calculate_interaction_zscores.R 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # Calculate WT statistics from df_bg
  190. wt_stats <- df_bg %>%
  191. group_by(across(all_of(bg_group_vars))) %>%
  192. summarise(
  193. WT_L = mean(mean_L, na.rm = TRUE),
  194. WT_sd_L = mean(sd_L, na.rm = TRUE),
  195. WT_K = mean(mean_K, na.rm = TRUE),
  196. WT_sd_K = mean(sd_K, na.rm = TRUE),
  197. WT_r = mean(mean_r, na.rm = TRUE),
  198. WT_sd_r = mean(sd_r, na.rm = TRUE),
  199. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  200. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  201. .groups = "drop"
  202. )
  203. # Join WT statistics to df
  204. df <- df %>%
  205. left_join(wt_stats, by = bg_group_vars)
  206. # Compute mean values at zero concentration
  207. mean_zeroes <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. df <- df %>%
  218. left_join(mean_zeroes, by = c(group_vars))
  219. # Calculate Raw Shifts and Z Shifts
  220. df <- df %>%
  221. mutate(
  222. Raw_Shift_L = mean_L_zero - WT_L,
  223. Raw_Shift_K = mean_K_zero - WT_K,
  224. Raw_Shift_r = mean_r_zero - WT_r,
  225. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  226. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  227. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  228. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  229. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  230. )
  231. calculations <- df %>%
  232. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  233. mutate(
  234. NG_sum = sum(NG, na.rm = TRUE),
  235. DB_sum = sum(DB, na.rm = TRUE),
  236. SM_sum = sum(SM, na.rm = TRUE),
  237. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  238. # Expected values
  239. Exp_L = WT_L + Raw_Shift_L,
  240. Exp_K = WT_K + Raw_Shift_K,
  241. Exp_r = WT_r + Raw_Shift_r,
  242. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  243. # Deltas
  244. Delta_L = mean_L - Exp_L,
  245. Delta_K = mean_K - Exp_K,
  246. Delta_r = mean_r - Exp_r,
  247. Delta_AUC = mean_AUC - Exp_AUC,
  248. # Adjust deltas for NG and SM
  249. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  250. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  251. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  252. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  253. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  254. # Calculate Z-scores
  255. Zscore_L = Delta_L / WT_sd_L,
  256. Zscore_K = Delta_K / WT_sd_K,
  257. Zscore_r = Delta_r / WT_sd_r,
  258. Zscore_AUC = Delta_AUC / WT_sd_AUC
  259. ) %>%
  260. ungroup() %>% # Ungroup before group_modify
  261. group_by(across(all_of(group_vars))) %>%
  262. group_modify(~ {
  263. # Filter each column for valid data or else linear modeling will fail
  264. valid_data_L <- .x %>% filter(!is.na(Delta_L))
  265. valid_data_K <- .x %>% filter(!is.na(Delta_K))
  266. valid_data_r <- .x %>% filter(!is.na(Delta_r))
  267. valid_data_AUC <- .x %>% filter(!is.na(Delta_AUC))
  268. # Perform linear modeling
  269. lm_L <- if (nrow(valid_data_L) > 1) lm(Delta_L ~ conc_num_factor, data = valid_data_L) else NULL
  270. lm_K <- if (nrow(valid_data_K) > 1) lm(Delta_K ~ conc_num_factor, data = valid_data_K) else NULL
  271. lm_r <- if (nrow(valid_data_r) > 1) lm(Delta_r ~ conc_num_factor, data = valid_data_r) else NULL
  272. lm_AUC <- if (nrow(valid_data_AUC) > 1) lm(Delta_AUC ~ conc_num_factor, data = valid_data_AUC) else NULL
  273. # Extract coefficients for calculations and plotting
  274. .x %>%
  275. mutate(
  276. lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
  277. lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
  278. R_Squared_L = if (!is.null(lm_L)) summary(lm_L)$r.squared else NA,
  279. lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
  280. lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
  281. lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
  282. R_Squared_K = if (!is.null(lm_K)) summary(lm_K)$r.squared else NA,
  283. lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
  284. lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
  285. lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
  286. R_Squared_r = if (!is.null(lm_r)) summary(lm_r)$r.squared else NA,
  287. lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
  288. lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
  289. lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
  290. R_Squared_AUC = if (!is.null(lm_AUC)) summary(lm_AUC)$r.squared else NA,
  291. lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
  292. )
  293. }) %>%
  294. ungroup()
  295. # For interaction plot error bars
  296. delta_means_sds <- calculations %>%
  297. group_by(across(all_of(group_vars))) %>%
  298. summarise(
  299. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  300. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  301. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  302. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  303. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  304. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  305. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  306. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  307. .groups = "drop"
  308. )
  309. calculations <- calculations %>%
  310. left_join(delta_means_sds, by = group_vars)
  311. # Summary statistics for lm scores
  312. calculations <- calculations %>%
  313. mutate(
  314. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  315. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  316. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  317. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  318. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  319. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  320. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  321. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  322. ) %>%
  323. # Calculate Z-lm scores
  324. mutate(
  325. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  326. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  327. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  328. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  329. )
  330. # Build summary stats (interactions)
  331. interactions <- calculations %>%
  332. group_by(across(all_of(group_vars))) %>%
  333. summarise(
  334. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  335. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  336. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  337. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  338. # Interaction Z-scores
  339. Z_lm_L = first(Z_lm_L),
