Make calculate_summary_stats() more explicit
This commit is contained in:
@@ -114,7 +114,7 @@ load_and_process_data <- function(easy_results_file, sd = 3) {
|
|||||||
|
|
||||||
# Clean and convert columns to numeric where appropriate
|
# Clean and convert columns to numeric where appropriate
|
||||||
df <- df %>%
|
df <- df %>%
|
||||||
filter(!(.data[[1]] %in% c("", "Scan"))) %>%
|
filter(!(.[[1]] %in% c("", "Scan"))) %>%
|
||||||
filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
|
filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
|
||||||
mutate(
|
mutate(
|
||||||
Col = as.numeric(Col),
|
Col = as.numeric(Col),
|
||||||
@@ -189,23 +189,31 @@ process_strains <- function(df) {
|
|||||||
|
|
||||||
# Calculate summary statistics for all variables
|
# Calculate summary statistics for all variables
|
||||||
calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "conc_num_factor")) {
|
calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "conc_num_factor")) {
|
||||||
# Calculate summary statistics with the grouping columns
|
|
||||||
summary_stats <- df %>%
|
summary_stats <- df %>%
|
||||||
group_by(across(all_of(group_vars))) %>%
|
group_by(across(all_of(group_vars))) %>%
|
||||||
summarise(across(all_of(variables), list(
|
summarise(across(all_of(variables), list(
|
||||||
N = length(.x),
|
N = ~length(.),
|
||||||
mean = ~mean(.x, na.rm = TRUE),
|
mean = ~mean(., na.rm = TRUE),
|
||||||
median = ~median(.x, na.rm = TRUE),
|
median = ~median(., na.rm = TRUE),
|
||||||
max = ~max(.x, na.rm = TRUE),
|
max = ~max(., na.rm = TRUE),
|
||||||
min = ~min(.x, na.rm = TRUE),
|
min = ~min(., na.rm = TRUE),
|
||||||
sd = ~sd(.x, na.rm = TRUE),
|
sd = ~sd(., na.rm = TRUE)
|
||||||
se = sd / sqrt(N - 1),
|
), .names = "{.fn}_{.col}")) %>%
|
||||||
z_max = (max - mean) / sd
|
mutate(
|
||||||
), .names = "{.fn}_{.col}"))
|
se_L = sd_L / sqrt(N_L - 1),
|
||||||
|
se_K = sd_K / sqrt(N_K - 1),
|
||||||
|
se_r = sd_r / sqrt(N_r - 1),
|
||||||
|
se_AUC = sd_AUC / sqrt(N_AUC - 1),
|
||||||
|
z_max_L = (max_L - mean_L) / sd_L,
|
||||||
|
z_max_K = (max_K - mean_K) / sd_K,
|
||||||
|
z_max_r = (max_r - mean_r) / sd_r,
|
||||||
|
z_max_AUC = (max_AUC - mean_AUC) / sd_AUC
|
||||||
|
)
|
||||||
|
|
||||||
return(summary_stats)
|
return(summary_stats)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
calculate_interaction_scores <- function(df_ref, df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
|
calculate_interaction_scores <- function(df_ref, df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
|
||||||
|
|
||||||
# Calculate total concentration variables
|
# Calculate total concentration variables
|
||||||
|
|||||||
Reference in New Issue
Block a user