Organize old files
This commit is contained in:
340
workflow/.old/apps/r/ScriptTemplates/PairwiseK_lbl.R
Normal file
340
workflow/.old/apps/r/ScriptTemplates/PairwiseK_lbl.R
Normal file
@@ -0,0 +1,340 @@
|
||||
#4. GTA K Pairwise Compare
|
||||
#Sean's Arg convention for info only
|
||||
#use this Rscript to compare two results sheets from GTF analysis "Average_GOTerms_All.csv"
|
||||
#Arg1 is Average_GOTerms_All_1.csv
|
||||
#Arg2 is the name to give GTA results 1
|
||||
#Arg3 is Average_GOTerms_All2.csv
|
||||
#Arg4 is the name to give GTA results 2
|
||||
#Arg5 is the directory to put the files into
|
||||
#Arg 1 is the GTA results 1
|
||||
#Arg 2 is the name of GTA results 1 to print in the results
|
||||
#Arg 3 is GTA results 3
|
||||
#Arg 4 is the name of GTA results 2 to print in the results
|
||||
#Arg 4 is the name of GTA results 2 to print in the results
|
||||
#arg 5 is the directory to put the results into (and create that directory if needed)
|
||||
|
||||
library(ggplot2)
|
||||
library(plotly)
|
||||
library(htmlwidgets)
|
||||
library(extrafont)
|
||||
library(grid)
|
||||
library(ggthemes)
|
||||
Args <- commandArgs(TRUE)
|
||||
expNm= Args[1] #"Exp3"
|
||||
expNm[2]= Args[2] #"Exp4"
|
||||
|
||||
expNumber1<- as.numeric(sub("^.*?(\\d+)$", "\\1", expNm[1]))
|
||||
expNumber2<- as.numeric(sub("^.*?(\\d+)$", "\\1", expNm[2]))
|
||||
#labels <- read.delim("ExpLabels.txt",skip=0,as.is=T,row.names=1,strip.white=TRUE)
|
||||
labels <- read.delim("StudyInfo.txt",skip=0,as.is=T,row.names=1,strip.white=TRUE)
|
||||
Name1 <- labels[expNumber1,1] #ssArg2 These are now supplied by Code/ExpLabels.txt which is user edited
|
||||
Name2 <- labels[expNumber2,1] #ssArg4
|
||||
Wstudy= getwd()
|
||||
input_file1 <- paste0("../GTAresults/",expNm[1],"/Average_GOTerms_All.csv" ) #Args[1]
|
||||
input_file2 <- paste0("../GTAresults/",expNm[2],"/Average_GOTerms_All.csv" ) #Args[3]
|
||||
|
||||
pairDirL= paste0("../GTAresults/","PairwiseCompareL_",expNm[1],"-",expNm[2])
|
||||
pairDirK= paste0("../GTAresults/","PairwiseCompareK_",expNm[1],"-",expNm[2])
|
||||
outPathGTAcompare= "../GTAresults/PairwiseCompareL" #paste0(Wstudy,"/GTAresults/PairwiseCompareL)
|
||||
outPathGTAcompare[2]= "../GTAresults/PairwiseCompareK" #paste0(Wstudy,"/GTAresults/PairwiseCompareK")
|
||||
#dir.create(outPathGTAcompare[1])
|
||||
dir.create(pairDirL) #(outPathGTAcompare[1])
|
||||
dir.create(pairDirK) #(outPathGTAcompare[2])
|
||||
|
||||
|
||||
#define the output path (as fourth argument from Rscript)
|
||||
outputpath <- pairDirK #outPathGTAcompare[2] #Args[5]
|
||||
|
||||
#theme elements for plots
|
||||
theme_Publication <- function(base_size=14, base_family="sans") {
|
||||
(theme_foundation(base_size=base_size, base_family=base_family)
|
||||
+ theme(plot.title = element_text(face = "bold",
|
||||
size = rel(1.2), hjust = 0.5),
|
||||
text = element_text(),
|
||||