  340. Z_lm_K = first(Z_lm_K),
  341. Z_lm_r = first(Z_lm_r),
  342. Z_lm_AUC = first(Z_lm_AUC),
  343. # Raw Shifts
  344. Raw_Shift_L = first(Raw_Shift_L),
  345. Raw_Shift_K = first(Raw_Shift_K),
  346. Raw_Shift_r = first(Raw_Shift_r),
  347. Raw_Shift_AUC = first(Raw_Shift_AUC),
  348. # Z Shifts
  349. Z_Shift_L = first(Z_Shift_L),
  350. Z_Shift_K = first(Z_Shift_K),
  351. Z_Shift_r = first(Z_Shift_r),
  352. Z_Shift_AUC = first(Z_Shift_AUC),
  353. # R Squared values
  354. R_Squared_L = first(R_Squared_L),
  355. R_Squared_K = first(R_Squared_K),
  356. R_Squared_r = first(R_Squared_r),
  357. R_Squared_AUC = first(R_Squared_AUC),
  358. # lm intercepts
  359. lm_intercept_L = first(lm_intercept_L),
  360. lm_intercept_K = first(lm_intercept_K),
  361. lm_intercept_r = first(lm_intercept_r),
  362. lm_intercept_AUC = first(lm_intercept_AUC),
  363. # lm slopes
  364. lm_slope_L = first(lm_slope_L),
  365. lm_slope_K = first(lm_slope_K),
  366. lm_slope_r = first(lm_slope_r),
  367. lm_slope_AUC = first(lm_slope_AUC),
  368. # NG, DB, SM values
  369. NG = first(NG),
  370. DB = first(DB),
  371. SM = first(SM),
  372. .groups = "drop"
  373. )
  374. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  375. interactions <- interactions %>%
  376. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  377. mutate(
  378. Overlap = case_when(
  379. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  380. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  381. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  382. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  383. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  384. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  385. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  386. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  387. TRUE ~ "No Effect"
  388. ),
  389. # For correlation plots
  390. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  391. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  392. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  393. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  394. )
  395. # Creating the final calculations and interactions dataframes with only required columns for csv output
  396. df_calculations <- calculations %>%
  397. select(
  398. all_of(group_vars),
  399. conc_num, conc_num_factor, conc_num_factor_factor, N,
  400. mean_L, median_L, sd_L, se_L,
  401. mean_K, median_K, sd_K, se_K,
  402. mean_r, median_r, sd_r, se_r,
  403. mean_AUC, median_AUC, sd_AUC, se_AUC,
  404. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  405. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  406. WT_L, WT_K, WT_r, WT_AUC,
  407. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  408. Exp_L, Exp_K, Exp_r, Exp_AUC,
  409. Delta_L, Delta_K, Delta_r, Delta_AUC,
  410. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  411. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  412. )
  413. df_interactions <- interactions %>%
  414. select(
  415. all_of(group_vars),
  416. NG, DB, SM,
  417. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  418. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  419. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  420. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  421. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  422. lm_intercept_L, lm_intercept_K, lm_intercept_r, lm_intercept_AUC,
  423. lm_slope_L, lm_slope_K, lm_slope_r, lm_slope_AUC, Overlap
  424. )
  425. # Join calculations and interactions to avoid dimension mismatch
  426. calculations_no_overlap <- calculations %>%
  427. select(-any_of(c("DB", "NG", "SM",
  428. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  429. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  430. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  431. "lm_R_squared_L", "lm_R_squared_K", "lm_R_squared_r", "lm_R_squared_AUC",
  432. "lm_intercept_L", "lm_intercept_K", "lm_intercept_r", "lm_intercept_AUC",
  433. "lm_slope_L", "lm_slope_K", "lm_slope_r", "lm_slope_AUC"
  434. )))
  435. full_data <- calculations_no_overlap %>%
  436. left_join(df_interactions, by = group_vars)
  437. # Return final dataframes
  438. return(list(
  439. calculations = df_calculations,
  440. interactions = df_interactions,
  441. full_data = full_data
  442. ))
  443. }
  444. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  445. message("Generating ", filename, ".pdf and ", filename, ".html")
  446. # Check if we're dealing with multiple plot groups
  447. plot_groups <- if ("plots" %in% names(plot_configs)) {
  448. list(plot_configs) # Single group
  449. } else {
  450. plot_configs # Multiple groups
  451. }
  452. # Open the PDF device once for all plots
  453. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  454. # Loop through each plot group
  455. for (group in plot_groups) {
  456. static_plots <- list()
  457. plotly_plots <- list()
  458. # Retrieve grid layout if it exists, otherwise skip
  459. grid_layout <- group$grid_layout
  460. plots <- group$plots
  461. for (i in seq_along(plots)) {
  462. config <- plots[[i]]
  463. df <- config$df
  464. # Filter points outside of y-limits if specified
  465. if (!is.null(config$ylim_vals)) {
  466. out_of_bounds <- df %>%
  467. filter(
  468. is.na(.data[[config$y_var]]) |
  469. .data[[config$y_var]] < config$ylim_vals[1] |
  470. .data[[config$y_var]] > config$ylim_vals[2]
  471. )
  472. # Print rows being filtered out
  473. if (nrow(out_of_bounds) > 0) {
  474. message("Filtered ", nrow(out_of_bounds), " row(s) from '", config$title, "' because ", config$y_var,
  475. " is outside of y-limits: [", config$ylim_vals[1], ", ", config$ylim_vals[2], "]:")
  476. print(out_of_bounds %>% select(OrfRep, Gene, num, Drug, scan, Plate, Row, Col, conc_num, all_of(config$y_var)), width = 1000)
  477. }
  478. df <- df %>%
  479. filter(
  480. !is.na(.data[[config$y_var]]) &
  481. .data[[config$y_var]] >= config$ylim_vals[1] &
  482. .data[[config$y_var]] <= config$ylim_vals[2]
  483. )
  484. }
  485. # Filter NAs if specified
  486. if (!is.null(config$filter_na) && config$filter_na) {
  487. df <- df %>%
  488. filter(!is.na(.data[[config$y_var]]))
  489. }
  490. # Set up aes mapping based on plot type
  491. aes_mapping <- if (config$plot_type == "bar") {
  492. if (!is.null(config$color_var)) {
  493. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  494. } else {
  495. aes(x = .data[[config$x_var]])
  496. }
  497. } else if (config$plot_type == "density") {
  498. if (!is.null(config$color_var)) {
