of 6 per page
  1035. chunk_size <- 6
  1036. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1037. return(c(
  1038. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1039. ))
  1040. }
  1041. generate_correlation_plot_configs <- function(df) {
  1042. # Define relationships for different-variable correlations
  1043. relationships <- list(
  1044. list(x = "L", y = "K"),
  1045. list(x = "L", y = "r"),
  1046. list(x = "L", y = "AUC"),
  1047. list(x = "K", y = "r"),
  1048. list(x = "K", y = "AUC"),
  1049. list(x = "r", y = "AUC")
  1050. )
  1051. plot_configs <- list()
  1052. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1053. highlight_cyan_options <- c(FALSE, TRUE)
  1054. for (highlight_cyan in highlight_cyan_options) {
  1055. for (rel in relationships) {
  1056. # Extract relevant variable names for Z_lm values
  1057. x_var <- paste0("Z_lm_", rel$x)
  1058. y_var <- paste0("Z_lm_", rel$y)
  1059. # Access the correlation statistics from the correlation_stats list
  1060. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  1061. stats <- correlation_stats[[relationship_name]]
  1062. intercept <- stats$intercept
  1063. slope <- stats$slope
  1064. r_squared <- stats$r_squared
  1065. # Generate the label for the plot
  1066. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1067. # Construct plot config
  1068. plot_config <- list(
  1069. df = df,
  1070. x_var = x_var,
  1071. y_var = y_var,
  1072. plot_type = "scatter",
  1073. title = plot_label,
  1074. annotations = list(
  1075. list(
  1076. x = mean(df[[x_var]], na.rm = TRUE),
  1077. y = mean(df[[y_var]], na.rm = TRUE),
  1078. label = paste("R-squared =", round(r_squared, 3))
  1079. )
  1080. ),
  1081. lm_line = list(
  1082. intercept = intercept,
  1083. slope = slope,
  1084. color = "tomato3"
  1085. ),
  1086. shape = 3,
  1087. size = 0.5,
  1088. color_var = "Overlap",
  1089. cyan_points = highlight_cyan, # include cyan points or not based on the loop
  1090. gray_points = TRUE
  1091. )
  1092. plot_configs <- append(plot_configs, list(plot_config))
  1093. }
  1094. }
  1095. return(list(plots = plot_configs))
  1096. }
  1097. main <- function() {
  1098. lapply(names(args$experiments), function(exp_name) {
  1099. exp <- args$experiments[[exp_name]]
  1100. exp_path <- exp$path
  1101. exp_sd <- exp$sd
  1102. out_dir <- file.path(exp_path, "zscores")
  1103. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1104. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1105. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1106. # Each list of plots corresponds to a separate file
  1107. message("Loading and filtering data for experiment: ", exp_name)
  1108. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1109. update_gene_names(args$sgd_gene_list) %>%
  1110. as_tibble()
  1111. l_vs_k_plot_configs <- list(
  1112. plots = list(
  1113. list(
  1114. df = df,
  1115. x_var = "L",
  1116. y_var = "K",
  1117. plot_type = "scatter",
  1118. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1119. title = "Raw L vs K before quality control",
  1120. color_var = "conc_num_factor_factor",
  1121. error_bar = FALSE,
  1122. legend_position = "right"
  1123. )
  1124. )
  1125. )
  1126. message("Calculating summary statistics before quality control")
  1127. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1128. df = df,
  1129. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1130. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1131. frequency_delta_bg_plot_configs <- list(
  1132. plots = list(
  1133. list(
  1134. df = df_stats,
  1135. x_var = "delta_bg",
  1136. y_var = NULL,
  1137. plot_type = "density",
  1138. title = "Density plot for Delta Background by [Drug] (All Data)",
  1139. color_var = "conc_num_factor_factor",
  1140. x_label = "Delta Background",
  1141. y_label = "Density",
  1142. error_bar = FALSE,
  1143. legend_position = "right"
  1144. ),
  1145. list(
  1146. df = df_stats,
  1147. x_var = "delta_bg",
  1148. y_var = NULL,
  1149. plot_type = "bar",
  1150. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1151. color_var = "conc_num_factor_factor",
  1152. x_label = "Delta Background",
  1153. y_label = "Count",
  1154. error_bar = FALSE,
  1155. legend_position = "right"
  1156. )
  1157. )
  1158. )
  1159. message("Filtering rows above delta background tolerance for plotting")
  1160. df_above_tolerance <- df %>% filter(DB == 1)
  1161. above_threshold_plot_configs <- list(
  1162. plots = list(
  1163. list(
  1164. df = df_above_tolerance,
  1165. x_var = "L",
  1166. y_var = "K",
  1167. plot_type = "scatter",
  1168. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1169. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1170. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1171. color_var = "conc_num_factor_factor",
  1172. position = "jitter",
  1173. annotations = list(
  1174. list(
  1175. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1176. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1177. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1178. )
  1179. ),
  1180. error_bar = FALSE,
  1181. legend_position = "right"
  1182. )
  1183. )
  1184. )
  1185. message("Setting rows above delta background tolerance to NA")
  1186. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1187. message("Calculating summary statistics across all strains")
  1188. ss <- calculate_summary_stats(
  1189. df = df_na,
  1190. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1191. group_vars = c("conc_num", "conc_num_factor_factor"))
  1192. df_na_ss <- ss$summary_stats
  1193. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1194. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1195. # This can help bypass missing values ggplot warnings during testing
  1196. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1197. message("Calculating summary statistics excluding zero values")
  1198. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1199. df_no_zeros_stats <- calculate_summary_stats(
  1200. df = df_no_zeros,
  1201. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1202. group_vars = c("conc_num", "conc_num_factor_factor")
  1203. )$df_with_stats
  1204. message("Filtering by 2SD of K")
  1205. df_na_within_2sd_k <- df_na_stats %>%
  1206. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1207. df_na_outside_2sd_k <- df_na_stats %>%
  1208. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1209. message("Calculating summary statistics for L within 2SD of K")
  1210. # TODO We're omitting the original z_max calculation, not sure if needed?