panel.background = element_rect(colour = NA),
|
||||
plot.background = element_rect(colour = NA),
|
||||
panel.border = element_rect(colour = NA),
|
||||
axis.title = element_text(face = "bold",size = rel(1)),
|
||||
axis.title.y = element_text(angle=90,vjust =2),
|
||||
axis.title.x = element_text(vjust = -0.2),
|
||||
axis.text = element_text(),
|
||||
axis.line = element_line(colour="black"),
|
||||
axis.ticks = element_line(),
|
||||
panel.grid.major = element_line(colour="#f0f0f0"),
|
||||
panel.grid.minor = element_blank(),
|
||||
legend.key = element_rect(colour = NA),
|
||||
legend.position = "bottom",
|
||||
legend.direction = "horizontal",
|
||||
legend.key.size= unit(0.2, "cm"),
|
||||
legend.spacing = unit(0, "cm"),
|
||||
legend.title = element_text(face="italic"),
|
||||
plot.margin=unit(c(10,5,5,5),"mm"),
|
||||
strip.background=element_rect(colour="#f0f0f0",fill="#f0f0f0"),
|
||||
strip.text = element_text(face="bold")
|
||||
))
|
||||
}
|
||||
|
||||
scale_fill_Publication <- function(...){
|
||||
library(scales)
|
||||
discrete_scale("fill","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...)
|
||||
}
|
||||
scale_colour_Publication <- function(...){
|
||||
discrete_scale("colour","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...)
|
||||
}
|
||||
|
||||
theme_Publication_legend_right <- function(base_size=14, base_family="sans") {
|
||||
(theme_foundation(base_size=base_size, base_family=base_family)
|
||||
+ theme(plot.title = element_text(face = "bold",
|
||||
size = rel(1.2), hjust = 0.5),
|
||||
text = element_text(),
|
||||
panel.background = element_rect(colour = NA),
|
||||
plot.background = element_rect(colour = NA),
|
||||
panel.border = element_rect(colour = NA),
|
||||
axis.title = element_text(face = "bold",size = rel(1)),
|
||||
axis.title.y = element_text(angle=90,vjust =2),
|
||||
axis.title.x = element_text(vjust = -0.2),
|
||||
axis.text = element_text(),
|
||||
axis.line = element_line(colour="black"),
|
||||
axis.ticks = element_line(),
|
||||
panel.grid.major = element_line(colour="#f0f0f0"),
|
||||
panel.grid.minor = element_blank(),
|
||||
legend.key = element_rect(colour = NA),
|
||||
legend.position = "right",
|
||||
legend.direction = "vertical",
|
||||
legend.key.size= unit(0.5, "cm"),
|
||||
legend.spacing = unit(0, "cm"),
|
||||
legend.title = element_text(face="italic"),
|
||||
plot.margin=unit(c(10,5,5,5),"mm"),
|
||||
strip.background=element_rect(colour="#f0f0f0",fill="#f0f0f0"),
|
||||
strip.text = element_text(face="bold")
|
||||
))
|
||||
}
|
||||
|
||||
scale_fill_Publication <- function(...){
|
||||
discrete_scale("fill","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...)
|
||||
}
|
||||
scale_colour_Publication <- function(...){
|
||||
discrete_scale("colour","Publication",manual_pal(values = c("#386cb0","#fdb462","#7fc97f","#ef3b2c","#662506","#a6cee3","#fb9a99","#984ea3","#ffff33")), ...)
