calculate_interaction_zscores.R 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("gridExtra")
  11. library("future")
  12. library("furrr")
  13. library("purrr")
  14. })
  15. # These parallelization libraries are very noisy
  16. suppressPackageStartupMessages({
  17. library("future")
  18. library("furrr")
  19. library("purrr")
  20. })
  21. options(warn = 2)
  22. # Constants for configuration
  23. plot_width <- 14
  24. plot_height <- 9
  25. base_size <- 14
  26. parse_arguments <- function() {
  27. args <- if (interactive()) {
  28. c(
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  31. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  32. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  33. "Experiment 1: Doxo versus HLD",
  34. 3,
  35. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  36. "Experiment 2: HLD versus Doxo",
  37. 3
  38. )
  39. } else {
  40. commandArgs(trailingOnly = TRUE)
  41. }
  42. out_dir <- normalizePath(args[1], mustWork = FALSE)
  43. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  44. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  45. # The remaining arguments should be in groups of 3
  46. exp_args <- args[-(1:3)]
  47. if (length(exp_args) %% 3 != 0) {
  48. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  49. }
  50. # Extract the experiments into a list
  51. experiments <- list()
  52. for (i in seq(1, length(exp_args), by = 3)) {
  53. exp_name <- exp_args[i + 1]
  54. experiments[[exp_name]] <- list(
  55. path = normalizePath(exp_args[i], mustWork = FALSE),
  56. sd = as.numeric(exp_args[i + 2])
  57. )
  58. }
  59. # Extract the trailing number from each path
  60. trailing_numbers <- sapply(experiments, function(x) {
  61. path <- x$path
  62. nums <- gsub("[^0-9]", "", basename(path))
  63. as.integer(nums)
  64. })
  65. # Sort the experiments based on the trailing numbers
  66. sorted_experiments <- experiments[order(trailing_numbers)]
  67. list(
  68. out_dir = out_dir,
  69. sgd_gene_list = sgd_gene_list,
  70. easy_results_file = easy_results_file,
  71. experiments = sorted_experiments
  72. )
  73. }
  74. args <- parse_arguments()
  75. # Should we keep output in exp dirs or combine in the study output dir?
  76. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  77. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  78. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  79. # Ensure that legend_position has a valid value or default to "none"
  80. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  81. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  82. theme_foundation %+replace%
  83. theme(
  84. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  85. text = element_text(),
  86. panel.background = element_blank(),
  87. plot.background = element_blank(),
  88. panel.border = element_blank(),
  89. axis.title = element_text(face = "bold", size = rel(1.4)),
  90. axis.title.y = element_text(angle = 90, vjust = 2),
  91. axis.text = element_text(size = rel(1.2)),
  92. axis.line = element_line(colour = "black"),
  93. panel.grid.major = element_line(colour = "#f0f0f0"),
  94. panel.grid.minor = element_blank(),
  95. legend.key = element_rect(colour = NA),
  96. legend.position = legend_position,
  97. legend.direction =
  98. if (legend_position == "right") {
  99. "vertical"
  100. } else if (legend_position == "bottom") {
  101. "horizontal"
  102. } else {
  103. NULL # No legend direction if position is "none" or other values
  104. },
  105. legend.spacing = unit(0, "cm"),
  106. legend.title = element_text(face = "italic", size = rel(1.3)),
  107. legend.text = element_text(size = rel(1.2)),
  108. plot.margin = unit(c(10, 5, 5, 5), "mm")
  109. )
  110. }
  111. scale_fill_publication <- function(...) {
  112. discrete_scale("fill", "Publication", manual_pal(values = c(
  113. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  114. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  115. )), ...)
  116. }
  117. scale_colour_publication <- function(...) {
  118. discrete_scale("colour", "Publication", manual_pal(values = c(
  119. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  120. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  121. )), ...)
  122. }
  123. # Load the initial dataframe from the easy_results_file
  124. load_and_filter_data <- function(easy_results_file, sd = 3) {
  125. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  126. df <- df %>%
  127. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  128. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  129. # Rename columns
  130. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  131. mutate(
  132. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  133. delta_bg = last_bg - first_bg,
  134. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  135. NG = if_else(L == 0 & !is.na(L), 1, 0),
  136. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  137. SM = 0,
  138. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  139. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  140. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  141. conc_num_factor_factor = as.factor(conc_num)
  142. )
  143. # Set the max concentration across the whole dataframe
  144. df <- df %>%
  145. mutate(max_conc = max(df$conc_num_factor, na.rm = TRUE))
  146. return(df)
  147. }
  148. # Update Gene names using the SGD gene list
  149. update_gene_names <- function(df, sgd_gene_list) {
  150. # Load SGD gene list
  151. genes <- read.delim(file = sgd_gene_list,
  152. quote = "", header = FALSE,
  153. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  154. # Create a named vector for mapping ORF to GeneName
  155. gene_map <- setNames(genes$V5, genes$V4)
  156. # Vectorized match to find the GeneName from gene_map
  157. mapped_genes <- gene_map[df$ORF]
  158. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  159. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  160. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  161. df <- df %>%
  162. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  163. return(df)
  164. }
  165. calculate_summary_stats <- function(df, variables, group_vars) {
  166. summary_stats <- df %>%
  167. group_by(across(all_of(group_vars))) %>%
  168. summarise(
  169. N = n(),
  170. across(all_of(variables),
  171. list(
  172. mean = ~ mean(.x, na.rm = TRUE),
  173. median = ~ median(.x, na.rm = TRUE),
  174. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  175. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  176. sd = ~ sd(.x, na.rm = TRUE),