  499. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  500. } else {
  501. aes(x = .data[[config$x_var]])
  502. }
  503. } else {
  504. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  505. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  506. } else if (!is.null(config$y_var)) {
  507. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  508. } else {
  509. aes(x = .data[[config$x_var]])
  510. }
  511. }
  512. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  513. # Add appropriate plot layer or helper function based on plot type
  514. plot <- switch(config$plot_type,
  515. "scatter" = generate_scatter_plot(plot, config),
  516. "box" = generate_boxplot(plot, config),
  517. "density" = plot + geom_density(),
  518. "bar" = plot + geom_bar(),
  519. plot # default (unused)
  520. )
  521. # Add labels and title
  522. if (!is.null(config$title)) {
  523. plot <- plot + ggtitle(config$title)
  524. if (!is.null(config$title_size)) {
  525. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  526. }
  527. }
  528. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  529. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  530. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  531. # Add annotations if specified
  532. if (!is.null(config$annotations)) {
  533. for (annotation in config$annotations) {
  534. plot <- plot +
  535. annotate(
  536. "text",
  537. x = ifelse(is.null(annotation$x), 0, annotation$x),
  538. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  539. label = annotation$label,
  540. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  541. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  542. size = ifelse(is.null(annotation$size), 3, annotation$size),
  543. color = ifelse(is.null(annotation$color), "black", annotation$color)
  544. )
  545. }
  546. }
  547. # Convert ggplot to plotly for interactive version
  548. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  549. # Store both static and interactive versions
  550. static_plots[[i]] <- plot
  551. plotly_plots[[i]] <- plotly_plot
  552. }
  553. # Print the plots in the current group to the PDF
  554. if (!is.null(grid_layout)) {
  555. # Set grid_ncol to 1 if not specified
  556. if (is.null(grid_layout$ncol)) {
  557. grid_layout$ncol <- 1
  558. }
  559. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  560. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  561. num_plots <- length(static_plots)
  562. nrow <- ceiling(num_plots / grid_layout$ncol)
  563. # message("No nrow provided, automatically using nrow = ", nrow)
  564. grid_layout$nrow <- nrow
  565. }
  566. total_spots <- grid_layout$nrow * grid_layout$ncol
  567. num_plots <- length(static_plots)
  568. if (num_plots < total_spots) {
  569. message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  570. static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  571. }
  572. # Print a page of gridded plots
  573. grid.arrange(
  574. grobs = static_plots,
  575. ncol = grid_layout$ncol,
  576. nrow = grid_layout$nrow)
  577. } else {
  578. # Print individual plots on separate pages if no grid layout
  579. for (plot in static_plots) {
  580. print(plot)
  581. }
  582. }
  583. }
  584. # Close the PDF device after all plots are done
  585. dev.off()
  586. # Save HTML file with interactive plots if needed
  587. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  588. message("Saving combined HTML file: ", out_html_file)
  589. htmltools::save_html(
  590. htmltools::tagList(plotly_plots),
  591. file = out_html_file
  592. )
  593. }
  594. generate_scatter_plot <- function(plot, config) {
  595. # Define the points
  596. shape <- if (!is.null(config$shape)) config$shape else 3
  597. size <- if (!is.null(config$size)) config$size else 1.5
  598. position <-
  599. if (!is.null(config$position) && config$position == "jitter") {
  600. position_jitter(width = 0.4, height = 0.1)
  601. } else {
  602. "identity"
  603. }
  604. plot <- plot + geom_point(
  605. shape = shape,
  606. size = size,
  607. position = position
  608. )
  609. # Add a cyan point for the reference data for correlation plots
  610. if (!is.null(config$cyan_points) && config$cyan_points) {
  611. plot <- plot + geom_point(
  612. data = config$df_reference,
  613. mapping = aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  614. color = "cyan",
  615. shape = 3,
  616. size = 0.5,
  617. inherit.aes = FALSE
  618. )
  619. }
  620. # Add error bars if specified
  621. if (!is.null(config$error_bar) && config$error_bar) {
  622. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  623. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  624. config$error_bar_params$y_mean_col
  625. } else {
  626. paste0("mean_", config$y_var)
  627. }
  628. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  629. config$error_bar_params$y_sd_col
  630. } else {
  631. paste0("sd_", config$y_var)
  632. }
  633. # Use rlang to handle custom error bar calculations
  634. if (!is.null(config$error_bar_params$custom_error_bar)) {
  635. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  636. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  637. plot <- plot + geom_errorbar(
  638. aes(
  639. ymin = !!custom_ymin_expr,
  640. ymax = !!custom_ymax_expr
  641. ),
  642. color = config$error_bar_params$color,
  643. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  644. )
  645. } else {
  646. # If no custom error bar formula, use the default or dynamic ones
  647. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  648. # Only use color_var if it's present in the dataframe
  649. plot <- plot + geom_errorbar(
  650. aes(
  651. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  652. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  653. color = .data[[config$color_var]]
  654. ),
  655. linewidth = 0.1
  656. )
  657. } else {
  658. # If color_var is missing, fall back to a default color or none
  659. plot <- plot + geom_errorbar(
  660. aes(
  661. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  662. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  663. ),
  664. color = config$error_bar_params$color, # use the provided color or default
  665. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  666. )
  667. }
  668. }
  669. # Add the center point if the option is provided
  670. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  671. if (!is.null(config$error_bar_params$color)) {
  672. plot <- plot + geom_point(
  673. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  674. color = config$error_bar_params$color,
  675. shape = 16,