|
||||
}
|
||||
|
||||
X1 <- read.csv(file = input_file1,stringsAsFactors=FALSE,header = TRUE)
|
||||
|
||||
X2 <- read.csv(file = input_file2,stringsAsFactors=FALSE,header = TRUE)
|
||||
|
||||
#1
|
||||
X <- merge(X1,X2,by ="Term_Avg",all=TRUE,suffixes = c("_X1","_X2"))
|
||||
|
||||
gg <- ggplot(data = X,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Ontology_Avg_X1,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep = "")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOntology.pdf",sep=""),width = 12,height = 8)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("127")
|
||||
fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_byOntology.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
#2
|
||||
#ID aggravators and alleviators, regardless of whether they meet 2SD threshold
|
||||
X1_Specific_Aggravators <- X[which(X$Z_lm_K_Avg_X1 >= 2 & X$Z_lm_K_Avg_X2 < 2),]
|
||||
X1_Specific_Alleviators <- X[which(X$Z_lm_K_Avg_X1 <= -2 & X$Z_lm_K_Avg_X2 > -2),]
|
||||
|
||||
X2_Specific_Aggravators <- X[which(X$Z_lm_K_Avg_X2 >= 2 & X$Z_lm_K_Avg_X1 < 2),]
|
||||
X2_Specific_Alleviators <- X[which(X$Z_lm_K_Avg_X2 <= -2 & X$Z_lm_K_Avg_X1 > -2),]
|
||||
|
||||
Overlap_Aggravators <- X[which(X$Z_lm_K_Avg_X1 >= 2 & X$Z_lm_K_Avg_X2 >= 2),]
|
||||
Overlap_Alleviators <- X[which(X$Z_lm_K_Avg_X1 <= -2 & X$Z_lm_K_Avg_X2 <= -2),]
|
||||
|
||||
X2_Specific_Aggravators_X1_Alleviatiors <- X[which(X$Z_lm_K_Avg_X2 >= 2 & X$Z_lm_K_Avg_X1 <= -2),]
|
||||
X2_Specific_Alleviators_X1_Aggravators <- X[which(X$Z_lm_K_Avg_X2 <= -2 & X$Z_lm_K_Avg_X1 >= 2),]
|
||||
|
||||
X$Overlap_Avg <- NA
|
||||
|
||||
try(X[X$Term_Avg %in% X1_Specific_Aggravators$Term_Avg,]$Overlap_Avg <- paste(Name1,"Specific_Deletion_Suppressors",sep="_"))
|
||||
try(X[X$Term_Avg %in% X1_Specific_Alleviators$Term_Avg,]$Overlap_Avg <- paste(Name1,"Specific_Deletion_Enhancers",sep="_"))
|
||||
try(X[X$Term_Avg %in% X2_Specific_Aggravators$Term_Avg,]$Overlap_Avg <- paste(Name2,"Specific_Deletion_Suppressors",sep="_"))
|
||||
try(X[X$Term_Avg %in% X2_Specific_Alleviators$Term_Avg,]$Overlap_Avg <- paste(Name2,"Specific_Deletion_Enhancers",sep="_"))
|
||||
try(X[X$Term_Avg %in% Overlap_Aggravators$Term_Avg,]$Overlap_Avg <- "Overlapping_Deletion_Suppressors")
|
||||
try(X[X$Term_Avg %in% Overlap_Alleviators$Term_Avg,]$Overlap_Avg <- "Overlapping_Deletion_Enhancers")
|
||||
try(X[X$Term_Avg %in% X2_Specific_Aggravators_X1_Alleviatiors$Term_Avg,]$Overlap_Avg <- paste(Name2,"Deletion_Suppressors",Name1,"Deletion_Enhancers",sep="_"))
|
||||
try(X[X$Term_Avg %in% X2_Specific_Alleviators_X1_Aggravators$Term_Avg,]$Overlap_Avg <- paste(Name2,"Deletion_Enhancers",Name1,"Deletion_Suppressors",sep="_"))
|
||||
|
||||
|
||||
plotly_path <- paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_byOverlap.html",sep="")
|
||||
gg <- ggplot(data = X,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap_Avg,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap.pdf",sep=""),width = 12,height = 8)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("#2-170")
|
||||
#2
|
||||
fname <- paste("/Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_byOverlap.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
#3
|
||||
x_rem2_gene <- X[X$NumGenes_Avg_X1 >= 2 & X$NumGenes_Avg_X2 >= 2,]