  177. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  178. ),
  179. .names = "{.fn}_{.col}"
  180. ),
  181. .groups = "drop"
  182. )
  183. # Create a cleaned version of df that doesn't overlap with summary_stats
  184. cleaned_df <- df %>%
  185. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  186. df_joined <- left_join(cleaned_df, summary_stats, by = group_vars)
  187. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  188. }
  189. calculate_interaction_scores <- function(df, df_bg, group_vars, max_conc, overlap_threshold = 2) {
  190. # Include background statistics per concentration
  191. bg_stats <- df_bg %>%
  192. group_by(conc_num, conc_num_factor) %>%
  193. summarise(
  194. WT_L = first(mean_L),
  195. WT_K = first(mean_K),
  196. WT_r = first(mean_r),
  197. WT_AUC = first(mean_AUC),
  198. WT_sd_L = first(sd_L),
  199. WT_sd_K = first(sd_K),
  200. WT_sd_r = first(sd_r),
  201. WT_sd_AUC = first(sd_AUC),
  202. .groups = "drop"
  203. )
  204. # Calculate total number of concentrations
  205. total_conc_num <- length(unique(df$conc_num))
  206. # Join background statistics to df
  207. calculations <- df %>%
  208. left_join(bg_stats, by = c("conc_num", "conc_num_factor"))
  209. # Perform calculations
  210. calculations <- calculations %>%
  211. group_by(across(all_of(group_vars))) %>%
  212. mutate(
  213. N = n(),
  214. NG = sum(NG, na.rm = TRUE),
  215. DB = sum(DB, na.rm = TRUE),
  216. SM = sum(SM, na.rm = TRUE),
  217. num_non_removed_concs = n_distinct(conc_num[DB != 1]),
  218. # Raw shifts
  219. Raw_Shift_L = mean_L - WT_L,
  220. Raw_Shift_K = mean_K - WT_K,
  221. Raw_Shift_r = mean_r - WT_r,
  222. Raw_Shift_AUC = mean_AUC - WT_AUC,
  223. # Z shifts
  224. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  225. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  226. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  227. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC,
  228. # Expected values
  229. Exp_L = WT_L + Raw_Shift_L,
  230. Exp_K = WT_K + Raw_Shift_K,
  231. Exp_r = WT_r + Raw_Shift_r,
  232. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  233. # Deltas
  234. Delta_L = mean_L - Exp_L,
  235. Delta_K = mean_K - Exp_K,
  236. Delta_r = mean_r - Exp_r,
  237. Delta_AUC = mean_AUC - Exp_AUC,
  238. # Adjust Deltas for NG and SM
  239. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  240. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  241. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  242. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  243. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  244. # Z-scores
  245. Zscore_L = Delta_L / WT_sd_L,
  246. Zscore_K = Delta_K / WT_sd_K,
  247. Zscore_r = Delta_r / WT_sd_r,
  248. Zscore_AUC = Delta_AUC / WT_sd_AUC
  249. ) %>%
  250. ungroup()
  251. # Fit linear models within each group
  252. calculations <- calculations %>%
  253. group_by(across(all_of(group_vars))) %>%
  254. group_modify(~ {
  255. data <- .x
  256. # Fit linear models
  257. lm_L <- lm(Delta_L ~ conc_num_factor, data = data)
  258. lm_K <- lm(Delta_K ~ conc_num_factor, data = data)
  259. lm_r <- lm(Delta_r ~ conc_num_factor, data = data)
  260. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = data)
  261. data <- data %>%
  262. mutate(
  263. lm_intercept_L = coef(lm_L)[1],
  264. lm_slope_L = coef(lm_L)[2],
  265. R_Squared_L = summary(lm_L)$r.squared,
  266. lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
  267. # Repeat for K, r, and AUC
  268. lm_intercept_K = coef(lm_K)[1],
  269. lm_slope_K = coef(lm_K)[2],
  270. R_Squared_K = summary(lm_K)$r.squared,
  271. lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
  272. lm_intercept_r = coef(lm_r)[1],
  273. lm_slope_r = coef(lm_r)[2],
  274. R_Squared_r = summary(lm_r)$r.squared,
  275. lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
  276. lm_intercept_AUC = coef(lm_AUC)[1],
  277. lm_slope_AUC = coef(lm_AUC)[2],
  278. R_Squared_AUC = summary(lm_AUC)$r.squared,
  279. lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
  280. )
  281. return(data)
  282. }) %>%
  283. ungroup()
  284. # Compute lm means and sds across all data without grouping
  285. lm_means_sds <- calculations %>%
  286. summarise(
  287. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  288. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  289. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  290. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  291. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  292. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  293. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  294. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  295. )
  296. # Apply global lm means and sds to calculate Z_lm_*
  297. calculations <- calculations %>%
  298. mutate(
  299. Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
  300. Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
  301. Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
  302. Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
  303. )
  304. # Build interactions data frame
  305. interactions <- calculations %>%
  306. group_by(across(all_of(group_vars))) %>%
  307. summarise(
  308. Avg_Zscore_L = mean(Zscore_L, na.rm = TRUE),
  309. Avg_Zscore_K = mean(Zscore_K, na.rm = TRUE),
  310. Avg_Zscore_r = mean(Zscore_r, na.rm = TRUE),
  311. Avg_Zscore_AUC = mean(Zscore_AUC, na.rm = TRUE),
  312. # Interaction Z-scores
  313. Z_lm_L = first(Z_lm_L),
  314. Z_lm_K = first(Z_lm_K),
  315. Z_lm_r = first(Z_lm_r),
  316. Z_lm_AUC = first(Z_lm_AUC),
  317. # Raw Shifts
  318. Raw_Shift_L = first(Raw_Shift_L),
  319. Raw_Shift_K = first(Raw_Shift_K),
  320. Raw_Shift_r = first(Raw_Shift_r),
  321. Raw_Shift_AUC = first(Raw_Shift_AUC),
  322. # Z Shifts
  323. Z_Shift_L = first(Z_Shift_L),
  324. Z_Shift_K = first(Z_Shift_K),
  325. Z_Shift_r = first(Z_Shift_r),
  326. Z_Shift_AUC = first(Z_Shift_AUC),
  327. # NG, DB, SM values
  328. NG = first(NG),
  329. DB = first(DB),
  330. SM = first(SM),
  331. # R Squared values
  332. R_Squared_L = first(R_Squared_L),
  333. R_Squared_K = first(R_Squared_K),
  334. R_Squared_r = first(R_Squared_r),
  335. R_Squared_AUC = first(R_Squared_AUC),
  336. .groups = "drop"
  337. )
  338. # Create the final calculations and interactions dataframes with required columns
  339. calculations_df <- calculations %>%
  340. select(
  341. all_of(group_vars),
  342. conc_num, conc_num_factor, conc_num_factor_factor,
  343. N, NG, DB, SM,