  676. inherit.aes = FALSE # Prevent overriding global aesthetics
  677. )
  678. } else {
  679. plot <- plot + geom_point(
  680. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  681. shape = 16,
  682. inherit.aes = FALSE # Prevent overriding global aesthetics
  683. )
  684. }
  685. }
  686. }
  687. # Add linear regression line if specified
  688. if (!is.null(config$lm_line)) {
  689. # Extract necessary values
  690. x_min <- config$lm_line$x_min
  691. x_max <- config$lm_line$x_max
  692. intercept <- config$lm_line$intercept
  693. slope <- config$lm_line$slope
  694. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  695. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  696. # Ensure none of the values are NA and calculate y-values
  697. if (!is.na(x_min) && !is.na(x_max) && !is.na(intercept) && !is.na(slope)) {
  698. y_min <- intercept + slope * x_min
  699. y_max <- intercept + slope * x_max
  700. # Ensure y-values are within y-limits (if any)
  701. if (!is.null(config$ylim_vals)) {
  702. y_min_within_limits <- y_min >= config$ylim_vals[1] && y_min <= config$ylim_vals[2]
  703. y_max_within_limits <- y_max >= config$ylim_vals[1] && y_max <= config$ylim_vals[2]
  704. # Adjust or skip based on whether the values fall within limits
  705. if (y_min_within_limits && y_max_within_limits) {
  706. # Ensure x-values are also valid
  707. if (!is.na(x_min) && !is.na(x_max)) {
  708. plot <- plot + annotate(
  709. "segment",
  710. x = x_min,
  711. xend = x_max,
  712. y = y_min,
  713. yend = y_max,
  714. color = color,
  715. linewidth = linewidth
  716. )
  717. }
  718. } else {
  719. message("Skipping linear modeling line due to y-values outside of limits.")
  720. }
  721. } else {
  722. # If no y-limits are provided, proceed with the annotation
  723. plot <- plot + annotate(
  724. "segment",
  725. x = x_min,
  726. xend = x_max,
  727. y = y_min,
  728. yend = y_max,
  729. color = color,
  730. linewidth = linewidth
  731. )
  732. }
  733. } else {
  734. message("Skipping linear modeling line due to missing or invalid values.")
  735. }
  736. }
  737. # Add SD Bands if specified
  738. if (!is.null(config$sd_band)) {
  739. plot <- plot +
  740. annotate(
  741. "rect",
  742. xmin = -Inf, xmax = Inf,
  743. ymin = config$sd_band, ymax = Inf,
  744. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  745. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  746. ) +
  747. annotate(
  748. "rect",
  749. xmin = -Inf, xmax = Inf,
  750. ymin = -config$sd_band, ymax = -Inf,
  751. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  752. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  753. ) +
  754. geom_hline(
  755. yintercept = c(-config$sd_band, config$sd_band),
  756. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  757. )
  758. }
  759. # Add rectangles if specified
  760. if (!is.null(config$rectangles)) {
  761. for (rect in config$rectangles) {
  762. plot <- plot + annotate(
  763. "rect",
  764. xmin = rect$xmin,
  765. xmax = rect$xmax,
  766. ymin = rect$ymin,
  767. ymax = rect$ymax,
  768. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  769. color = ifelse(is.null(rect$color), "black", rect$color),
  770. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  771. )
  772. }
  773. }
  774. # Customize X-axis if specified
  775. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  776. # Check if x_var is factor or character (for discrete x-axis)
  777. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  778. plot <- plot +
  779. scale_x_discrete(
  780. name = config$x_label,
  781. breaks = config$x_breaks,
  782. labels = config$x_labels
  783. )
  784. } else {
  785. plot <- plot +
  786. scale_x_continuous(
  787. name = config$x_label,
  788. breaks = config$x_breaks,
  789. labels = config$x_labels
  790. )
  791. }
  792. }
  793. # Set Y-axis limits if specified
  794. if (!is.null(config$ylim_vals)) {
  795. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  796. }
  797. return(plot)
  798. }
  799. generate_boxplot <- function(plot, config) {
  800. # Convert x_var to a factor within aes mapping
  801. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  802. # Customize X-axis if specified
  803. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  804. # Check if x_var is factor or character (for discrete x-axis)
  805. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  806. plot <- plot +
  807. scale_x_discrete(
  808. name = config$x_label,
  809. breaks = config$x_breaks,
  810. labels = config$x_labels
  811. )
  812. } else {
  813. plot <- plot +
  814. scale_x_continuous(
  815. name = config$x_label,
  816. breaks = config$x_breaks,
  817. labels = config$x_labels
  818. )
  819. }
  820. }
  821. return(plot)
  822. }
  823. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  824. plot_type = "scatter", stages = c("before", "after")) {
  825. plot_configs <- list()
  826. for (var in variables) {
  827. for (stage in stages) {
  828. df_plot <- if (stage == "before") df_before else df_after
  829. # Check for non-finite values in the y-variable
  830. # df_plot_filtered <- df_plot %>% filter(is.finite(.data[[var]]))
  831. # Adjust settings based on plot_type
  832. plot_config <- list(
  833. df = df_plot,
  834. x_var = "scan",
  835. y_var = var,
  836. plot_type = plot_type,
  837. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  838. color_var = "conc_num_factor_factor",
  839. size = 0.2,
  840. error_bar = (plot_type == "scatter"),
  841. legend_position = "bottom",
  842. filter_na = TRUE
  843. )
  844. # Add config to plots list
  845. plot_configs <- append(plot_configs, list(plot_config))
  846. }
  847. }
  848. return(list(plots = plot_configs))
  849. }
  850. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  851. # Define the y-limits for the plots
  852. limits_map <- list(
  853. L = c(0, 130),
  854. K = c(-20, 160),
  855. r = c(0, 1),
  856. AUC = c(0, 12500)
  857. )
  858. stats_plot_configs <- list()
  859. stats_boxplot_configs <- list()
  860. delta_plot_configs <- list()
  861. # Overall statistics plots
  862. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  863. for (plot_type in c("scatter", "box")) {
  864. for (var in names(limits_map)) {
  865. y_limits <- limits_map[[var]]
  866. y_span <- y_limits[2] - y_limits[1]
  867. # Common plot configuration
  868. plot_config <- list(
  869. df = df_summary,
  870. plot_type = plot_type,
  871. x_var = "conc_num_factor_factor",
  872. y_var = var,
  873. shape = 16,
  874. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  875. coord_cartesian = y_limits,
