Split out simple vars in interaction scores
This commit is contained in:
@@ -230,17 +230,20 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
bg_sd_r <- df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first()
|
||||
bg_sd_AUC <- df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
|
||||
|
||||
# Calculate interaction scores
|
||||
# First mutate block to calculate NG, DB, SM
|
||||
print("Calculating interaction scores part 1")
|
||||
interaction_scores <- df %>%
|
||||
group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
|
||||
mutate(
|
||||
NG = sum(NG, na.rm = TRUE),
|
||||
DB = sum(DB, na.rm = TRUE),
|
||||
SM = sum(SM, na.rm = TRUE)
|
||||
) %>%
|
||||
SM = sum(SM, na.rm = TRUE),
|
||||
N = ~sum(!is.na(L)), # Count of non-NA values
|
||||
)
|
||||
|
||||
# Second mutate block to calculate variables and Delta using NG
|
||||
interaction_scores <- interaction_scores %>%
|
||||
mutate(across(all_of(variables), list(
|
||||
N = ~sum(!is.na(.)), # Count of non-NA values
|
||||
mean = ~mean(., na.rm = TRUE),
|
||||
median = ~median(., na.rm = TRUE),
|
||||
max = ~max(., na.rm = TRUE),
|
||||
@@ -269,7 +272,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L) # disregard shift for set to max values in Z score calculation
|
||||
) %>%
|
||||
ungroup()
|
||||
|
||||
|
||||
# Calculate linear models and interaction scores per gene
|
||||
print("Calculating interaction scores part 2")
|
||||
interaction_scores_all <- interaction_scores %>%
|
||||
@@ -296,6 +299,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
return(list(zscores_calculations = interaction_scores_all, zscores_interactions = interaction_scores))
|
||||
}
|
||||
|
||||
|
||||
interaction_plot_configs <- function(df, variable) {
|
||||
ylim_vals <- switch(variable,
|
||||
"L" = c(-65, 65),
|
||||
@@ -715,8 +719,6 @@ main <- function() {
|
||||
reference_strain <- process_strains(df_reference) # TODO double-check
|
||||
deletion_strains <- process_strains(df_deletion) # TODO double-check
|
||||
|
||||
# TODO we may need to add "num" to grouping vars
|
||||
|
||||
# Calculate interactions
|
||||
variables <- c("L", "K", "r", "AUC")
|
||||
# We are recalculating some of the data here
|
||||
|
||||
Reference in New Issue
Block a user