  344. mean_L, mean_K, mean_r, mean_AUC,
  345. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  346. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  347. WT_L, WT_K, WT_r, WT_AUC,
  348. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  349. Exp_L, Exp_K, Exp_r, Exp_AUC,
  350. Delta_L, Delta_K, Delta_r, Delta_AUC,
  351. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  352. )
  353. interactions_df <- interactions %>%
  354. select(
  355. all_of(group_vars),
  356. NG, DB, SM,
  357. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  358. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  359. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  360. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  361. R_Squared_L, R_Squared_K, R_Squared_r, R_Squared_AUC
  362. )
  363. # Create full_data by joining calculations_df and interactions_df
  364. full_data <- calculations_df %>%
  365. left_join(interactions_df, by = group_vars, suffix = c("", "_interaction"))
  366. # Return the dataframes
  367. return(list(
  368. calculations = calculations_df,
  369. interactions = interactions_df,
  370. full_data = full_data
  371. ))
  372. }
  373. generate_and_save_plots <- function(out_dir, filename, plot_configs) {
  374. message("Generating ", filename, ".pdf and ", filename, ".html")
  375. # Check if we're dealing with multiple plot groups
  376. plot_groups <- if ("plots" %in% names(plot_configs)) {
  377. list(plot_configs) # Single group
  378. } else {
  379. plot_configs # Multiple groups
  380. }
  381. # Open the PDF device once for all plots
  382. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
  383. # Loop through each plot group
  384. for (group in plot_groups) {
  385. static_plots <- list()
  386. plotly_plots <- list()
  387. grid_layout <- group$grid_layout
  388. plots <- group$plots
  389. for (i in seq_along(plots)) {
  390. config <- plots[[i]]
  391. df <- config$df
  392. # Set up aes mapping based on plot type
  393. aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
  394. if (!is.null(config$color_var)) {
  395. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  396. } else {
  397. aes(x = .data[[config$x_var]])
  398. }
  399. } else {
  400. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  401. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  402. } else if (!is.null(config$y_var)) {
  403. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  404. } else {
  405. aes(x = .data[[config$x_var]])
  406. }
  407. }
  408. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  409. # Add appropriate plot layer based on plot type
  410. plot <- switch(config$plot_type,
  411. "scatter" = generate_scatter_plot(plot, config),
  412. "box" = generate_boxplot(plot, config),
  413. "density" = plot + geom_density(),
  414. "bar" = plot + geom_bar(),
  415. plot # default (unused)
  416. )
  417. # Add labels and title
  418. if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
  419. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  420. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  421. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  422. # Add error bars if specified
  423. if (!is.null(config$error_bar) && config$error_bar) {
  424. error_bar_color <- if (!is.null(config$error_bar_params$color)) {
  425. config$error_bar_params$color
  426. } else {
  427. "red"
  428. }
  429. y_mean_prefix <- if (!is.null(config$error_bar_params$y_mean_prefix)) {
  430. config$error_bar_params$y_mean_prefix
  431. } else {
  432. "mean_"
  433. }
  434. y_mean_col <- paste0(y_mean_prefix, config$y_var)
  435. # Dynamically set y_sd_col based on the provided prefix in error_bar_params
  436. y_sd_prefix <- if (!is.null(config$error_bar_params$y_sd_prefix)) {
  437. config$error_bar_params$y_sd_prefix
  438. } else {
  439. "sd_"
  440. }
  441. y_sd_col <- paste0(y_sd_prefix, config$y_var)
  442. if (!is.null(config$error_bar_params$center_point)) {
  443. plot <- plot + geom_point(aes(
  444. x = .data[[config$x_var]],
  445. y = first(.data[[y_mean_col]])),
  446. color = error_bar_color,
  447. shape = 16)
  448. }
  449. # Use error_bar_params if provided, otherwise calculate from mean and sd
  450. if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
  451. plot <- plot + geom_errorbar(aes(
  452. ymin = config$error_bar_params$ymin,
  453. ymax = config$error_bar_params$ymax),
  454. color = error_bar_color)
  455. } else {
  456. plot <- plot + geom_errorbar(aes(
  457. ymin = first(.data[[y_mean_col]]) - first(.data[[y_sd_col]]),
  458. ymax = first(.data[[y_mean_col]]) + first(.data[[y_sd_col]])),
  459. color = error_bar_color)
  460. }
  461. }
  462. # Convert ggplot to plotly for interactive version
  463. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  464. # Store both static and interactive versions
  465. static_plots[[i]] <- plot
  466. plotly_plots[[i]] <- plotly_plot
  467. }
  468. # Print the plots in the current group to the PDF
  469. if (is.null(grid_layout)) {
  470. # Print each plot individually on separate pages if no grid layout is specified
  471. for (plot in static_plots) {
  472. print(plot)
  473. }
  474. } else {
  475. # Arrange plots in grid layout on a single page
  476. grid.arrange(
  477. grobs = static_plots,
  478. ncol = grid_layout$ncol,
  479. nrow = grid_layout$nrow
  480. )
  481. }
  482. }
  483. # Close the PDF device after all plots are done
  484. dev.off()
  485. # Save HTML file with interactive plots if needed
  486. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  487. message("Saving combined HTML file: ", out_html_file)
  488. htmltools::save_html(
  489. htmltools::tagList(plotly_plots),
  490. file = out_html_file
  491. )
  492. }
  493. generate_scatter_plot <- function(plot, config) {
  494. # Define the points
  495. shape <- if (!is.null(config$shape)) config$shape else 3
  496. size <- if (!is.null(config$size)) config$size else 1.5
  497. position <-
  498. if (!is.null(config$position) && config$position == "jitter") {
  499. position_jitter(width = 0.4, height = 0.1)
  500. } else {
  501. "identity"
  502. }
  503. plot <- plot + geom_point(
  504. shape = shape,
  505. size = size,
  506. position = position
  507. )
  508. if (!is.null(config$cyan_points) && config$cyan_points) {
  509. plot <- plot + geom_point(
  510. aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  511. color = "cyan",
  512. shape = 3,
  513. size = 0.5
  514. )
  515. }
  516. # Add Smooth Line if specified
  517. if (!is.null(config$smooth) && config$smooth) {