  876. x_breaks = unique(df_summary$conc_num_factor_factor),
  877. x_labels = as.character(unique(df_summary$conc_num))
  878. )
  879. # Add specific configurations for scatter and box plots
  880. if (plot_type == "scatter") {
  881. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  882. plot_config$error_bar <- TRUE
  883. plot_config$error_bar_params <- list(
  884. color = "red",
  885. mean_point = TRUE,
  886. y_mean_col = paste0("mean_mean_", var),
  887. y_sd_col = paste0("mean_sd_", var)
  888. )
  889. plot_config$position <- "jitter"
  890. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  891. annotations <- list(
  892. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  893. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  894. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  895. )
  896. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  897. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  898. annotations <- append(annotations, list(
  899. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  900. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  901. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  902. ))
  903. }
  904. plot_config$annotations <- annotations
  905. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  906. } else if (plot_type == "box") {
  907. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  908. plot_config$position <- "dodge"
  909. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  910. }
  911. }
  912. }
  913. # Delta interaction plots
  914. delta_limits_map <- list(
  915. L = c(-60, 60),
  916. K = c(-60, 60),
  917. r = c(-0.6, 0.6),
  918. AUC = c(-6000, 6000)
  919. )
  920. # Select the data grouping by data type
  921. if (type == "reference") {
  922. group_vars <- c("OrfRep", "Gene", "num")
  923. } else if (type == "deletion") {
  924. group_vars <- c("OrfRep", "Gene")
  925. }
  926. grouped_data <- df_interactions %>%
  927. group_by(across(all_of(group_vars))) %>%
  928. group_split()
  929. for (group_data in grouped_data) {
  930. # Build the plot title
  931. OrfRep <- first(group_data$OrfRep)
  932. Gene <- first(group_data$Gene)
  933. if (type == "reference") {
  934. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  935. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  936. } else if (type == "deletion") {
  937. OrfRepTitle <- OrfRep
  938. }
  939. for (var in names(delta_limits_map)) {
  940. y_limits <- delta_limits_map[[var]]
  941. y_span <- y_limits[2] - y_limits[1]
  942. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  943. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  944. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  945. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  946. NG_value <- first(group_data$NG, default = 0)
  947. DB_value <- first(group_data$DB, default = 0)
  948. SM_value <- first(group_data$SM, default = 0)
  949. lm_intercept_col <- paste0("lm_intercept_", var)
  950. lm_slope_col <- paste0("lm_slope_", var)
  951. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  952. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  953. plot_config <- list(
  954. df = group_data,
  955. plot_type = "scatter",
  956. x_var = "conc_num_factor_factor",
  957. y_var = paste0("Delta_", var),
  958. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  959. shape = 16,
  960. title = paste(OrfRepTitle, Gene, sep = " "),
  961. title_size = rel(1.4),
  962. coord_cartesian = y_limits,
  963. annotations = list(
  964. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  965. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  966. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  967. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  968. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  969. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  970. ),
  971. error_bar = TRUE,
  972. error_bar_params = list(
  973. custom_error_bar = list(
  974. ymin = paste0("0 - 2 * WT_sd_", var),
  975. ymax = paste0("0 + 2 * WT_sd_", var)
  976. ),
  977. color = "gray70",
  978. linewidth = 0.5
  979. ),
  980. x_breaks = unique(group_data$conc_num_factor_factor),
  981. x_labels = as.character(unique(group_data$conc_num)),
  982. ylim_vals = y_limits,
  983. filter_na = TRUE,
  984. lm_line = list(
  985. intercept = lm_intercept_value,
  986. slope = lm_slope_value,
  987. color = "blue",
  988. linewidth = 0.8,
  989. x_min = min(as.numeric(group_data$conc_num_factor_factor)),
  990. x_max = max(as.numeric(group_data$conc_num_factor_factor))
  991. )
  992. )
  993. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  994. }
  995. }
  996. # Group delta plots in chunks of 12 per page
  997. chunk_size <- 12
  998. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  999. return(c(
  1000. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  1001. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  1002. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  1003. ))
  1004. }
  1005. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  1006. sd_bands <- c(1, 2, 3)
  1007. plot_configs <- list()
  1008. variables <- c("L", "K")
  1009. # Adjust (if necessary) and rank columns
  1010. for (variable in variables) {
  1011. if (adjust) {
  1012. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  1013. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  1014. }
  1015. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  1016. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  1017. }
  1018. # Helper function to create a rank plot configuration
  1019. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  1020. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  1021. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  1022. # Default plot config
  1023. plot_config <- list(
  1024. df = df,
  1025. x_var = rank_var,
  1026. y_var = zscore_var,
  1027. x_label = "Rank",
  1028. y_label = y_label,
  1029. plot_type = "scatter",
  1030. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  1031. sd_band = sd_band,
  1032. fill_positive = "#542788",
  1033. fill_negative = "orange",
  1034. alpha_positive = 0.3,
  1035. alpha_negative = 0.3,
  1036. shape = 3,
  1037. size = 0.1,
  1038. filter_na = filter_na,
  1039. legend_position = "none"
  1040. )
  1041. # Selectively add annotations
  1042. if (with_annotations) {
  1043. plot_config$annotations <- list(
  1044. list(
  1045. x = nrow(df) / 2,
  1046. y = 10,
  1047. label = paste("Deletion Enhancers =", num_enhancers)
  1048. ),
  1049. list(
  1050. x = nrow(df) / 2,
  1051. y = -10,
  1052. label = paste("Deletion Suppressors =", num_suppressors)
