Improve NA filtering

This commit is contained in:
2024-09-25 01:08:32 -04:00
parent 94c477ca28
commit 0836dc70d2

View File

@@ -134,10 +134,9 @@ load_and_process_data <- function(easy_results_file, sd = 3) {
DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0), DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
SM = 0, SM = 0,
OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded? OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)) conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
) %>% conc_num_factor = factor(as.numeric(factor(conc_num)) - 1),
mutate( conc_num_factor_num = as.numeric(conc_num_factor)
conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
) )
return(df) return(df)
@@ -169,8 +168,7 @@ calculate_summary_stats <- function(df, variables, group_vars) {
group_by(across(all_of(group_vars))) %>% group_by(across(all_of(group_vars))) %>%
summarise( summarise(
N = n(), N = n(),
across( across(all_of(variables),
all_of(variables),
list( list(
mean = ~mean(., na.rm = TRUE), mean = ~mean(., na.rm = TRUE),
median = ~median(., na.rm = TRUE), median = ~median(., na.rm = TRUE),
@@ -208,10 +206,10 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("
num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1, num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
# Calculate raw data # Calculate raw data
Raw_Shift_L = first(mean_L) - bg_stats$L, Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
Raw_Shift_K = first(mean_K) - bg_stats$K, Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
Raw_Shift_r = first(mean_r) - bg_stats$r, Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
Raw_Shift_AUC = first(mean_AUC) - bg_stats$AUC, Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L, Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K, Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r, Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
@@ -237,10 +235,10 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("
Zscore_AUC = Delta_AUC / WT_sd_AUC, Zscore_AUC = Delta_AUC / WT_sd_AUC,
# Fit linear models and store in list-columns # Fit linear models and store in list-columns
gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))), gene_lm_L = list(lm(Delta_L ~ conc_num_factor_num, data = pick(everything()))),
gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))), gene_lm_K = list(lm(Delta_K ~ conc_num_factor_num, data = pick(everything()))),
gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))), gene_lm_r = list(lm(Delta_r ~ conc_num_factor_num, data = pick(everything()))),
gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))), gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor_num, data = pick(everything()))),
# Extract coefficients using purrr::map_dbl # Extract coefficients using purrr::map_dbl
lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]), lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
@@ -1040,7 +1038,7 @@ main <- function() {
df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
# Save some constants # Save some constants
max_conc <- max(as.numeric(df$conc_num_factor)) max_conc <- max(df$conc_num_factor_num)
l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2 l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2 k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
@@ -1050,7 +1048,6 @@ main <- function() {
variables = summary_vars, variables = summary_vars,
group_vars = c("conc_num", "conc_num_factor"))$df_with_stats group_vars = c("conc_num", "conc_num_factor"))$df_with_stats
message("Filtering non-finite data") message("Filtering non-finite data")
# df_filtered_stats <- process_data(df_stats, c("L"), filter_nf = TRUE)
message("Calculating summary statistics after quality control") message("Calculating summary statistics after quality control")
ss <- calculate_summary_stats( ss <- calculate_summary_stats(
@@ -1060,9 +1057,7 @@ main <- function() {
df_na_ss <- ss$summary_stats df_na_ss <- ss$summary_stats
df_na_stats <- ss$df_with_stats df_na_stats <- ss$df_with_stats
write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE) write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
# df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
# Create background (WT) data columns
df_na_stats <- df_na_stats %>% df_na_stats <- df_na_stats %>%
mutate( mutate(
WT_L = mean_L, WT_L = mean_L,
@@ -1079,10 +1074,10 @@ main <- function() {
bg_stats <- df_na_stats %>% bg_stats <- df_na_stats %>%