  518. smooth_color <- if (!is.null(config$smooth_color)) config$smooth_color else "blue"
  519. if (!is.null(config$lm_line)) {
  520. plot <- plot +
  521. geom_abline(
  522. intercept = config$lm_line$intercept,
  523. slope = config$lm_line$slope,
  524. color = smooth_color
  525. )
  526. } else {
  527. plot <- plot +
  528. geom_smooth(
  529. method = "lm",
  530. se = FALSE,
  531. color = smooth_color
  532. )
  533. }
  534. }
  535. # Add SD Bands if specified
  536. if (!is.null(config$sd_band)) {
  537. plot <- plot +
  538. annotate(
  539. "rect",
  540. xmin = -Inf, xmax = Inf,
  541. ymin = config$sd_band, ymax = Inf,
  542. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  543. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  544. ) +
  545. annotate(
  546. "rect",
  547. xmin = -Inf, xmax = Inf,
  548. ymin = -config$sd_band, ymax = -Inf,
  549. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  550. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  551. ) +
  552. geom_hline(
  553. yintercept = c(-config$sd_band, config$sd_band),
  554. color = ifelse(!is.null(config$hl_color), config$hl_color, "gray")
  555. )
  556. }
  557. # Add Rectangles if specified
  558. if (!is.null(config$rectangles)) {
  559. for (rect in config$rectangles) {
  560. plot <- plot + annotate(
  561. "rect",
  562. xmin = rect$xmin,
  563. xmax = rect$xmax,
  564. ymin = rect$ymin,
  565. ymax = rect$ymax,
  566. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  567. color = ifelse(is.null(rect$color), "black", rect$color),
  568. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  569. )
  570. }
  571. }
  572. # Customize X-axis if specified
  573. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  574. # Check if x_var is factor or character (for discrete x-axis)
  575. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  576. plot <- plot +
  577. scale_x_discrete(
  578. name = config$x_label,
  579. breaks = config$x_breaks,
  580. labels = config$x_labels
  581. )
  582. } else {
  583. plot <- plot +
  584. scale_x_continuous(
  585. name = config$x_label,
  586. breaks = config$x_breaks,
  587. labels = config$x_labels
  588. )
  589. }
  590. }
  591. # Set Y-axis limits if specified
  592. if (!is.null(config$ylim_vals)) {
  593. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  594. }
  595. # Add annotations if specified
  596. if (!is.null(config$annotations)) {
  597. for (annotation in config$annotations) {
  598. plot <- plot +
  599. annotate(
  600. "text",
  601. x = annotation$x,
  602. y = annotation$y,
  603. label = annotation$label,
  604. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  605. vjust = ifelse(is.null(annotation$vjust), 0.5, annotation$vjust),
  606. size = ifelse(is.null(annotation$size), 3, annotation$size),
  607. color = ifelse(is.null(annotation$color), "black", annotation$color)
  608. )
  609. }
  610. }
  611. return(plot)
  612. }
  613. generate_boxplot <- function(plot, config) {
  614. # Convert x_var to a factor within aes mapping
  615. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  616. # Customize X-axis if specified
  617. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  618. # Check if x_var is factor or character (for discrete x-axis)
  619. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  620. plot <- plot +
  621. scale_x_discrete(
  622. name = config$x_label,
  623. breaks = config$x_breaks,
  624. labels = config$x_labels
  625. )
  626. } else {
  627. plot <- plot +
  628. scale_x_continuous(
  629. name = config$x_label,
  630. breaks = config$x_breaks,
  631. labels = config$x_labels
  632. )
  633. }
  634. }
  635. return(plot)
  636. }
  637. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  638. plot_type = "scatter", stages = c("before", "after")) {
  639. plot_configs <- list()
  640. for (var in variables) {
  641. for (stage in stages) {
  642. df_plot <- if (stage == "before") df_before else df_after
  643. # Check for non-finite values in the y-variable
  644. df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
  645. # Adjust settings based on plot_type
  646. plot_config <- list(
  647. df = df_plot_filtered,
  648. x_var = "scan",
  649. y_var = var,
  650. plot_type = plot_type,
  651. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  652. color_var = "conc_num_factor_factor",
  653. position = if (plot_type == "scatter") "jitter" else NULL,
  654. size = 0.2,
  655. error_bar = (plot_type == "scatter")
  656. )
  657. # Add config to plots list
  658. plot_configs <- append(plot_configs, list(plot_config))
  659. }
  660. }
  661. return(list(plots = plot_configs))
  662. }
  663. generate_interaction_plot_configs <- function(df, type) {
  664. # Define the y-limits for the plots
  665. limits_map <- list(
  666. L = c(0, 130),
  667. K = c(-20, 160),
  668. r = c(0, 1),
  669. AUC = c(0, 12500)
  670. )
  671. stats_plot_configs <- list()
  672. stats_boxplot_configs <- list()
  673. delta_plot_configs <- list()
  674. # Overall statistics plots
  675. OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
  676. for (plot_type in c("scatter", "box")) {
  677. for (var in names(limits_map)) {
  678. y_limits <- limits_map[[var]]
  679. y_span <- y_limits[2] - y_limits[1]
  680. # Common plot configuration
  681. plot_config <- list(
  682. df = df,
  683. x_var = "conc_num_factor_factor",
  684. y_var = var,
  685. shape = 16,
  686. x_label = unique(df$Drug)[1],
  687. coord_cartesian = y_limits,
  688. x_breaks = unique(df$conc_num_factor_factor),
  689. x_labels = as.character(unique(df$conc_num))
  690. )
  691. # Add specific configurations for scatter and box plots
  692. if (plot_type == "scatter") {
  693. plot_config$plot_type <- "scatter"
  694. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  695. plot_config$error_bar <- TRUE
  696. plot_config$error_bar_params <- list(
  697. y_sd_prefix = "WT_sd_",
  698. y_mean_prefix = "mean_",
  699. color = "red",
  700. center_point = TRUE
  701. )
  702. plot_config$position <- "jitter"
  703. annotations <- list(
  704. list(x = 0.25, y = y_limits[1] + 0.1 * y_span, label = "NG ="), # Slightly above y-min
  705. list(x = 0.25, y = y_limits[1] + 0.05 * y_span, label = "DB ="),
  706. list(x = 0.25, y = y_limits[1], label = "SM =")
  707. )
  708. # Loop over unique x values and add NG, DB, SM values at calculated y positions
  709. for (x_val in unique(df$conc_num_factor_factor)) {
  710. current_df <- df %>% filter(.data[[plot_config$x_var]] == x_val)