  1053. )
  1054. )
  1055. }
  1056. return(plot_config)
  1057. }
  1058. # Generate plots for each variable
  1059. for (variable in variables) {
  1060. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1061. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1062. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1063. # Loop through SD bands
  1064. for (sd_band in sd_bands) {
  1065. # Create plot with annotations
  1066. plot_configs[[length(plot_configs) + 1]] <-
  1067. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1068. # Create plot without annotations
  1069. plot_configs[[length(plot_configs) + 1]] <-
  1070. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1071. }
  1072. }
  1073. # Group delta plots in chunks of 6 per page
  1074. chunk_size <- 6
  1075. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1076. return(c(
  1077. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1078. ))
  1079. }
  1080. generate_correlation_plot_configs <- function(df, df_reference) {
  1081. # Define relationships for different-variable correlations
  1082. relationships <- list(
  1083. list(x = "L", y = "K"),
  1084. list(x = "L", y = "r"),
  1085. list(x = "L", y = "AUC"),
  1086. list(x = "K", y = "r"),
  1087. list(x = "K", y = "AUC"),
  1088. list(x = "r", y = "AUC")
  1089. )
  1090. # This filtering was in the original script
  1091. # df_reference <- df_reference %>%
  1092. # filter(!is.na(Z_lm_L))
  1093. plot_configs <- list()
  1094. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1095. highlight_cyan_options <- c(FALSE, TRUE)
  1096. for (highlight_cyan in highlight_cyan_options) {
  1097. for (rel in relationships) {
  1098. # Extract relevant variable names for Z_lm values
  1099. x_var <- paste0("Z_lm_", rel$x)
  1100. y_var <- paste0("Z_lm_", rel$y)
  1101. # Extract the R-squared, intercept, and slope from the df
  1102. relationship_name <- paste0(rel$x, "_vs_", rel$y)
  1103. intercept <- df[[paste0("lm_intercept_", rel$x)]]
  1104. slope <- df[[paste0("lm_slope_", rel$x)]]
  1105. r_squared <- df[[paste0("lm_R_squared_", rel$x)]]
  1106. # Generate the label for the plot
  1107. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1108. # Construct plot config
  1109. plot_config <- list(
  1110. df = df,
  1111. df_reference = df_reference,
  1112. x_var = x_var,
  1113. y_var = y_var,
  1114. plot_type = "scatter",
  1115. title = plot_label,
  1116. annotations = list(
  1117. list(
  1118. x = mean(df[[x_var]], na.rm = TRUE),
  1119. y = mean(df[[y_var]], na.rm = TRUE),
  1120. label = paste("R-squared =", round(r_squared, 3))
  1121. )
  1122. ),
  1123. lm_line = list(
  1124. intercept = intercept,
  1125. slope = slope,
  1126. color = "tomato3"
  1127. ),
  1128. color = "gray70",
  1129. filter_na = TRUE,
  1130. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1131. )
  1132. plot_configs <- append(plot_configs, list(plot_config))
  1133. }
  1134. }
  1135. return(list(plots = plot_configs))
  1136. }
  1137. main <- function() {
  1138. lapply(names(args$experiments), function(exp_name) {
  1139. exp <- args$experiments[[exp_name]]
  1140. exp_path <- exp$path
  1141. exp_sd <- exp$sd
  1142. out_dir <- file.path(exp_path, "zscores")
  1143. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1144. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1145. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1146. # Each list of plots corresponds to a separate file
  1147. message("Loading and filtering data for experiment: ", exp_name)
  1148. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1149. update_gene_names(args$sgd_gene_list) %>%
  1150. as_tibble()
  1151. l_vs_k_plot_configs <- list(
  1152. plots = list(
  1153. list(
  1154. df = df,
  1155. x_var = "L",
  1156. y_var = "K",
  1157. plot_type = "scatter",
  1158. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1159. title = "Raw L vs K before quality control",
  1160. color_var = "conc_num_factor_factor",
  1161. error_bar = FALSE,
  1162. legend_position = "right"
  1163. )
  1164. )
  1165. )
  1166. message("Calculating summary statistics before quality control")
  1167. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1168. df = df,
  1169. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1170. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1171. frequency_delta_bg_plot_configs <- list(
  1172. plots = list(
  1173. list(
  1174. df = df_stats,
  1175. x_var = "delta_bg",
  1176. y_var = NULL,
  1177. plot_type = "density",
  1178. title = "Density plot for Delta Background by [Drug] (All Data)",
  1179. color_var = "conc_num_factor_factor",
  1180. x_label = "Delta Background",
  1181. y_label = "Density",
  1182. error_bar = FALSE,
  1183. legend_position = "right"
  1184. ),
  1185. list(
  1186. df = df_stats,
  1187. x_var = "delta_bg",
  1188. y_var = NULL,
  1189. plot_type = "bar",
  1190. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1191. color_var = "conc_num_factor_factor",
  1192. x_label = "Delta Background",
  1193. y_label = "Count",
  1194. error_bar = FALSE,
  1195. legend_position = "right"
  1196. )
  1197. )
  1198. )
  1199. message("Filtering rows above delta background tolerance for plotting")
  1200. df_above_tolerance <- df %>% filter(DB == 1)
  1201. above_threshold_plot_configs <- list(
  1202. plots = list(
  1203. list(
  1204. df = df_above_tolerance,
  1205. x_var = "L",
  1206. y_var = "K",
  1207. plot_type = "scatter",
  1208. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1209. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1210. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1211. color_var = "conc_num_factor_factor",
  1212. position = "jitter",
  1213. annotations = list(
  1214. list(
  1215. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1216. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1217. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1218. )
  1219. ),
  1220. error_bar = FALSE,
  1221. legend_position = "right"
  1222. )
  1223. )
  1224. )
  1225. message("Setting rows above delta background tolerance to NA")
  1226. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1227. message("Calculating summary statistics across all strains")
  1228. ss <- calculate_summary_stats(
  1229. df = df_na,
  1230. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1231. group_vars = c("conc_num", "conc_num_factor_factor"))
  1232. df_na_ss <- ss$summary_stats
  1233. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1234. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1235. # This can help bypass missing values ggplot warnings during testing
