Refactor data filtering

This commit is contained in:
2024-09-16 20:05:06 -04:00
parent 15b6d3327c
commit 200df19922

View File

@@ -793,9 +793,12 @@ generate_rank_plot_configs <- function(df_filtered, is_lm = FALSE, adjust = FALS
return(configs) return(configs)
} }
generate_correlation_plot_configs <- function(df, variables) { generate_correlation_plot_configs <- function(df) {
configs <- list() configs <- list()
variables <- c("r", "L", "K", "AUC")
for (variable in variables) { for (variable in variables) {
z_lm_var <- paste0("Z_lm_", variable) z_lm_var <- paste0("Z_lm_", variable)
avg_zscore_var <- paste0("Avg_Zscore_", variable) avg_zscore_var <- paste0("Avg_Zscore_", variable)
@@ -821,47 +824,94 @@ generate_correlation_plot_configs <- function(df, variables) {
} }
filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FALSE, filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FALSE,
limits_map = NULL, verbose = TRUE) { rank = FALSE, limits_map = NULL, verbose = TRUE) {
for (variable in variables) { # Precompute column names for efficiency
avg_zscore_cols <- paste0("Avg_Zscore_", variables)
avg_zscore_col <- paste0("Avg_Zscore_", var) z_lm_cols <- paste0("Z_lm_", variables)
z_lm_col <- paste0("Z_lm_", var)
rank_col <- paste0("Rank_", var)
rank_lm_col <- paste0("Rank_lm_", var)
if (adjust) { if (adjust) {
message("Replacing NA with 0.001 for interaction variables") if (verbose) message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns")
df[[avg_zscore_col]] <- if_else(is.na(df[[avg_zscore_col]]), 0.001, df[[avg_zscore_col]]) df <- df %>%
df[[z_lm_col]] <- if_else(is.na(df[[z_lm_col]]), 0.001, df[[z_lm_col]]) mutate(
across(all_of(avg_zscore_cols), ~ replace_na(., 0.001)),
across(all_of(z_lm_cols), ~ replace_na(., 0.001))
)
} }
# Filter non-finite values
if (nf) { if (nf) {
non_finite <- df %>% filter(!is.finite(.data[[variable]])) non_finite_df <- df %>%
if (verbose && nrow(non_finite) > 0) { filter(across(all_of(variables), ~ !is.finite(.)))
message("Non-finite rows for variable ", variable, ":")
print(non_finite) if (verbose && nrow(non_finite_df) > 0) {
} message("Non-finite rows for variables ", paste(variables, collapse = ", "), ":")
df <- df %>% filter(is.finite(.data[[variable]])) print(non_finite_df)
} }
# Keep only rows where all specified variables are finite
df <- df %>%
filter(across(all_of(variables), ~ is.finite(.)))
}
# Filter missing malues
if (missing) { if (missing) {
missing_data <- df %>% filter(is.na(.data[[variable]])) missing_df <- df %>%
if (verbose && nrow(missing_data) > 0) { filter(across(all_of(variables), ~ is.na(.)))
message("Missing data for variable ", variable, ":")
print(missing_data) if (verbose && nrow(missing_df) > 0) {
} message("Missing data for variables ", paste(variables, collapse = ", "), ":")
df <- df %>% filter(!is.na(.data[[variable]])) print(missing_df)
} }
if (!is.null(limits_map) && !is.null(limits_map[[variable]])) { # Keep only rows where all specified variables are not missing
ylim_vals <- limits_map[[variable]] df <- df %>%
out_of_range_data <- df %>% filter(.data[[variable]] < ylim_vals[1] | .data[[variable]] > ylim_vals[2]) filter(across(all_of(variables), ~ !is.na(.)))
if (verbose && nrow(out_of_range_data) > 0) {
message("Out-of-range data for variable ", variable, ":")
print(out_of_range_data)
} }
df <- df %>% filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
# Filter data outside of y-limits (for plotting)
if (!is.null(limits_map)) {
for (variable in names(limits_map)) {
if (variable %in% variables) {
ylim_vals <- limits_map[[variable]]
# Identify out-of-range data
out_of_range_df <- df %>%
filter(.data[[variable]] < ylim_vals[1] | .data[[variable]] > ylim_vals[2])
if (verbose && nrow(out_of_range_df) > 0) {
message("Out-of-range data for variable ", variable, ":")
print(out_of_range_df)
}
# Keep only rows within the specified limits
df <- df %>%
filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
}
}
}
if (rank) {
if (verbose) message("Calculating rank columns for variables: ", paste(variables, collapse = ", "))
# Create Rank and Rank_lm columns using mutate and across
df <- df %>%
mutate(