  711. annotations <- append(annotations, list(
  712. list(x = x_val, y = y_limits[1] + 0.1 * y_span, label = first(current_df$NG, default = 0)),
  713. list(x = x_val, y = y_limits[1] + 0.05 * y_span, label = first(current_df$DB, default = 0)),
  714. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0))
  715. ))
  716. }
  717. plot_config$annotations <- annotations
  718. # Append to scatter plot configurations
  719. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  720. } else if (plot_type == "box") {
  721. plot_config$plot_type <- "box"
  722. plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
  723. plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
  724. # Append to boxplot configurations
  725. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  726. }
  727. }
  728. }
  729. # Delta interaction plots
  730. if (type == "reference") {
  731. group_vars <- c("OrfRep", "Gene", "num")
  732. } else if (type == "deletion") {
  733. group_vars <- c("OrfRep", "Gene")
  734. }
  735. delta_limits_map <- list(
  736. L = c(-60, 60),
  737. K = c(-60, 60),
  738. r = c(-0.6, 0.6),
  739. AUC = c(-6000, 6000)
  740. )
  741. grouped_data <- df %>%
  742. group_by(across(all_of(group_vars))) %>%
  743. group_split()
  744. for (group_data in grouped_data) {
  745. OrfRep <- first(group_data$OrfRep)
  746. Gene <- first(group_data$Gene)
  747. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  748. if (type == "reference") {
  749. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  750. } else if (type == "deletion") {
  751. OrfRepTitle <- OrfRep
  752. }
  753. for (var in names(delta_limits_map)) {
  754. y_limits <- delta_limits_map[[var]]
  755. y_span <- y_limits[2] - y_limits[1]
  756. # Error bars
  757. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  758. # Z_Shift and lm values
  759. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  760. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  761. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  762. # NG, DB, SM values
  763. NG_value <- first(group_data$NG, default = 0)
  764. DB_value <- first(group_data$DB, default = 0)
  765. SM_value <- first(group_data$SM, default = 0)
  766. # Use the pre-calculated lm intercept and slope from the dataframe
  767. lm_intercept_col <- paste0("lm_intercept_", var)
  768. lm_slope_col <- paste0("lm_slope_", var)
  769. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  770. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  771. plot_config <- list(
  772. df = group_data,
  773. plot_type = "scatter",
  774. x_var = "conc_num_factor_factor",
  775. y_var = var,
  776. x_label = unique(group_data$Drug)[1],
  777. title = paste(OrfRepTitle, Gene, num, sep = " "),
  778. coord_cartesian = y_limits,
  779. annotations = list(
  780. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
  781. list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
  782. list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
  783. list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
  784. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
  785. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  786. ),
  787. error_bar = TRUE,
  788. error_bar_params = list(
  789. ymin = 0 - (2 * WT_sd_value),
  790. ymax = 0 + (2 * WT_sd_value),
  791. color = "black"
  792. ),
  793. smooth = TRUE,
  794. x_breaks = unique(group_data$conc_num_factor_factor),
  795. x_labels = as.character(unique(group_data$conc_num)),
  796. ylim_vals = y_limits,
  797. lm_line = list(
  798. intercept = lm_intercept_value,
  799. slope = lm_slope_value
  800. )
  801. )
  802. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  803. }
  804. }
  805. # Calculate dynamic grid layout
  806. grid_ncol <- 4
  807. num_plots <- length(delta_plot_configs)
  808. grid_nrow <- ceiling(num_plots / grid_ncol)
  809. return(list(
  810. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
  811. list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
  812. list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
  813. ))
  814. }
  815. generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FALSE, overlap_color = FALSE) {
  816. sd_bands <- c(1, 2, 3)
  817. plot_configs <- list()
  818. variables <- c("L", "K")
  819. # Adjust (if necessary) and rank columns
  820. for (variable in variables) {
  821. if (adjust) {
  822. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  823. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  824. }
  825. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  826. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  827. }
  828. # Helper function to create a plot configuration
  829. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE) {
  830. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  831. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  832. # Default plot config
  833. plot_config <- list(
  834. df = df,
  835. x_var = rank_var,
  836. y_var = zscore_var,
  837. plot_type = "scatter",
  838. title = paste(y_label, "vs. Rank for", variable, "above", sd_band),
  839. sd_band = sd_band,
  840. fill_positive = "#542788",
  841. fill_negative = "orange",
  842. alpha_positive = 0.3,
  843. alpha_negative = 0.3,
  844. annotations = NULL,
  845. shape = 3,
  846. size = 0.1,
  847. y_label = y_label,
  848. x_label = "Rank",
  849. legend_position = "none"
  850. )
  851. if (with_annotations) {
  852. # Add specific annotations for plots with annotations
  853. plot_config$annotations <- list(
  854. list(
  855. x = median(df[[rank_var]], na.rm = TRUE),
  856. y = max(df[[zscore_var]], na.rm = TRUE) * 0.9,
  857. label = paste("Deletion Enhancers =", num_enhancers)
  858. ),
  859. list(
  860. x = median(df[[rank_var]], na.rm = TRUE),
  861. y = min(df[[zscore_var]], na.rm = TRUE) * 0.9,
  862. label = paste("Deletion Suppressors =", num_suppressors)
  863. )
  864. )
  865. }
  866. return(plot_config)
  867. }
  868. # Generate plots for each variable
  869. for (variable in variables) {
  870. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  871. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  872. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  873. # Loop through SD bands
  874. for (sd_band in sd_bands) {
  875. # Create plot with annotations
  876. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = TRUE)
  877. # Create plot without annotations
  878. plot_configs[[length(plot_configs) + 1]] <- create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, with_annotations = FALSE)
  879. }
  880. }