  1236. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1237. message("Calculating summary statistics excluding zero values")
  1238. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1239. df_no_zeros_stats <- calculate_summary_stats(
  1240. df = df_no_zeros,
  1241. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1242. group_vars = c("conc_num", "conc_num_factor_factor")
  1243. )$df_with_stats
  1244. message("Filtering by 2SD of K")
  1245. df_na_within_2sd_k <- df_na_stats %>%
  1246. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1247. df_na_outside_2sd_k <- df_na_stats %>%
  1248. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1249. message("Calculating summary statistics for L within 2SD of K")
  1250. # TODO We're omitting the original z_max calculation, not sure if needed?
  1251. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1252. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1253. write.csv(ss,
  1254. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1255. row.names = FALSE)
  1256. message("Calculating summary statistics for L outside 2SD of K")
  1257. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1258. group_vars = c("conc_num", "conc_num_factor_factor"))
  1259. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1260. write.csv(ss$summary_stats,
  1261. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1262. row.names = FALSE)
  1263. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1264. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1265. df_before = df_stats,
  1266. df_after = df_na_stats_filtered
  1267. )
  1268. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1269. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1270. df_before = df_stats,
  1271. df_after = df_na_stats_filtered,
  1272. plot_type = "box"
  1273. )
  1274. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1275. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1276. stages = c("after"), # Only after QC
  1277. df_after = df_no_zeros_stats
  1278. )
  1279. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1280. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1281. stages = c("after"), # Only after QC
  1282. df_after = df_no_zeros_stats,
  1283. plot_type = "box"
  1284. )
  1285. l_outside_2sd_k_plot_configs <- list(
  1286. plots = list(
  1287. list(
  1288. df = df_na_l_outside_2sd_k_stats,
  1289. x_var = "L",
  1290. y_var = "K",
  1291. plot_type = "scatter",
  1292. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1293. color_var = "conc_num_factor_factor",
  1294. position = "jitter",
  1295. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1296. annotations = list(
  1297. list(
  1298. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1299. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1300. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1301. )
  1302. ),
  1303. error_bar = FALSE,
  1304. legend_position = "right"
  1305. )
  1306. )
  1307. )
  1308. delta_bg_outside_2sd_k_plot_configs <- list(
  1309. plots = list(
  1310. list(
  1311. df = df_na_l_outside_2sd_k_stats,
  1312. x_var = "delta_bg",
  1313. x_label = "Delta Background",
  1314. y_var = "K",
  1315. plot_type = "scatter",
  1316. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1317. color_var = "conc_num_factor_factor",
  1318. position = "jitter",
  1319. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1320. annotations = list(
  1321. list(
  1322. x = 0.05,
  1323. y = 0.95,
  1324. hjust = 0,
  1325. vjust = 1,
  1326. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1327. size = 5
  1328. )
  1329. ),
  1330. error_bar = FALSE,
  1331. legend_position = "right"
  1332. )
  1333. )
  1334. )
  1335. message("Generating quality control plots in parallel")
  1336. # future::plan(future::multicore, workers = parallel::detectCores())
  1337. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1338. plot_configs <- list(
  1339. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1340. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1341. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1342. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1343. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1344. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1345. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1346. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1347. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1348. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1349. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1350. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1351. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1352. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1353. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1354. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1355. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1356. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1357. )
  1358. # Parallelize background and quality control plot generation
  1359. # furrr::future_map(plot_configs, function(config) {
  1360. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1361. # page_width = config$page_width, page_height = config$page_height)
  1362. # }, .options = furrr_options(seed = TRUE))
  1363. # Loop over background strains
  1364. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1365. # have to rename or group the output files by dir or something so they don't get clobbered
  1366. bg_strains <- c("YDL227C")
  1367. lapply(bg_strains, function(strain) {
  1368. message("Processing background strain: ", strain)
  1369. # Handle missing data by setting zero values to NA
  1370. # and then removing any rows with NA in L col
  1371. df_bg <- df_na %>%
  1372. filter(OrfRep == strain) %>%
  1373. mutate(
  1374. L = if_else(L == 0, NA, L),
  1375. K = if_else(K == 0, NA, K),
  1376. r = if_else(r == 0, NA, r),
  1377. AUC = if_else(AUC == 0, NA, AUC)
  1378. ) %>%
  1379. filter(!is.na(L))
  1380. message("Calculating background summary statistics")
  1381. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1382. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1383. summary_stats_bg <- ss_bg$summary_stats
  1384. df_bg_stats <- ss_bg$df_with_stats
  1385. write.csv(
  1386. summary_stats_bg,
  1387. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1388. row.names = FALSE)
  1389. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1390. df_reference <- df_na_stats %>% # formerly X2_RF
  1391. filter(OrfRep == strain) %>%
  1392. filter(!is.na(L)) %>%