  1211. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1212. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1213. write.csv(ss,
  1214. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1215. row.names = FALSE)
  1216. message("Calculating summary statistics for L outside 2SD of K")
  1217. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1218. group_vars = c("conc_num", "conc_num_factor_factor"))
  1219. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1220. write.csv(ss$summary_stats,
  1221. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1222. row.names = FALSE)
  1223. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1224. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1225. df_before = df_stats,
  1226. df_after = df_na_stats_filtered
  1227. )
  1228. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1229. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1230. df_before = df_stats,
  1231. df_after = df_na_stats_filtered,
  1232. plot_type = "box"
  1233. )
  1234. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1235. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1236. stages = c("after"), # Only after QC
  1237. df_after = df_no_zeros_stats
  1238. )
  1239. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1240. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1241. stages = c("after"), # Only after QC
  1242. df_after = df_no_zeros_stats,
  1243. plot_type = "box"
  1244. )
  1245. l_outside_2sd_k_plot_configs <- list(
  1246. plots = list(
  1247. list(
  1248. df = df_na_l_outside_2sd_k_stats,
  1249. x_var = "L",
  1250. y_var = "K",
  1251. plot_type = "scatter",
  1252. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1253. color_var = "conc_num_factor_factor",
  1254. position = "jitter",
  1255. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1256. annotations = list(
  1257. list(
  1258. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1259. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1260. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1261. )
  1262. ),
  1263. error_bar = FALSE,
  1264. legend_position = "right"
  1265. )
  1266. )
  1267. )
  1268. delta_bg_outside_2sd_k_plot_configs <- list(
  1269. plots = list(
  1270. list(
  1271. df = df_na_l_outside_2sd_k_stats,
  1272. x_var = "delta_bg",
  1273. x_label = "Delta Background",
  1274. y_var = "K",
  1275. plot_type = "scatter",
  1276. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1277. color_var = "conc_num_factor_factor",
  1278. position = "jitter",
  1279. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1280. annotations = list(
  1281. list(
  1282. x = 0.05,
  1283. y = 0.95,
  1284. hjust = 0,
  1285. vjust = 1,
  1286. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1287. size = 5
  1288. )
  1289. ),
  1290. error_bar = FALSE,
  1291. legend_position = "right"
  1292. )
  1293. )
  1294. )
  1295. message("Generating quality control plots in parallel")
  1296. # future::plan(future::multicore, workers = parallel::detectCores())
  1297. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1298. plot_configs <- list(
  1299. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1300. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1301. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1302. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1303. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1304. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1305. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1306. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1307. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1308. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1309. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1310. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1311. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1312. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1313. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1314. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1315. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1316. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1317. )
  1318. # Parallelize background and quality control plot generation
  1319. # furrr::future_map(plot_configs, function(config) {
  1320. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1321. # page_width = config$page_width, page_height = config$page_height)
  1322. # }, .options = furrr_options(seed = TRUE))
  1323. # Loop over background strains
  1324. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1325. # have to rename or group the output files by dir or something so they don't get clobbered
  1326. bg_strains <- c("YDL227C")
  1327. lapply(bg_strains, function(strain) {
  1328. message("Processing background strain: ", strain)
  1329. # Handle missing data by setting zero values to NA
  1330. # and then removing any rows with NA in L col
  1331. df_bg <- df_na %>%
  1332. filter(OrfRep == strain) %>%
  1333. mutate(
  1334. L = if_else(L == 0, NA, L),
  1335. K = if_else(K == 0, NA, K),
  1336. r = if_else(r == 0, NA, r),
  1337. AUC = if_else(AUC == 0, NA, AUC)
  1338. ) %>%
  1339. filter(!is.na(L))
  1340. message("Calculating background strain summary statistics")
  1341. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1342. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1343. summary_stats_bg <- ss_bg$summary_stats
  1344. df_bg_stats <- ss_bg$df_with_stats
  1345. write.csv(
  1346. summary_stats_bg,
  1347. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1348. row.names = FALSE)
  1349. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1350. df_reference <- df_na_stats %>% # formerly X2_RF
  1351. filter(OrfRep == strain) %>%
  1352. filter(!is.na(L)) %>%
  1353. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1354. mutate(
  1355. max_l_theoretical = max(max_L, na.rm = TRUE),
  1356. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1357. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1358. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1359. ungroup()
  1360. message("Calculating reference strain summary statistics")