# Rank based on Avg_Zscore_
across(all_of(avg_zscore_cols), ~ rank(., na.last = "keep"), .names = "Rank_{.col}"),
# Rank_lm based on Z_lm_
across(all_of(z_lm_cols), ~ rank(., na.last = "keep"), .names = "Rank_lm_{.col}")
)
# Rename the newly created rank columns to match desired names
for (variable in variables) {
old_rank_col <- paste0("Rank_Avg_Zscore_", variable)
new_rank_col <- paste0("Rank_", variable)
df <- df %>% rename(!!new_rank_col := !!sym(old_rank_col))
old_rank_lm_col <- paste0("Rank_lm_Z_lm_", variable)
new_rank_lm_col <- paste0("Rank_lm_", variable)
df <- df %>% rename(!!new_rank_lm_col := !!sym(old_rank_lm_col))
} }
} }
@@ -1254,10 +1304,14 @@ main <- function() {
file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE) file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
message("Generating rank plots") message("Generating rank plots")
zscores_interactions_joined_filtered <- filter_data(zscores_interactions_joined, variables, missing = TRUE, adjust = TRUE) zscores_interactions_joined_filtered <- filter_data(
zscores_interactions_joined,
variables,
missing = TRUE,
adjust = TRUE,
rank = TRUE)
rank_plot_configs <- generate_rank_plot_configs( rank_plot_configs <- generate_rank_plot_configs(
df = zscores_interactions_joined_filtered, df = zscores_interactions_joined_filtered,
variables = interaction_vars,
is_lm = FALSE, is_lm = FALSE,
adjust = TRUE adjust = TRUE
) )
@@ -1267,7 +1321,6 @@ main <- function() {
message("Generating ranked linear model plots") message("Generating ranked linear model plots")
rank_lm_plot_configs <- generate_rank_plot_configs( rank_lm_plot_configs <- generate_rank_plot_configs(
df = zscores_interactions_joined_filtered, df = zscores_interactions_joined_filtered,
variables = interaction_vars,
is_lm = TRUE, is_lm = TRUE,
adjust = TRUE adjust = TRUE
) )
@@ -1276,7 +1329,7 @@ main <- function() {
message("Filtering and reranking plots") message("Filtering and reranking plots")
# Formerly X_NArm # Formerly X_NArm
zscores_interactions_filtered <- zscores_interactions %>% zscores_interactions_filtered <- zscores_interactions_joined %>%
group_by(across(all_of(orf_group_vars))) %>% group_by(across(all_of(orf_group_vars))) %>%
filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>% filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
ungroup() %>% ungroup() %>%
@@ -1299,13 +1352,24 @@ main <- function() {
) %>% ) %>%
ungroup() ungroup()
message("Generating filtered ranked plots") # Re-rank
zscores_interactions_filtered <- filter_data(
df = zscores_interactions_filtered,
variables = interaction_vars,
missing = TRUE, # TODO what I'm currently having issues with
rank = TRUE
)
rank_plot_filtered_configs <- generate_rank_plot_configs( rank_plot_filtered_configs <- generate_rank_plot_configs(
df = zscores_interactions_filtered, df = zscores_interactions_filtered,
is_lm = FALSE, is_lm = FALSE,
adjust = FALSE adjust = FALSE
) )
generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_na_rm",
message("Generating filtered ranked plots")
generate_and_save_plots(
output_dir = out_dir,
file_name = "RankPlots_na_rm",
plot_configs = rank_plot_filtered_configs, plot_configs = rank_plot_filtered_configs,
grid_layout = list(ncol = 3, nrow = 2)) grid_layout = list(ncol = 3, nrow = 2))
@@ -1315,13 +1379,17 @@ main <- function() {
is_lm = TRUE, is_lm = TRUE,
adjust = FALSE adjust = FALSE
) )
generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm_na_rm", generate_and_save_plots(
output_dir = out_dir,
file_name = "RankPlots_lm_na_rm",
plot_configs = rank_plot_lm_filtered_configs, plot_configs = rank_plot_lm_filtered_configs,
grid_layout = list(ncol = 3, nrow = 2)) grid_layout = list(ncol = 3, nrow = 2))
message("Generating correlation plots") message("Generating correlation plots")
correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars) correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered)
generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm", generate_and_save_plots(
output_dir = out_dir,
file_name = "Avg_Zscore_vs_lm_NA_rm",
plot_configs = correlation_plot_configs, plot_configs = correlation_plot_configs,
grid_layout = list(ncol = 2, nrow = 2)) grid_layout = list(ncol = 2, nrow = 2))
}) })