  1393. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1394. mutate(
  1395. max_l_theoretical = max(max_L, na.rm = TRUE),
  1396. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1397. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1398. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1399. ungroup()
  1400. message("Calculating reference strain summary statistics")
  1401. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1402. df = df_reference,
  1403. variables = c("L", "K", "r", "AUC"),
  1404. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1405. )$df_with_stats
  1406. # Summarise statistics for error bars
  1407. df_reference_summary_stats <- df_reference_summary_stats %>%
  1408. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1409. mutate(
  1410. mean_mean_L = first(mean_L),
  1411. mean_sd_L = first(sd_L),
  1412. mean_mean_K = first(mean_K),
  1413. mean_sd_K = first(sd_K),
  1414. mean_mean_r = first(mean_r),
  1415. mean_sd_r = first(sd_r),
  1416. mean_mean_AUC = first(mean_AUC),
  1417. mean_sd_AUC = first(sd_AUC),
  1418. .groups = "drop"
  1419. )
  1420. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1421. df_reference_interaction_stats <- calculate_summary_stats(
  1422. df = df_reference,
  1423. variables = c("L", "K", "r", "AUC"),
  1424. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1425. )$df_with_stats
  1426. # message("Calculating reference strain interaction scores")
  1427. # reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1428. # df_reference_interactions_joined <- reference_results$full_data
  1429. # df_reference_interactions <- reference_results$interactions
  1430. # write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1431. # write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1432. # message("Generating reference interaction plots")
  1433. # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1434. # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1435. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1436. df_deletion <- df_na_stats %>% # formerly X2
  1437. filter(OrfRep != strain) %>%
  1438. filter(!is.na(L)) %>%
  1439. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1440. mutate(
  1441. max_l_theoretical = max(max_L, na.rm = TRUE),
  1442. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1443. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1444. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1445. ungroup()
  1446. message("Calculating deletion strain(s) interaction summary statistics")
  1447. df_deletion_stats <- calculate_summary_stats(
  1448. df = df_deletion,
  1449. variables = c("L", "K", "r", "AUC"),
  1450. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1451. )$df_with_stats
  1452. message("Calculating deletion strain(s) interactions scores")
  1453. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1454. df_interactions <- deletion_results$interactions
  1455. df_interactions_joined <- deletion_results$full_data
  1456. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1457. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1458. message("Generating deletion interaction plots")
  1459. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1460. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1461. message("Writing enhancer/suppressor csv files")
  1462. interaction_threshold <- 2 # TODO add to study config?
  1463. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1464. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1465. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1466. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1467. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1468. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1469. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1470. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1471. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1472. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1473. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1474. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1475. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1476. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1477. write.csv(enhancers_and_suppressors_L,
  1478. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1479. write.csv(enhancers_and_suppressors_K,
  1480. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1481. message("Writing linear model enhancer/suppressor csv files")
  1482. lm_interaction_threshold <- 2 # TODO add to study config?
  1483. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1484. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1485. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1486. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1487. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1488. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1489. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1490. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1491. message("Generating rank plots")
  1492. rank_plot_configs <- generate_rank_plot_configs(
  1493. df_interactions,
  1494. is_lm = FALSE,
  1495. adjust = TRUE
  1496. )
  1497. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1498. page_width = 18, page_height = 12)
  1499. message("Generating ranked linear model plots")
  1500. rank_lm_plot_configs <- generate_rank_plot_configs(
  1501. df_interactions,
  1502. is_lm = TRUE,
  1503. adjust = TRUE
  1504. )
  1505. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1506. page_width = 18, page_height = 12)
  1507. message("Generating overlapped ranked plots")
  1508. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1509. df_interactions,
  1510. is_lm = FALSE,
  1511. adjust = FALSE,
  1512. filter_na = TRUE,
  1513. overlap_color = TRUE
  1514. )
  1515. generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1516. page_width = 18, page_height = 12)
  1517. message("Generating overlapped ranked linear model plots")
  1518. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1519. df_interactions,
  1520. is_lm = TRUE,
  1521. adjust = FALSE,
  1522. filter_na = TRUE,
  1523. overlap_color = TRUE
  1524. )
  1525. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1526. page_width = 18, page_height = 12)
  1527. message("Generating correlation curve parameter pair plots")
  1528. correlation_plot_configs <- generate_correlation_plot_configs(
  1529. df_interactions,
  1530. df_reference_interactions
  1531. )
  1532. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1533. page_width = 10, page_height = 7)
  1534. })
  1535. })
  1536. }
  1537. main()