Organize old files

This commit is contained in:
2024-07-29 18:12:57 -04:00
parent d2a5d9e69f
commit 39672a6ca0
98 changed files with 57004 additions and 19259 deletions

View File

@@ -0,0 +1,105 @@
function h = histfitJR(data,nbins,dist)
%HISTFIT Histogram with superimposed fitted normal density.
% HISTFIT(DATA,NBINS) plots a histogram of the values in the vector DATA,
% along with a normal density function with parameters estimated from the
% data. NBINS is the number of bars in the histogram. With one input
% argument, NBINS is set to the square root of the number of elements in
% DATA.
%
% HISTFIT(DATA,NBINS,DIST) plots a histogram with a density from the DIST
% distribution. DIST can take the following values:
%
% 'beta' Beta
% 'birnbaumsaunders' Birnbaum-Saunders
% 'exponential' Exponential
% 'extreme value' or 'ev' Extreme value
% 'gamma' Gamma
% 'generalized extreme value' 'gev' Generalized extreme value
% 'generalized pareto' or 'gp' Generalized Pareto (threshold 0)
% 'inverse gaussian' Inverse Gaussian
% 'logistic' Logistic
% 'loglogistic' Log logistic
% 'lognormal' Lognormal
% 'negative binomial' or 'nbin' Negative binomial
% 'nakagami' Nakagami
% 'normal' Normal
% 'poisson' Poisson
% 'rayleigh' Rayleigh
% 'rician' Rician
% 'tlocationscale' t location-scale
% 'weibull' or 'wbl' Weibull
%
% H = HISTFIT(...) returns a vector of handles to the plotted lines.
% H(1) is a handle to the histogram, H(2) is a handle to the density curve.
% Copyright 1993-2008 The MathWorks, Inc.
% $Revision: 1.1.8.2.2.1 $ $Date: 2010/12/13 15:00:40 $
if ~isvector(data)
error(message('stats:histfit:VectorRequired'));
end
data = data(:);
data(isnan(data)) = [];
n = numel(data);
if nargin<2 || isempty(nbins)
nbins = ceil(sqrt(n));
elseif ~isscalar(nbins) || ~isnumeric(nbins) || ~isfinite(nbins) ...
|| nbins~=round(nbins)
error(message('stats:histfit:BadNumBins'))
end
% Do histogram calculations
[bincounts,bincenters]=hist(data,nbins);
% Fit distribution to data
if nargin<3 || isempty(dist)
dist = 'normal';
end
try
pd = fitdist(data,dist);
catch myException
if isequal(myException.identifier,'stats:ProbDistUnivParam:fit:NRequired')
% Binomial is not allowed because we have no N parameter
error(message('stats:histfit:BadDistribution'))
else
% Pass along another other errors
throw(myException)
end
end
% Find range for plotting
q = icdf(pd,[0.0013499 0.99865]); % three-sigma range for normal distribution
x = linspace(q(1),q(2));
if ~pd.Support.iscontinuous
% For discrete distribution use only integers
x = round(x);
x(diff(x)==0) = [];
end
% Plot the histogram with no gap between bars.
%if min(data)==0, neglim=-50; else neglim= min(data); end
%hh = bar(bincenters,bincounts,[neglim,max(data)],'hist');
hh = bar(bincenters,bincounts,[min(data),max(data)],'hist');
% Normalize the density to match the total area of the histogram
xd = get(hh,'Xdata'); % Gets the x-data of the bins.
if min(xd(:))==0, neglim = -50; else neglim= min(xd(:)); end
%rangex = max(xd(:)) - min(xd(:)); % Finds the range of this data.
rangex = max(xd(:)) - (neglim); % Finds the range of this data.
binwidth = rangex/nbins; % Finds the width of each bin.
area = n * binwidth;
y = area * pdf(pd,x);
% Overlay the density
np = get(gca,'NextPlot');
set(gca,'NextPlot','add')
hh1 = plot(x,y,'r-','LineWidth',2);
set(hh1,'visible','off')
if nargout == 1
h = [hh; hh1];
end
set(gca,'NextPlot',np)