  1361. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1362. df = df_reference,
  1363. variables = c("L", "K", "r", "AUC"),
  1364. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1365. )$df_with_stats
  1366. # Summarise statistics for error bars
  1367. df_reference_summary_stats <- df_reference_summary_stats %>%
  1368. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1369. mutate(
  1370. mean_mean_L = first(mean_L),
  1371. mean_sd_L = first(sd_L),
  1372. mean_mean_K = first(mean_K),
  1373. mean_sd_K = first(sd_K),
  1374. mean_mean_r = first(mean_r),
  1375. mean_sd_r = first(sd_r),
  1376. mean_mean_AUC = first(mean_AUC),
  1377. mean_sd_AUC = first(sd_AUC),
  1378. .groups = "drop"
  1379. )
  1380. # message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1381. # df_reference_interaction_stats <- calculate_summary_stats(
  1382. # df = df_reference,
  1383. # variables = c("L", "K", "r", "AUC"),
  1384. # group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1385. # )$df_with_stats
  1386. # # message("Calculating reference strain interaction scores")
  1387. # reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1388. # df_reference_interactions_joined <- reference_results$full_data
  1389. # write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1390. # write.csv(reference_results$interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1391. # # message("Generating reference interaction plots")
  1392. # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1393. # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1394. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1395. df_deletion <- df_na_stats %>% # formerly X2
  1396. filter(OrfRep != strain) %>%
  1397. filter(!is.na(L)) %>%
  1398. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1399. mutate(
  1400. max_l_theoretical = max(max_L, na.rm = TRUE),
  1401. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1402. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1403. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1404. ungroup()
  1405. message("Calculating deletion strain(s) interaction summary statistics")
  1406. df_deletion_stats <- calculate_summary_stats(
  1407. df = df_deletion,
  1408. variables = c("L", "K", "r", "AUC"),
  1409. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1410. )$df_with_stats
  1411. message("Calculating deletion strain(s) interactions scores")
  1412. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1413. df_interactions <- deletion_results$interactions
  1414. df_interactions_joined <- deletion_results$full_data
  1415. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1416. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1417. # message("Generating deletion interaction plots")
  1418. # deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1419. # generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1420. message("Writing enhancer/suppressor csv files")
  1421. interaction_threshold <- 2 # TODO add to study config?
  1422. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1423. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1424. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1425. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1426. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1427. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1428. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1429. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1430. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1431. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1432. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1433. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1434. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1435. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1436. write.csv(enhancers_and_suppressors_L,
  1437. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1438. write.csv(enhancers_and_suppressors_K,
  1439. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1440. message("Writing linear model enhancer/suppressor csv files")
  1441. lm_interaction_threshold <- 2 # TODO add to study config?
  1442. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1443. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1444. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1445. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1446. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1447. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1448. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1449. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1450. message("Generating rank plots")
  1451. rank_plot_configs <- generate_rank_plot_configs(
  1452. df_interactions,
  1453. is_lm = FALSE,
  1454. adjust = TRUE
  1455. )
  1456. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1457. page_width = 18, page_height = 12)
  1458. message("Generating ranked linear model plots")
  1459. rank_lm_plot_configs <- generate_rank_plot_configs(
  1460. df_interactions,
  1461. is_lm = TRUE,
  1462. adjust = TRUE
  1463. )
  1464. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1465. page_width = 18, page_height = 12)
  1466. message("Generating overlapped ranked plots")
  1467. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1468. df_interactions,
  1469. is_lm = FALSE,
  1470. adjust = FALSE,
  1471. na_rm = TRUE,
  1472. overlap_color = TRUE
  1473. )
  1474. generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1475. page_width = 18, page_height = 12)
  1476. message("Generating overlapped ranked linear model plots")
  1477. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1478. df_interactions,
  1479. is_lm = TRUE,
  1480. adjust = FALSE,
  1481. na_rm = TRUE,
  1482. overlap_color = TRUE
  1483. )
  1484. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1485. page_width = 18, page_height = 12)
  1486. message("Generating correlation curve parameter pair plots")
  1487. correlation_plot_configs <- generate_correlation_plot_configs(
  1488. df_interactions
  1489. )
  1490. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1491. page_width = 10, page_height = 7)
  1492. })
  1493. })
  1494. }
  1495. main()