  881. # Calculate dynamic grid layout based on the number of plots
  882. grid_ncol <- 3
  883. num_plots <- length(plot_configs)
  884. grid_nrow <- ceiling(num_plots / grid_ncol) # Automatically calculate the number of rows
  885. return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
  886. }
  887. generate_correlation_plot_configs <- function(df, correlation_stats) {
  888. # Define relationships for different-variable correlations
  889. relationships <- list(
  890. list(x = "L", y = "K"),
  891. list(x = "L", y = "r"),
  892. list(x = "L", y = "AUC"),
  893. list(x = "K", y = "r"),
  894. list(x = "K", y = "AUC"),
  895. list(x = "r", y = "AUC")
  896. )
  897. plot_configs <- list()
  898. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  899. highlight_cyan_options <- c(FALSE, TRUE)
  900. for (highlight_cyan in highlight_cyan_options) {
  901. for (rel in relationships) {
  902. # Extract relevant variable names for Z_lm values
  903. x_var <- paste0("Z_lm_", rel$x)
  904. y_var <- paste0("Z_lm_", rel$y)
  905. # Access the correlation statistics from the correlation_stats list
  906. relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
  907. stats <- correlation_stats[[relationship_name]]
  908. intercept <- stats$intercept
  909. slope <- stats$slope
  910. r_squared <- stats$r_squared
  911. # Generate the label for the plot
  912. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  913. # Construct plot config
  914. plot_config <- list(
  915. df = df,
  916. x_var = x_var,
  917. y_var = y_var,
  918. plot_type = "scatter",
  919. title = plot_label,
  920. annotations = list(
  921. list(
  922. x = mean(df[[x_var]], na.rm = TRUE),
  923. y = mean(df[[y_var]], na.rm = TRUE),
  924. label = paste("R-squared =", round(r_squared, 3))
  925. )
  926. ),
  927. smooth = TRUE,
  928. smooth_color = "tomato3",
  929. lm_line = list(
  930. intercept = intercept,
  931. slope = slope
  932. ),
  933. shape = 3,
  934. size = 0.5,
  935. color_var = "Overlap",
  936. cyan_points = highlight_cyan # Include cyan points or not based on the loop
  937. )
  938. plot_configs <- append(plot_configs, list(plot_config))
  939. }
  940. }
  941. return(list(plots = plot_configs))
  942. }
  943. main <- function() {
  944. lapply(names(args$experiments), function(exp_name) {
  945. exp <- args$experiments[[exp_name]]
  946. exp_path <- exp$path
  947. exp_sd <- exp$sd
  948. out_dir <- file.path(exp_path, "zscores")
  949. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  950. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  951. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  952. # Each list of plots corresponds to a separate file
  953. message("Loading and filtering data for experiment: ", exp_name)
  954. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  955. update_gene_names(args$sgd_gene_list) %>%
  956. as_tibble()
  957. l_vs_k_plot_configs <- list(
  958. plots = list(
  959. list(
  960. df = df,
  961. x_var = "L",
  962. y_var = "K",
  963. plot_type = "scatter",
  964. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  965. title = "Raw L vs K before quality control",
  966. color_var = "conc_num_factor_factor",
  967. error_bar = FALSE,
  968. legend_position = "right"
  969. )
  970. )
  971. )
  972. message("Calculating summary statistics before quality control")
  973. df_stats <- calculate_summary_stats(
  974. df = df,
  975. variables = c("L", "K", "r", "AUC", "delta_bg"),
  976. group_vars = c("conc_num"))$df_with_stats
  977. frequency_delta_bg_plot_configs <- list(
  978. plots = list(
  979. list(
  980. df = df_stats,
  981. x_var = "delta_bg",
  982. y_var = NULL,
  983. plot_type = "density",
  984. title = "Density plot for Delta Background by [Drug] (All Data)",
  985. color_var = "conc_num_factor_factor",
  986. x_label = "Delta Background",
  987. y_label = "Density",
  988. error_bar = FALSE,
  989. legend_position = "right"
  990. ),
  991. list(
  992. df = df_stats,
  993. x_var = "delta_bg",
  994. y_var = NULL,
  995. plot_type = "bar",
  996. title = "Bar plot for Delta Background by [Drug] (All Data)",
  997. color_var = "conc_num_factor_factor",
  998. x_label = "Delta Background",
  999. y_label = "Count",
  1000. error_bar = FALSE,
  1001. legend_position = "right"
  1002. )
  1003. )
  1004. )
  1005. message("Filtering rows above delta background tolerance for plotting")
  1006. df_above_tolerance <- df %>% filter(DB == 1)
  1007. above_threshold_plot_configs <- list(
  1008. plots = list(
  1009. list(
  1010. df = df_above_tolerance,
  1011. x_var = "L",
  1012. y_var = "K",
  1013. plot_type = "scatter",
  1014. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1015. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1016. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1017. color_var = "conc_num_factor_factor",
  1018. position = "jitter",
  1019. annotations = list(
  1020. list(
  1021. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1022. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1023. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1024. )
  1025. ),
  1026. error_bar = FALSE,
  1027. legend_position = "right"
  1028. )
  1029. )
  1030. )
  1031. message("Setting rows above delta background tolerance to NA")
  1032. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1033. message("Calculating summary statistics across all strains")
  1034. ss <- calculate_summary_stats(
  1035. df = df_na,
  1036. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1037. group_vars = c("conc_num"))
  1038. df_na_ss <- ss$summary_stats
  1039. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1040. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1041. # This can help bypass missing values ggplot warnings during testing
  1042. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1043. message("Calculating summary statistics excluding zero values")
  1044. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1045. df_no_zeros_stats <- calculate_summary_stats(
  1046. df = df_no_zeros,
  1047. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1048. group_vars = c("conc_num")
  1049. )$df_with_stats
  1050. message("Filtering by 2SD of K")
  1051. df_na_within_2sd_k <- df_na_stats %>%
  1052. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1053. df_na_outside_2sd_k <- df_na_stats %>%
  1054. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1055. message("Calculating summary statistics for L within 2SD of K")
  1056. # TODO We're omitting the original z_max calculation, not sure if needed?