|
||||
plotly_path <- paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_byOverlap_above2genes.html",sep="")
|
||||
gg <- ggplot(data = x_rem2_gene,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap_Avg,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_above2genes.pdf",sep=""),width = 12,height = 8)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("#3")
|
||||
fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_byOverlap_above2genes.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
#4
|
||||
X_overlap_nothresold <- X[!(is.na(X$Overlap_Avg)),]
|
||||
gg <- ggplot(data = X_overlap_nothresold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap_Avg,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep = "")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_Above2SD_ByOverlap.pdf",sep=""),width = 12,height = 8)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("#4")
|
||||
fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_Above2SD_ByOverlap.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
#5
|
||||
#only output GTA terms where average score is still above 2 after subtracting the SD
|
||||
#Z1 will ID aggravators, Z2 alleviators
|
||||
Z1 <- X
|
||||
Z1$L_Subtract_SD_X1 <- Z1$Z_lm_K_Avg_X1 - Z1$Z_lm_K_SD_X1
|
||||
Z1$L_Subtract_SD_X2 <- Z1$Z_lm_K_Avg_X2 - Z1$Z_lm_K_SD_X2
|
||||
|
||||
Z2 <- X
|
||||
Z2$L_Subtract_SD_X1 <- Z1$Z_lm_K_Avg_X1 + Z1$Z_lm_K_SD_X1
|
||||
Z2$L_Subtract_SD_X2 <- Z1$Z_lm_K_Avg_X2 + Z1$Z_lm_K_SD_X2
|
||||
|
||||
|
||||
X1_Specific_Aggravators2 <- Z1[which(Z1$L_Subtract_SD_X1 >= 2 & Z1$L_Subtract_SD_X2 < 2),]
|
||||
X1_Specific_Alleviators2 <- Z2[which(Z2$L_Subtract_SD_X1 <= -2 & Z2$L_Subtract_SD_X2 > -2),]
|
||||
|
||||
X2_Specific_Aggravators2 <- Z1[which(Z1$L_Subtract_SD_X2 >= 2 & Z1$L_Subtract_SD_X1 < 2),]
|
||||
X2_Specific_Alleviators2 <- Z2[which(Z2$L_Subtract_SD_X2 <= -2 & Z2$L_Subtract_SD_X1 > -2),]
|
||||
|
||||
Overlap_Aggravators2 <- Z1[which(Z1$L_Subtract_SD_X1 >= 2 & Z1$L_Subtract_SD_X2 >= 2),]
|
||||
Overlap_Alleviators2 <- Z2[which(Z2$L_Subtract_SD_X2 <= -2 & Z2$L_Subtract_SD_X1 <= -2),]
|
||||
|
||||
X2_Specific_Aggravators2_X1_Alleviatiors2 <- Z1[which(Z1$L_Subtract_SD_X2 >= 2 & Z2$L_Subtract_SD_X1 <= -2),]
|
||||
X2_Specific_Alleviators2_X1_Aggravators2 <- Z2[which(Z2$L_Subtract_SD_X2 <= -2 & Z1$L_Subtract_SD_X1 >= 2),]
|
||||
|
||||
X$Overlap <- NA
|
||||
|
||||
try(X[X$Term_Avg %in% X1_Specific_Aggravators2$Term_Avg,]$Overlap <- paste(Name1,"Specific_Deletion_Suppressors",sep="_"))
|
||||
try(X[X$Term_Avg %in% X1_Specific_Alleviators2$Term_Avg,]$Overlap <- paste(Name1,"Specific_Deletion_Enhancers",sep="_"))
|
||||
try(X[X$Term_Avg %in% X2_Specific_Aggravators2$Term_Avg,]$Overlap <- paste(Name2,"Specific_Deletion_Suppressors",sep="_"))
|
||||
try(X[X$Term_Avg %in% X2_Specific_Alleviators2$Term_Avg,]$Overlap <- paste(Name2,"Specific_Deletion_Enhancers",sep="_"))
|
||||
try(X[X$Term_Avg %in% Overlap_Aggravators2$Term_Avg,]$Overlap <- "Overlapping_Deletion_Suppressors")
|
||||
try(X[X$Term_Avg %in% Overlap_Alleviators2$Term_Avg,]$Overlap <- "Overlapping_Deletion_Enhancers")
|
||||
try(X[X$Term_Avg %in% X2_Specific_Aggravators2_X1_Alleviatiors2$Term_Avg,]$Overlap <- paste(Name2,"Deletion_Suppressors",Name1,"Deletion_Enhancers",sep="_"))
