Improve df grouping

This commit is contained in:
2024-09-17 20:11:39 -04:00
parent 268d7decb5
commit 24abf3c359

View File

@@ -116,7 +116,7 @@ scale_colour_publication <- function(...) {
# Load the initial dataframe from the easy_results_file
load_and_process_data <- function(easy_results_file, sd = 3) {
df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
df <- df %>%
filter(!(.[[1]] %in% c("", "Scan"))) %>%
filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
@@ -130,13 +130,14 @@ load_and_process_data <- function(easy_results_file, sd = 3) {
DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
SM = 0,
OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
conc_num_factor = as.factor(conc_num)
# conc_num_factor = factor(conc_num, levels = sort(unique(conc_num)))
conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc))
) %>%
mutate(
conc_num_factor = as.factor(match(conc_num, sort(unique(conc_num))) - 1)
)
return(df)
}
return(df)
}
# Update Gene names using the SGD gene list
update_gene_names <- function(df, sgd_gene_list) {
@@ -160,15 +161,6 @@ update_gene_names <- function(df, sgd_gene_list) {
calculate_summary_stats <- function(df, variables, group_vars) {
summary_stats <- df %>%
group_by(across(all_of(group_vars))) %>%
summarise(
N = n(),
sd_check = sd(L, na.rm = TRUE), # Test sd on a specific variable, e.g., L
se_check = sd(L, na.rm = TRUE) / sqrt(N) # Test se on a specific variable, e.g., L
)
summary_stats <- df %>%
group_by(across(all_of(group_vars))) %>%
summarise(
@@ -184,9 +176,6 @@ calculate_summary_stats <- function(df, variables, group_vars) {
.groups = "drop"
)
# sd = ~sd(., na.rm = TRUE)
# se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
# Create a cleaned version of df that doesn't overlap with summary_stats
cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
df_cleaned <- df %>%
@@ -219,11 +208,11 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
stats <- calculate_summary_stats(df,
variables = variables,
group_vars = c("OrfRep", "Gene", "num", "conc_num_factor"
))$summary_stats
group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
)$summary_stats
stats <- df %>%
group_by(OrfRep, Gene, num) %>%
group_by(across(all_of(group_vars))) %>%
mutate(
WT_L = mean_L,
WT_K = mean_K,
@@ -277,13 +266,13 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
)
# Calculate linear models
lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
lm_L <- lm(Delta_L ~ conc_num, data = stats)
lm_K <- lm(Delta_K ~ conc_num, data = stats)
lm_r <- lm(Delta_r ~ conc_num, data = stats)
lm_AUC <- lm(Delta_AUC ~ conc_num, data = stats)
interactions <- stats %>%
group_by(OrfRep, Gene, num) %>%
group_by(across(all_of(group_vars))) %>%
summarise(
OrfRep = first(OrfRep),
Gene = first(Gene),
@@ -357,10 +346,10 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
"NG", "SM", "DB")
calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num_factor"))
calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num_factor"))
interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
calculations_joined = calculations_joined))
@@ -1059,7 +1048,7 @@ main <- function() {
ss <- calculate_summary_stats(
df = df,
variables = summary_vars,
group_vars = c("OrfRep", "conc_num_factor"))
group_vars = c("conc_num", "conc_num_factor"))
df_stats <- ss$df_with_stats
message("Filtering non-finite data")
df_filtered_stats <- filter_data(df_stats, c("L"), nf = TRUE)
@@ -1068,7 +1057,7 @@ main <- function() {
ss <- calculate_summary_stats(
df = df_na,
variables = summary_vars,
group_vars = c("OrfRep", "conc_num_factor"))
group_vars = c("conc_num", "conc_num_factor"))
df_na_ss <- ss$summary_stats
df_na_stats <- ss$df_with_stats
write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
@@ -1078,7 +1067,7 @@ main <- function() {
ss <- calculate_summary_stats(
df = df_no_zeros,
variables = summary_vars,
group_vars = c("OrfRep", "conc_num_factor"))
group_vars = c("conc_num", "conc_num_factor"))
df_no_zeros_stats <- ss$df_with_stats
df_no_zeros_filtered_stats <- filter_data(df_no_zeros_stats, c("L"), nf = TRUE)
@@ -1090,14 +1079,14 @@ main <- function() {
message("Calculating summary statistics for L within 2SD of K")
# TODO We're omitting the original z_max calculation, not sure if needed?
ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num_factor"))
ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
# df_na_l_within_2sd_k_stats <- ss$df_with_stats
write.csv(ss$summary_stats,
file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
row.names = FALSE)
message("Calculating summary statistics for L outside 2SD of K")
ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num_factor"))
ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
df_na_l_outside_2sd_k_stats <- ss$df_with_stats
write.csv(ss$summary_stats,
file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
@@ -1272,7 +1261,7 @@ main <- function() {
# Set the missing values to the highest theoretical value at each drug conc for L
# Leave other values as 0 for the max/min
reference_strain <- df_reference %>%
group_by(conc_num_factor) %>%
group_by(conc_num, conc_num_factor) %>%
mutate(
max_l_theoretical = max(max_L, na.rm = TRUE),
L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
@@ -1282,7 +1271,7 @@ main <- function() {
# Ditto for deletion strains
deletion_strains <- df_deletion %>%
group_by(conc_num_factor) %>%
group_by(conc_num, conc_num_factor) %>%
mutate(
max_l_theoretical = max(max_L, na.rm = TRUE),
L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),