  1057. ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
  1058. group_vars = c("conc_num"))$summary_stats
  1059. write.csv(ss,
  1060. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
  1061. row.names = FALSE)
  1062. message("Calculating summary statistics for L outside 2SD of K")
  1063. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
  1064. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1065. write.csv(ss$summary_stats,
  1066. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
  1067. row.names = FALSE)
  1068. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1069. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1070. df_before = df_stats,
  1071. df_after = df_na_stats_filtered
  1072. )
  1073. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1074. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1075. df_before = df_stats,
  1076. df_after = df_na_stats_filtered,
  1077. plot_type = "box"
  1078. )
  1079. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1080. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1081. stages = c("after"), # Only after QC
  1082. df_after = df_no_zeros_stats
  1083. )
  1084. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1085. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1086. stages = c("after"), # Only after QC
  1087. df_after = df_no_zeros_stats,
  1088. plot_type = "box"
  1089. )
  1090. l_outside_2sd_k_plot_configs <- list(
  1091. plots = list(
  1092. list(
  1093. df = df_na_l_outside_2sd_k_stats,
  1094. x_var = "L",
  1095. y_var = "K",
  1096. plot_type = "scatter",
  1097. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  1098. color_var = "conc_num_factor_factor",
  1099. position = "jitter",
  1100. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1101. annotations = list(
  1102. list(
  1103. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1104. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1105. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1106. )
  1107. ),
  1108. error_bar = FALSE,
  1109. legend_position = "right"
  1110. )
  1111. )
  1112. )
  1113. delta_bg_outside_2sd_k_plot_configs <- list(
  1114. plots = list(
  1115. list(
  1116. df = df_na_l_outside_2sd_k_stats,
  1117. x_var = "delta_bg",
  1118. y_var = "K",
  1119. plot_type = "scatter",
  1120. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  1121. color_var = "conc_num_factor_factor",
  1122. position = "jitter",
  1123. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1124. annotations = list(
  1125. list(
  1126. x = median(df_na_l_outside_2sd_k_stats$delta_bg, na.rm = TRUE) / 2,
  1127. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1128. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1129. )
  1130. ),
  1131. error_bar = FALSE,
  1132. legend_position = "right"
  1133. )
  1134. )
  1135. )
  1136. message("Generating quality control plots in parallel")
  1137. # future::plan(future::multicore, workers = parallel::detectCores())
  1138. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1139. plot_configs <- list(
  1140. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1141. plot_configs = l_vs_k_plot_configs),
  1142. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1143. plot_configs = frequency_delta_bg_plot_configs),
  1144. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1145. plot_configs = above_threshold_plot_configs),
  1146. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1147. plot_configs = plate_analysis_plot_configs),
  1148. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1149. plot_configs = plate_analysis_boxplot_configs),
  1150. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1151. plot_configs = plate_analysis_no_zeros_plot_configs),
  1152. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1153. plot_configs = plate_analysis_no_zeros_boxplot_configs),
  1154. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1155. plot_configs = l_outside_2sd_k_plot_configs),
  1156. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2sd_outside_mean_K",
  1157. plot_configs = delta_bg_outside_2sd_k_plot_configs)
  1158. )
  1159. # Generating quality control plots in parallel
  1160. # furrr::future_map(plot_configs, function(config) {
  1161. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
  1162. # }, .options = furrr_options(seed = TRUE))
  1163. bg_strains <- c("YDL227C")
  1164. lapply(bg_strains, function(strain) {
  1165. message("Processing background strain: ", strain)
  1166. # Handle missing data by setting zero values to NA
  1167. # and then removing any rows with NA in L col
  1168. df_bg <- df_na %>%
  1169. filter(OrfRep == strain) %>%
  1170. mutate(
  1171. L = if_else(L == 0, NA, L),
  1172. K = if_else(K == 0, NA, K),
  1173. r = if_else(r == 0, NA, r),
  1174. AUC = if_else(AUC == 0, NA, AUC)
  1175. ) %>%
  1176. filter(!is.na(L))
  1177. message("Calculating summary statistics for background strain")
  1178. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
  1179. group_vars = c("OrfRep", "conc_num"))
  1180. summary_stats_bg <- ss_bg$summary_stats
  1181. df_bg_stats <- ss_bg$df_with_stats
  1182. write.csv(
  1183. summary_stats_bg,
  1184. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1185. row.names = FALSE)
  1186. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1187. df_reference <- df_na_stats %>% # formerly X2_RF
  1188. filter(OrfRep == strain) %>%
  1189. filter(!is.na(L)) %>%
  1190. group_by(conc_num) %>%
  1191. mutate(
  1192. max_l_theoretical = max(max_L, na.rm = TRUE),
  1193. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1194. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1195. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1196. ungroup()
  1197. message("Calculating reference strain interaction scores")
  1198. df_reference_stats <- calculate_summary_stats(
  1199. df = df_reference,
  1200. variables = c("L", "K", "r", "AUC"),
  1201. group_vars = c("OrfRep", "Gene", "num", "conc_num")
  1202. )$df_with_stats
  1203. reference_results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "num"))
  1204. zscore_calculations_reference <- reference_results$calculations
  1205. zscore_interactions_reference <- reference_results$interactions