|
||||
try(X[X$Term_Avg %in% X2_Specific_Alleviators2_X1_Aggravators2$Term_Avg,]$Overlap <- paste(Name2,"Deletion_Enhancers",Name1,"Deletion_Suppressors",sep="_"))
|
||||
|
||||
X_abovethreshold <- X[!(is.na(X$Overlap)),]
|
||||
gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold.pdf",sep=""),width = 12,height = 8)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("#5")
|
||||
fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
#6
|
||||
gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_text(aes(label=Term_Avg),nudge_y = 0.25,size=2) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3,size=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_names.pdf",sep=""),width = 20,height = 20)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("#6")
|
||||
fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_names.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
#7
|
||||
X_abovethreshold$X1_Rank <- NA
|
||||
X_abovethreshold$X1_Rank <- rank(-X_abovethreshold$Z_lm_K_Avg_X1,ties.method = "random")
|
||||
X_abovethreshold$X2_Rank <- NA
|
||||
X_abovethreshold$X2_Rank <- rank(-X_abovethreshold$Z_lm_K_Avg_X2,ties.method = "random")
|
||||
|
||||
|
||||
gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_text(aes(label=X1_Rank),nudge_y = 0.25,size=4) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3,size=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX1.pdf",sep=""),width = 15,height = 15)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("#7")
|
||||
fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX1.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
#8
|
||||
gg <- ggplot(data = X_abovethreshold,aes(x=Z_lm_K_Avg_X1,y=Z_lm_K_Avg_X2,color=Overlap,Term=Term_Avg,Genes=Genes_Avg_X1,NumGenes=NumGenes_Avg_X1,AllPossibleGenes=AllPossibleGenes_Avg_X1,SD_1=Z_lm_K_SD_X1,SD_2=Z_lm_K_SD_X2)) +
|
||||
xlab(paste("GO Term Avg lm Z for ",Name1,sep="")) +
|
||||
geom_text(aes(label=X2_Rank),nudge_y = 0.25,size=4) +
|
||||
geom_rect(aes(xmin=-2,xmax=2,ymin=-2,ymax=2),color="grey20",size=0.25,alpha=0.1,inherit.aes = FALSE,fill=NA) + geom_point(shape=3,size=3) +
|
||||
ylab(paste("GO Term Avg lm Z for ",Name2,sep="")) + ggtitle(paste("Comparing Average GO Term Z lm for ",Name1," vs. ",Name2,sep="")) +
|
||||
theme_Publication_legend_right()
|
||||
pdf(paste(getwd(),"/",outputpath,"/","Scatter_lm_GTF_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX2.pdf",sep=""),width = 15,height = 15)
|
||||
gg
|
||||
dev.off()
|
||||
pgg <- ggplotly(gg)
|
||||
#pgg
|
||||
print("#8")
|
||||
fname <- paste("Scatter_lm_GTA_Averages_",Name1,"_vs_",Name2,"_All_ByOverlap_AboveThreshold_numberedX2.html",sep="")
|
||||
print(fname)
|
||||
htmlwidgets::saveWidget(pgg, file.path(getwd(),fname))
|
||||
file.rename(from = file.path(getwd(),fname), to = file.path(pairDirK,fname))
|
||||
|
||||
print("write csv files")
|
||||
write.csv(x=X,file = paste(getwd(),"/",outputpath,"/","All_GTF_Avg_Scores_",Name1,"_vs_",Name2,".csv",sep=""),row.names = FALSE)
|
||||
write.csv(x=X_abovethreshold,file = paste(getwd(),"/",outputpath,"/","AboveThreshold_GTF_Avg_Scores_",Name1,"_vs_",Name2,".csv",sep=""),row.names = FALSE)
|
||||
|
||||
#End of GTA Pairwise compare for K values
|
||||
Reference in New Issue
Block a user