filter(conc_num == 0) %>% filter(conc_num == 0) %>%
summarise( summarise(
L = first(mean_L), mean_L = first(mean_L),
K = first(mean_K), mean_K = first(mean_K),
r = first(mean_r), mean_r = first(mean_r),
AUC = first(mean_AUC), mean_AUC = first(mean_AUC),
sd_L = first(sd_L), sd_L = first(sd_L),
sd_K = first(sd_K), sd_K = first(sd_K),
sd_r = first(sd_r), sd_r = first(sd_r),
@@ -1090,12 +1085,11 @@ main <- function() {
) )
message("Calculating summary statistics after quality control excluding zero values") message("Calculating summary statistics after quality control excluding zero values")
ss <- calculate_summary_stats( df_no_zeros_stats <- calculate_summary_stats(
df = df_no_zeros, df = df_no_zeros,
variables = summary_vars, variables = summary_vars,
group_vars = c("conc_num", "conc_num_factor")) group_vars = c("conc_num", "conc_num_factor")
df_no_zeros_stats <- ss$df_with_stats )$df_with_stats
# df_no_zeros_filtered_stats <- process_data(df_no_zeros_stats, c("L"), filter_nf = TRUE)
message("Filtering by 2SD of K") message("Filtering by 2SD of K")
df_na_within_2sd_k <- df_na_stats %>% df_na_within_2sd_k <- df_na_stats %>%
@@ -1105,9 +1099,8 @@ main <- function() {
message("Calculating summary statistics for L within 2SD of K") message("Calculating summary statistics for L within 2SD of K")
# TODO We're omitting the original z_max calculation, not sure if needed? # TODO We're omitting the original z_max calculation, not sure if needed?
ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor")) ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))$summary_stats
# df_na_l_within_2sd_k_stats <- ss$df_with_stats write.csv(ss,
write.csv(ss$summary_stats,
file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
row.names = FALSE) row.names = FALSE)
@@ -1293,28 +1286,24 @@ main <- function() {
file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")), file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
row.names = FALSE) row.names = FALSE)
# Filter reference and deletion strains
df_reference <- df_na_stats %>% # formerly X2_RF
filter(OrfRep == strain) %>%
mutate(SM = 0)
df_deletion <- df_na_stats %>% # formerly X2
filter(OrfRep != strain) %>%
mutate(SM = 0)
# Set the missing values to the highest theoretical value at each drug conc for L # Set the missing values to the highest theoretical value at each drug conc for L
# Leave other values as 0 for the max/min # Leave other values as 0 for the max/min
reference_strain <- df_reference %>% df_reference <- df_na_stats %>% # formerly X2_RF
filter(OrfRep == strain) %>%
filter(!is.na(L)) %>%
group_by(conc_num, conc_num_factor) %>% group_by(conc_num, conc_num_factor) %>%
mutate( mutate(
max_l_theoretical = max(max_L, na.rm = TRUE), max_l_theoretical = max(max_L, na.rm = TRUE),
L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L), L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM), SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>% L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
ungroup() ungroup()
# Ditto for deletion strains # Ditto for deletion strains
deletion_strains <- df_deletion %>% df_deletion <- df_na_stats %>% # formerly X2
filter(OrfRep != strain) %>%
filter(!is.na(L)) %>%
mutate(SM = 0) %>%
group_by(conc_num, conc_num_factor) %>% group_by(conc_num, conc_num_factor) %>%
mutate( mutate(
max_l_theoretical = max(max_L, na.rm = TRUE), max_l_theoretical = max(max_L, na.rm = TRUE),
@@ -1325,7 +1314,7 @@ main <- function() {
message("Calculating reference strain interaction scores") message("Calculating reference strain interaction scores")
df_reference_stats <- calculate_summary_stats( df_reference_stats <- calculate_summary_stats(
df = reference_strain, df = df_reference,
variables = interaction_vars, variables = interaction_vars,
group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor") group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
)$df_with_stats )$df_with_stats
@@ -1336,7 +1325,7 @@ main <- function() {
message("Calculating deletion strain(s) interactions scores") message("Calculating deletion strain(s) interactions scores")
df_deletion_stats <- calculate_summary_stats( df_deletion_stats <- calculate_summary_stats(
df = deletion_strains, df = df_deletion,
variables = interaction_vars, variables = interaction_vars,
group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor") group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
)$df_with_stats )$df_with_stats