  1206. zscore_interactions_reference_joined <- reference_results$full_data
  1207. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1208. df_deletion <- df_na_stats %>% # formerly X2
  1209. filter(OrfRep != strain) %>%
  1210. filter(!is.na(L)) %>%
  1211. group_by(conc_num) %>%
  1212. mutate(
  1213. max_l_theoretical = max(max_L, na.rm = TRUE),
  1214. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1215. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1216. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1217. ungroup()
  1218. message("Calculating deletion strain(s) interactions scores")
  1219. df_deletion_stats <- calculate_summary_stats(
  1220. df = df_deletion,
  1221. variables = c("L", "K", "r", "AUC"),
  1222. group_vars = c("OrfRep", "Gene", "conc_num")
  1223. )$df_with_stats
  1224. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene"))
  1225. zscore_calculations <- deletion_results$calculations
  1226. zscore_interactions <- deletion_results$interactions
  1227. zscore_interactions_joined <- deletion_results$full_data
  1228. # Writing Z-Scores to file
  1229. write.csv(zscore_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1230. write.csv(zscore_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1231. write.csv(zscore_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1232. write.csv(zscore_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1233. # Create interaction plots
  1234. message("Generating reference interaction plots")
  1235. reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
  1236. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
  1237. message("Generating deletion interaction plots")
  1238. deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
  1239. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
  1240. # Define conditions for enhancers and suppressors
  1241. # TODO Add to study config?
  1242. threshold <- 2
  1243. enhancer_condition_L <- zscore_interactions$Avg_Zscore_L >= threshold
  1244. suppressor_condition_L <- zscore_interactions$Avg_Zscore_L <= -threshold
  1245. enhancer_condition_K <- zscore_interactions$Avg_Zscore_K >= threshold
  1246. suppressor_condition_K <- zscore_interactions$Avg_Zscore_K <= -threshold
  1247. # Subset data
  1248. enhancers_L <- zscore_interactions[enhancer_condition_L, ]
  1249. suppressors_L <- zscore_interactions[suppressor_condition_L, ]
  1250. enhancers_K <- zscore_interactions[enhancer_condition_K, ]
  1251. suppressors_K <- zscore_interactions[suppressor_condition_K, ]
  1252. # Save enhancers and suppressors
  1253. message("Writing enhancer/suppressor csv files")
  1254. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1255. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1256. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1257. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1258. # Combine conditions for enhancers and suppressors
  1259. enhancers_and_suppressors_L <- zscore_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1260. enhancers_and_suppressors_K <- zscore_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1261. # Save combined enhancers and suppressors
  1262. write.csv(enhancers_and_suppressors_L,
  1263. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1264. write.csv(enhancers_and_suppressors_K,
  1265. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1266. # Handle linear model based enhancers and suppressors
  1267. lm_threshold <- 2 # TODO add to study config?
  1268. enhancers_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L >= lm_threshold, ]
  1269. suppressors_lm_L <- zscore_interactions[zscore_interactions$Z_lm_L <= -lm_threshold, ]
  1270. enhancers_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K >= lm_threshold, ]
  1271. suppressors_lm_K <- zscore_interactions[zscore_interactions$Z_lm_K <= -lm_threshold, ]
  1272. # Save linear model based enhancers and suppressors
  1273. message("Writing linear model enhancer/suppressor csv files")
  1274. write.csv(enhancers_lm_L,
  1275. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1276. write.csv(suppressors_lm_L,
  1277. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1278. write.csv(enhancers_lm_K,
  1279. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1280. write.csv(suppressors_lm_K,
  1281. file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1282. message("Generating rank plots")
  1283. rank_plot_configs <- generate_rank_plot_configs(
  1284. df = zscore_interactions_joined,
  1285. is_lm = FALSE,
  1286. adjust = TRUE
  1287. )
  1288. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
  1289. plot_configs = rank_plot_configs)
  1290. message("Generating ranked linear model plots")
  1291. rank_lm_plot_configs <- generate_rank_plot_configs(
  1292. df = zscore_interactions_joined,
  1293. is_lm = TRUE,
  1294. adjust = TRUE
  1295. )
  1296. generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
  1297. plot_configs = rank_lm_plot_configs)
  1298. message("Generating filtered ranked plots")
  1299. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1300. df = zscore_interactions_filtered,
  1301. is_lm = FALSE,
  1302. adjust = FALSE,
  1303. overlap_color = TRUE
  1304. )
  1305. generate_and_save_plots(
  1306. out_dir = out_dir,
  1307. filename = "RankPlots_na_rm",
  1308. plot_configs = rank_plot_filtered_configs)
  1309. message("Generating filtered ranked linear model plots")
  1310. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1311. df = zscore_interactions_filtered,
  1312. is_lm = TRUE,
  1313. adjust = FALSE,
  1314. overlap_color = TRUE
  1315. )
  1316. generate_and_save_plots(
  1317. out_dir = out_dir,
  1318. filename = "rank_plots_lm_na_rm",
  1319. plot_configs = rank_plot_lm_filtered_configs)
  1320. message("Generating correlation curve parameter pair plots")
  1321. correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
  1322. generate_and_save_plots(
  1323. out_dir = out_dir,
  1324. filename = "correlation_cpps",
  1325. plot_configs = correlation_plot_configs,
  1326. )
  1327. })
  1328. })
  1329. }
  1330. main()
  1331. # For future simplification of joined dataframes
  1332. # df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))